Answer:
Oxygen is used up
Explanation:
Have an amazing day! And here is the attachment If you don't believe me. Brainliest would be nice.
A plant uses carbon dioxide and water to form food and oxygen. Why is this a chemical change?
Answer:
The plant uses carbon dioxide and water to make an entirely new chemical hence chemical change.
Explanation:
Plants create their own 'food', they turn carbon dioxide water and sunlight to create starch and glucose..
Answer:
The properties of carbon dioxide and oxygen are different.
Explanation:
im taking the exam right now and Im pretty sure it's D The properties of carbon dioxide and oxygen are different.
A certain chemical reaction releases of heat for each gram of reactant consumed. How can you calculate the heat produced by the consumption of of reactant? Set the math up. But don't do any of it. Just leave your answer as a math expression. Also, be sure your answer includes all the correct unit symbols.
Complete Question
The complete question is shown in the first uploaded image
Answer:
So the math expression is
[tex]heat = \frac{ 35. 7 KJ * 1900 \ gram }{ 1 \ gram }[/tex]
Explanation:
From the question we are told that
The heat released for 1 gram of reactant consumed is [tex]H = 37.5 \ KJ/g [/tex]
The mass of reactant considered is [tex]m = 1.9 \ kg = 1900 \ g[/tex]
So if
[tex]37.5 \ KJ [/tex] is produced for 1 gram
Then
x kJ is produced for 1900 g
=> [tex]x = \frac{ 35. 7 KJ * 1900 \ gram }{ 1 \ gram }[/tex]
So the heat released is
[tex]heat = \frac{ 35. 7 KJ * 1900 \ gram }{ 1 \ gram }[/tex]
Find the density of a liquid that has a mass of 24 grams and a volume of 6 ml.
Answer:
4
Explanation:
24/6 is 4.
Answer:
Mathematically: D = m/v. If you know what liquid you have, you can look up its density in a table. Once you know that, all you have to do to find the mass of the liquid is to measure its volume. Once you know density and volume, calculate mass using this relationship: mass = density • volume.
Explanation:
Which is the best molecule to build collegen, muscle repair, and tendon repair?
a
carohydrates
b
lipids
c
nucleic acids
d
Proteins
Answer:
d
Explanation:
collagen is made of proteins
What mass of water is produced from the complete combustion of 6.60×10−3 g of methane?
Which of the following best describes the structure of a nucleic acid?
a
Carbon ring(s)
b
Globular or fibrous
c
Single or double helix
d
Hydrocarbon(s)
Mass number is equal to
(10 Points)
O neutrons and electrons
o electrons and protons
O protons and nucleus
protons and neutrons
Georgia discovered a piece of metal. She measured its mass as 14 grams and its volume as 2 cm3. Georgia then compared the metal she found with the metals in the table below.
DENSITY OF METALS
Which type of metal did Georgia most likely find?
A.Gold
B.Lead
C.Silver
D.Zinc
Answer:
try dividing the grams and the volume and see what number matches up with your answer
Explanation:A student ran the following reaction in the laboratory at 751 K: N2(g) + 3H2(g) 2NH3(g) When she introduced 3.47×10-2 moles of N2(g) and 6.38×10-2 moles of H2(g) into a 1.00 liter container, she found the equilibrium concentration of H2(g) to be 6.25×10-2 M. Calculate the equilibrium constant, Kc, she obtained for this reaction.
Answer:
Kc = 4.86×10⁻⁶
Explanation:
We begin from the equation:
N₂ + 2H₂ ⇄ 2NH₃
We start from 3.47×10⁻² moles of N₂(g) and 6.38×10⁻² moles of H₂(g), so when we reach the equilibrium, we get 6.25×10⁻² moles of H₂.
This data means, that in the reaction we made react:
6.38×10⁻² - x = 6.25×10⁻²
x = 1.3×10⁻³ moles of H₂
As stoichiometry is 1:3, we will know that the moles of N₂ that have been reacted were:
1.3×10⁻³ moles / 3 = 4.33×10⁻⁴ moles of N₂
So, in the equilibrium we would have:
3.47×10⁻² moles of N₂ - 4.33×10⁻⁴ moles of N₂ = 0.0343 moles of N₂
How many ammonia, would we have in the equilibrium?
