While riding a multispeed bicycle, the rider can select the radius of the rear sprocket that is fixed to the rear axle. The front sprocket of a bicycle has radius 12.0 cm. If the angular speed of the front sprocket is 0.600 rev/s, what is the radius of the rear sprocket for which the tangential speed of a point on the rim of the rear wheel will be 5.00 m/s?

Answers

Answer 1

Answer:

2.9 cm

Explanation:

Assuming that the rear wheel has a radius of 0.330 m

Given that

r(a) = 12 cm -> 0.12 m

w(a) = 0.6 rev/s -> 3.77 rad/s

v = 5 m/s

r(w) = 0.330 m

The speed on any point on the rim at the sprocket in the front is

v(a) = w(a).r(a) = 3.77 * 0.12 = 0.4524 m/s

Also,

v(a) = speed at any point on the chain

v(b) = speed at any point on the rim of the rear sprocket

v(a) = v(b)

where v(b) = w(b).r(b)

Recall that the speed at any point on the rear wheel is v, where

v = w(b).r(w)

5 = w(b) * 0.330

w(b) = 5/0.330

w(b) = 15.15 rad/s

On substituting this in the equation, we have

v(b) = w(b).r(b).

Remember also, that v(a) = v(b), so

0.4524 = 15.15 * r(b)

r(b) = 0.4524 / 15.15

r(b) = 0.029 m -> 2.9 cm

Therefore, the radius of the rear sprocket needed is 2.9 cm


Related Questions

In the winter sport of curling, players give a 20 kg stone a push across a sheet of ice. The Slone moves approximately 40 m before coming to rest. The final position of the stone, in principle, onlyndepends on the initial speed at which it is launched and the force of friction between the ice and the stone, but team members can use brooms to sweep the ice in front of the stone to adjust its speed and trajectory a bit; they must do this without touching the stone. Judicious sweeping can lengthen the travel of the stone by 3 m.1. A curler pushes a stone to a speed of 3.0 m/s over a time of 2.0 s. Ignoring the force of friction, how much force must the curler apply to the stone to bring it op to speed?A. 3.0 NB. 15 NC. 30 N
D. 150 N2The sweepers in a curling competition adjust the trajectory of the slope byA. Decreasing the coefficient of friction between the stone and the ice.
B. Increasing the coefficient of friction between the stone and the ice.C. Changing friction from kinetic to static.D. Changing friction from static to kinetic.3. Suppose the stone is launched with a speed of 3 m/s and travel s 40 m before coming to rest. What is the approximate magnitude of the friction force on the stone?A. 0 NB. 2 NC. 20 ND. 200 N4. Suppose the stone's mass is increased to 40 kg, but it is launched at the same 3 m/s. Which one of the following is true?A. The stone would now travel a longer distance before coming to rest.B. The stone would now travel a shorter distance before coming to rest.C. The coefficient of friction would now be greater.D. The force of friction would now be greater.

Answers

Answer:82. Since you have a distance and a force, then the easiest principle to use is energy, i.e. work.

The work done by friction is F * d. This work cancels out the kinetic energy of the stone (1/2)mv^2

Fd = (1/2)mv^2

F = (1/2)mv^2/d.

Plug in m = 20 kg, v = 3 m/sec, d = 40 m.

83. With more mass, the kinetic energy is higher now. The work needed is higher. W = F * d and F is the same.

Explanation:Hope I helped :)

A baseball is thrown across the field. The ____________is measured from where the ball is thrown to where landed was 75 feet.

motion
direction
distance
reference point

Answers

Answer:

distance i think

Explanation:

How much work would be done on a particle with 5.0 C of charge on it if it moved from an equipotential line at 5.5 volts to another equipotential line at 3.5 volts?

Answers

Answer:

10J

Explanation:

In this question we have the following information

The charge of the particle is q = 5 C

The equipotenetial level is V1 = 5.5 v

and also the

equipotenetial level is V2 = 3.5 v

So we calculate the

work done W=q x (v1-v2)

workdone = 5 x (5.5-3.5)

= 5x2

=10 J

Workdone = 10 J

So we conclude that the workdone on a particle with these information is 10j

A car moves forward up a hill at 12 m/s with a uniform backward acceleration of 1.6 m/s2. What is its displacement after 6 s?

Answers

Answer:

The displacement of the car after 6s is 43.2 m

Explanation:

Given;

velocity of the car, v = 12 m/s

acceleration of the car, a = -1.6 m/s² (backward acceleration)

time of motion, t = 6 s

The displacement of the car after 6s is given by the following kinematic equation;

d = ut + ¹/₂at²

d = (12 x 6) + ¹/₂(-1.6)(6)²

d = 72 - 28.8

d = 43.2 m

Therefore, the displacement of the car after 6s is 43.2 m

A 5.3 kg block rests on a level surface. The coefficient of static friction is μ_s=0.67, and the coefficient of kinetic friction is μ_k= 0.48 A horizontal force, x is applied to the block. As x is increased, the block begins moving. Describe how the force of friction changes as x increases from the moment the block is at rest to when it begins moving. Show how you determined the force of friction at each of these times ― before the block starts moving, at the point it starts moving, and after it is moving. Show your work.