4.33×10⁻⁴ mol . 2 = 8.66×10⁻⁴ moles (from stoichiometry with N₂, 1:2)
(1.3×10⁻³ mol . 2) / 3 = 8.66×10⁻⁴ moles (from stoichiometry with H₂, 2:3)
Let's make the expression for Kc
Kc = [NH₃]³ / [N₂] . [H₂]²
(8.66×10⁻⁴ )³ / (0.0343 . (6.25×10⁻²)² = 4.86×10⁻⁶
What calculated value is used to evaluate accuracy for a set of data? Group of answer choices (multiple choice) yield percent error range
Answer:
Percent error
Explanation:
Percent error is defined as the percentage of the difference between the measured( accurate value) and the known value of a substance.
It is usually calculated by:
Measured value — Known value/ known value * 100%
Percent error is the calculated value that is used to evaluate accuracy for a set of data
Rearange the equation to isolate a. (a+b/c)(d-e)=f find a =
Answer:
[tex]a=\frac{f}{d-e}-\frac{b}{c}[/tex]
Explanation:
Hello.
In this case, for the equation:
[tex](a+b/c)(d-e)=f[/tex]
For isolating a, we must first pass (d-e) to divide at the other side as it is initially multiplying:
[tex]a+b/c=\frac{f}{(d-e)}[/tex]
Next, as b/c is adding, it passes to subtract at the other side in order to finally isolate a:
[tex]a=\frac{f}{d-e}-\frac{b}{c}[/tex]
Best regards!
Which profile best shows the topography alone line AD
Cathode rays are deflected toward a negatively charged plate in an electric field.
True
False
Answer:
true. cathode rays are deflected
Carbonic acid, H2CO3, has two acidic hydrogens. A solution containing an unknown concentration of carbonic acid is titrated with potassium hydroxide. It requires 22.9 mL of 1.430 M KOH solution to titrate both acidic protons in 54.2 mL of the carbonic acid solution.
Required:
a. Write a balanced net ionic equation for the neutralization reaction. Include physical states.
b. Calculate the molarity of the carbonic acid solution.
Answer:
a. H₂CO₃(aq) + KOH(aq) ⇄ K₂CO₃(aq) + H₂O(l)
b. 0.603 M
Explanation:
Step 1: Write the neutralization reaction
H₂CO₃(aq) + KOH(aq) ⇄ K₂CO₃(aq) + H₂O(l)
Step 2: Calculate the reacting moles of KOH
22.9 mL of 1.430 M KOH react.
0.0229 L × (1.430 mol/L) = 0.0327 mol
Step 3: Calculate the reacting moles of H₂CO₃
The molar ratio of H₂CO₃ to KOH is 1:1. The reacting moles of H₂CO₃ are 1/1 × 0.0327 mol = 0.0327 mol.
Step 4: Calculate the molarity of H₂CO₃
0.0327 moles of H₂CO₃ are in a volume of 54.2 mL. The molarity of H₂CO₃ is:
M = 0.0327 mol/0.0542 L = 0.603 M
Which of the following compounds contains polar covalent bonds?
a) CS2
b) LiF
c) F2
d) CH3F
Answer:
no d
Explanation:
it has a permanent dipole
CH₃F compound contains polar covalent bonds in its structure, hence option D is correct.
This happens when the electronegativity of the relevant atoms differs significantly.
The electronegativities of the carbon and fluorine atoms in CH3F are dissimilar. Because fluorine is more electronegative than carbon, it attracts the shared electrons to it, giving the fluorine atom a partial negative charge and the carbon atom a partial positive charge.
A polar covalent bond is created as a result of this unequal charge distribution. CH₃F compound contains polar covalent bonds in its structure.
Learn more about polar covalent bond, here:
https://brainly.com/question/28295508
#SPJ2
Which 2 main body systems work alongside the digestive system?
SOMEONE PLEASE HELP I WILL GIVE BRAINLIEST PLEASEEEEE!!!!!!!!!!
MY ELEMENT IS NICKEL!!
Answer:
Metallurgy can be isolate other elements. Iron and bronze are the common metalsNickel is the metal which reacts with many metalsSome halogen and discredited metalsFind ΔHrxn for the following reaction:
2PbS(s)+3O2(g)→2PbO(s)+2SO2(g)
Answer:
ΔH°rxn = -827.5 kJ
Explanation:
Let's consider the following balanced equation.
2 PbS(s) + 3 O₂(g) → 2 PbO(s) + 2 SO₂(g)
We can calculate the standard enthalpy of reaction (ΔH°rxn) from the standard enthalpies of formation (ΔH°f) using the following expression.
ΔH°rxn = [2 mol × ΔH°f(PbO(s)) + 2 mol × ΔH°f(SO₂(g) )] - [2 mol × ΔH°f(PbS(s)) + 3 mol × ΔH°f(O₂(g) )]
ΔH°rxn = [2 mol × ΔH°f(PbO(s)) + 2 mol × ΔH°f(SO₂(g) )] - [2 mol × ΔH°f(PbS(s)) + 3 mol × ΔH°f(O₂(g) )]
ΔH°rxn = [2 mol × (-217.32 kJ/mol) + 2 mol × (-296.83)] - [2 mol × (-100.4) + 3 mol × 0 kJ/mol]
ΔH°rxn = -827.5 kJ
The standard enthalpy of the reaction is -827.5 kJ/mol
The standard enthalpy of reaction [tex]\mathbf{\Delta H^0_{rxn}}[/tex] is the enthalpy change that happens in a system whenever one mole of the matter is converted through a chemical process under normal conditions.
The given reaction can be expressed as:
2PbS(s) + 3O₂(g) → 2PbO(s) + 2SO₂(g)
The standard enthalpy can be represented by the equation:
[tex]\mathbf{\Delta H^0_{rxn} = \sum \Delta _f ^0(products) - \sum \Delta _f^0(reactants)}[/tex]
At standard conditions, the standard enthalpies of formation of the given species are:
ΔH°f(PbO(s)) = 219 kJ/molΔH°f(SO₂(g)) = -296.83 kJ/molΔH°f(PbS(s)) = 100.4 kJ/molΔH°f(O₂(g)) = 0 kJ/mol
∴
[tex]\mathbf{ \Delta H^0_{rxn} = \Big[2 mol \times \Delta H^0_f(PbO(s)) + 2 mol \times \Delta H^0_ f(SO_2(g) )\Big] - \Big[2 mol \times \Delta H^0_f (PbS(s))} + \mathbf{ 3 mol \times \Delta H^0_f(O_2(g) )\Big] }}[/tex]
[tex]\mathbf{\Delta H^0rxn = [2 mol \times (-217.32 kJ/mol) + 2 mol \times (-296.83)] - [2 mol \times (-100.4)} \\ \mathbf{+ 3 mol \times 0 kJ/mol]}}[/tex]
[tex]\mathbf{\Delta H^0rxn = -827.5 \ kJ/mol}}[/tex]
Therefore, we can conclude that the standard enthalpy of the reaction is -827.5 kJ/mol
Learn more about standard enthalpy of the reaction here:
https://brainly.com/question/25140395?referrer=searchResults
Organisms in overpopulated area do not survive well due to which of the following
Answer:
Reductions in available food and shelter
Explanation:
To solve this we must be knowing each and every concept related to population. Therefore, organisms in over-populated areas do not survive well due to reduction in available food and shelter.
What is population?The group of people from whom a quantitative sample is gathered for a research is referred to as a population. Therefore, a population is any collection of people who have anything in common.
A sample is a representative group of a population chosen at random. This is a smaller group that was selected from the population and possesses all of the population's traits. The observations and inferences drawn from the sample data then applied to the entire population.
Therefore, organisms in over-populated areas do not survive well due to reduction in available food and shelter.
To know more about population, here:
https://brainly.com/question/27779235
#SPJ5
Which statement best describes the octet rule?
A. When an atom becomes an ion, it gains or loses electrons so that its valence shell holds eight electrons.
B. When an atom becomes an ion, it gains or loses protons so that its nucleus holds eight protons.
C. When an atom becomes an ion, it gains or loses eight electrons.
D. When an atom becomes an ion, it gains or loses eight neutrons.
Which of the following is an example of a chemical change that occurs in your home?