Answers

As the pushing force x increases, it would be opposed by the static frictional force. As x passes a certain threshold and overcomes the maximum static friction, the block will start moving and will require a smaller magnitude x to maintain opposition to the kinetic friction and keep the block moving at a constant speed. If x stays at the magnitude required to overcome static friction, the net force applied to the block will cause it to accelerate in the same direction.

Let w denote the weight of the block, n the magnitude of the normal force, x the magnitude of the pushing force, and f the magnitude of the frictional force.

The block is initially at rest, so the net force on the box in the horizontal and vertical directions is 0:

n + (-w) = 0

n = w = m g = (5.3 kg) (9.80 m/s²) = 51.94 N

The frictional force is proportional to the normal force, so that f = µ n where µ is the coefficient of static or kinetic friction. Before the block starts moving, the maximum static frictional force will be

f = 0.67 (51.94 N) ≈ 35 N

so for 0 < x < 35 N, the block remains at rest and 0 < f < 35 N as well.

The block starts moving as soon as x = 35 N, at which point f = 35 N.

At any point after the block starts moving, we have

f = 0.48 (51.94 N) ≈ 25 N

so that x = 25 N is the required force to keep the block moving at a constant speed.

As x  is increasing it will be opposed by a static frictional force and for the object to start moving and maintain its acceleration, the magnitude of x must exceed the magnitude of the static frictional force and kinetic frictional force

Magnitude of normal force ( object at rest );  n = 51.94 N Required magnitude of x before the movement of object ; x = 35 NMagnitude of x  after object start moving   x = 25 N

Given data :

mass of block at rest ( m ) = 5.3 kg

Coefficient of static friction ( μ_s ) =0.67

Coefficient of kinetic friction is ( μ_k ) = 0.48

Horizontal force applied to block = x  

First step : magnitude of normal force ( n ) when object is at rest

n = w            where w = m*g

n - w = 0

n - ( 5.3 * 9.81 ) = 0     ∴  n = 51.94 N

Second step : Required magnitude of x before the movement of object

F =  μ_s * n

F = 0.67 * 51.94  = 34.79 N  ≈ 35 N

∴ The object will start moving once F and x = 35 N

Final step : Magnitude of x  after object start moving

F = μ_k  * n

  = 0.48 * 51.94 = 24.93 N  ≈ 25 N

∴ object will continue to accelerate at a constant speed once F and x = 25N

Learn more : https://brainly.com/question/21444366

A man walks south at a speed of 2.00 m/s for 60.0 minutes. He then turns around and walks north a distance 3000 m in 25.0 minutes. What is the average velocity of the man during his entire motion?

Answers

Answer:

v = 0.823 m/s

Explanation:

A man walks south at a speed of 2.00 m/s for 60.0 minutes.

The distance covered in South = 60 × 60 × 2 = 7200 m

He then turns around and walks north a distance 3000 m in 25.0 minutes.

As they moved in opposite direction, net displacement will be : 7200 - 3000 = 4200 m

Average velocity of the man = net displacement/time

[tex]v=\dfrac{4200\ m}{(60+25)\times 60}\\\\=0.823\ m/s[/tex]

So, the average velocity of the man is 0.823 m/s.

Other Questions
Sarah earns $9 an hour at a Morts Pizza Palace, working 20 hours per week. She spends $3 each week for snacks at work, but saves all her other earnings. How many hours must Sarah work to buy a new phone that costs $150? Please help its due today!! Please help!!! Explain and correct the error in this calculation. 1. An example of an asset would be a: Group of answer choiceshousecredit cardcar loan2. An example of a liability would be a: Group of answer choicescredit cardhome ownership401 k3. The rate at which the prices for goods and services rise. Group of answer choicesinflationstocksinvestment advisor4. A collection of stocks, bonds, and other investments owned by a group of investors who put their monthly together. Group of answer choicesmutual fundinterest ratetax5. Wrongful or criminal deception for financial gain. Group of answer choicesfraudinsurancedeductible Write a poem on Himalayas 2. What was Henry Stimsons objection to Churchills suggestion? * (1 pt)What is the vertex of the graph ofthe function f(x) = x2 + 6x + 9? A car moves forward up a hill at 12 m/s with a uniform backward acceleration of 1.6 m/s2. What is its displacement after 6 s? What are 3 facts about high pressure (in weather) After deciding not to served alcohol to two suspected minors, what is the next appropriate action? what negative impacts can take place in child's psychologywhen schools are politicized? What is the slope of the line given by the function f (x) = 7 2x? What is f(4) for the function f(x)= 6x+7? Estimate 38 3/22 - 14 29 by rounding each number to the nearest whole number Solve this equation.24 + 0.44x = 19 + 1.69x What effect did the Diaspora have on the religion of Judaism? For a dosage of x cubic centimeters (cc) of a certain drug, the resulting blood pressure B is approximated by the function below. Find the maximum blood pressure and the disage at which it occurs.B(x)= 395x^2- 2370x^3, 0 how can you show that an enclosed liquid exert pressure in all directions equally?Please tell me. I need help plzzzzzzzzzzzzzzzzz In the seventh grade, Rachel read 15 books.In the eighth grade, she read 18 books.Determine the percent of increase in thenumber of books Rachel read.