A) Water boiling on the stove
B) Composting your own fertilizer
C) Smashing a window with a baseball
D) Adding food coloring to icing for a cake
Aluminum metal and bromine liquid (red) react violently to make aluminum bromide (white powder). One way to represent this equilibrium is:
Al(s) + 3/2 Br2(l)AlBr3(s)
We could also write this reaction three other ways, listed below. The equilibrium constants for all of the reactions are related. Write the equilibrium constant for each new reaction in terms of K, the equilibrium constant for the reaction above.
1) 2 AlBr3(s) 2 Al(s) + 3 Br2(l)
2) 2 Al(s) + 3 Br2(l) 2 AlBr3(s)
3) AlBr3(s) Al(s) + 3/2 Br2(l)
Answer:
Explanation:
Al(s) + 3/2 Br₂(l) = AlBr₃(s)
K = [ AlBr₃] / [ Al] [ Br₂]³/²
K² = [ AlBr₃]² / [ Al ] ² [ Br₂]³
2 AlBr₃ = 2 Al(s) + 3 Br₂(l) =
K₁ = [ Al ] ² [ Br₂]³ / [ AlBr₃]²
K₁ = ( 1 / K² ) = K⁻²
2 ) 2 Al(s) + 3 Br₂(l) = 2 AlBr₃(s)
K₂ = [ AlBr₃ ]² / [ Al ]² [ Br₂ ]³
K₂ = K²
3 )
AlBr₃(s) = Al(s) + 3/2 Br₂(l)
K₃ = [ Al ] [ Br₂ ] ³/² / [ AlBr₃ ]
= ( 1 / K ) = K⁻¹
Potassium hydrogen phthalate is a solid, monoprotic acid frequently used in the laboratory to standardize strong base solutions. It has the unwieldy formula of KHC8H4O4. This is often written in shorthand notation as KHP.
Required:
How many grams of KHP are needed to exactly neutralize 25.6 mL of a 0.527 M potassium hydroxide solution?
Answer:
2.75 g
Explanation:
The number of moles of KOH is obtained from the equation;
n=CV
C= concentration
V= volume of solution
n= 0.527 × 25.6/1000
n= 0.0135
Reaction equation;
KOH(aq) + KHC8H4O4(aq) --->(KC8H4O4)K(aq) + H2O(l)
1 mole of KHP reacts with 1 mole of KOH
Hence; 0.0135 moles of KHP reacts with 0.0135 moles of KOH
From;
Number of moles = reacting mass/molar mass
Reacting mass = 0.0135 × 204
= 2.75 g of KHP
What color is the acetic acid plus methyl orange solution and what does this tell you about where the equilibrium is
Answer:
Red
Explanation:
Acetic acid is an acidic medium. Recall that indicators are organic substances whose color changes in response to change in the pH of the solution. often times, the protonated and deprotonated forms of an indicator have different colors.
However, an equilibrium is set up when an indicator is in acid/ basic medium. Methyl orange is red in acid medium and yellow in basic medium.
Hence while in acetic acid, the equilibrium lies towards the protonated form of acetic acid, hence the solution appears red.
Determine each type of reaction. 2 C 2 H 2 ( g ) + 5 O 2 ( g ) ⟶ 4 C O 2 ( g ) + 2 H 2 O ( l ) 2CX2HX2(g)+5OX2(g)⟶4COX2(g)+2HX2O(l) Choose... N H 4 N O 3 ( s ) ⟶ N 2 O ( g ) + 2 H 2 O ( l ) NHX4NOX3(s)⟶NX2O(g)+2HX2O(l) Choose... C O ( g ) + 2 H 2 ( g ) ⟶ C H 3 O H ( l ) CO(g)+2HX2(g)⟶CHX3OH(l) Choose... 2 F e ( s ) + 6 H C l ( a q ) ⟶ 2 F e C l 3 ( a q ) + 3 H 2 ( g ) 2Fe(s)+6HCl(aq)⟶2FeClX3(aq)+3HX2(g) Choose... C a C l 2 ( a q ) + N a 2 C O 3 ( a q ) ⟶ 2 N a C l ( a q ) + C a C O 3 ( s ) CaClX2(aq)+NaX2COX3(aq)⟶2NaCl(aq)+CaCOX3(s) Choose...
Answer:
2 C 2 H 2 ( g ) + 5 O 2 ( g ) ⟶ 4 C O 2 ( g ) + 2 H 2 O ( l )- combustion reaction
N H 4 N O 3 ( s ) ⟶ N 2 O ( g ) + 2 H 2 O ( l )- decomposition reaction
C O ( g ) + 2 H 2 ( g ) ⟶ C H 3 O H ( l ) - combination reaction
2 F e ( s ) + 6 H C l ( a q ) ⟶ 2 F e C l 3 ( a q ) + 3 H 2 ( g )- Redox reaction
C a C l 2 ( a q ) + N a 2 C O 3 ( a q ) ⟶ 2 N a C l ( a q ) + C a C O 3 ( s )- double displacement reaction
Explanation:
We can determine the type of reaction by considering the reactants and products.
Combustion is a reaction between a substance and oxygen which produces heat and light. The first reaction is the equation for the combustion of ethyne.
A decomposition reaction is one in which a single reactant breaks down to form products. The second reaction is the decomposition of ammonium nitrate.
A combination reaction is said to occur when two elements or compounds react to form a single product. The third reaction is the combination of carbon dioxide and methane to form methanol.
An oxidation-reduction reaction is a reaction in which there is a change in oxidation number of species from left to right of the chemical reaction equation. The fourth reaction is the oxidation of iron (0 to +3 state) and reduction of hydrogen (+1 to 0 state).
A double displacement reaction is a reaction in which ions exchange partners from left to right in the reaction equation. The fifth reaction is a double displacement reaction. Both Na^+ and Ca^2+ exchanged partners from left to right of the reaction equation.
Reactions are the formation of the products from the reactant. The types of reactions are combustion, decomposition, combination, Redox and double displacement.
What are the types of reactions?The reaction is a chemical change in the properties of the reactant that forms the products. It can be of various types based on the formation of the product.
The first reaction is combustion as the reactants react and use oxygen to form heat, carbon dioxide and water. The combustion reaction of ethyne can be shown as,
[tex]\rm 2 C _{2} H _{2} ( g ) + 5 O _{2} ( g ) \rightarrow 4 C O _{2} ( g ) + 2 H _{2} O ( l )[/tex]
The second reaction is decomposition in which a single reactant decomposes to form two or more products. The decomposition of ammonium nitrate can be shown as,
[tex]\rm N H _{4} N O _{3} ( s ) \rightarrow N _{2} O ( g ) + 2 H _{2} O ( l )[/tex]
The third reaction is a combination reaction in which two compound or elements combines to form one product. The combination reaction between carbon monoxide and hydrogen to form methanol can be shown as,
[tex]\rm C O ( g ) + 2 H _{2} ( g ) \rightarrow C H _{3} O H ( l )[/tex]
The fourth reaction is redox and includes the oxidation and the reduction of the species of the reaction. In the reaction, iron undergoes oxidation and hydrogen reduction. The redox reaction can be shown as,
[tex]\rm 2 F e ( s ) + 6 H C l ( a q ) \rightarrow 2 F e C l _{3} ( a q ) + 3 H _{2} ( g )[/tex]
The fifth reaction is a double displacement reaction in which the calcium and sodium interchange their position in the product formation. The reaction can be shown as,
[tex]\rm C a C l _{2} ( a q ) + N a _{2} C O _{3} ( a q ) \rightarrow 2 N a C l ( a q ) + C a C O _{3} ( s )[/tex]
Therefore, the type of reactions is 1. combustion, 2. decomposition, 3. combination, 4. redox and 5. double displacement.
Learn more about types of reactions here:
https://brainly.com/question/20927858
Help, 8th grade Science
The atomic notation for a particular atom of boron is ' B. The
atomic number is while the mass number is
Answer:
5;11
Explanation:
How many moles of H2 are needed to produce 24 moles of NH3?
Answer:
36 mol of H2
Explanation:
The balanced equation of the reaction is given as;
3H2 + N2 --> 2NH3
From the reaction;
It takes 3 mol of H2 reacting with 1 mol of N2 to form 2 mol of NH3
3 mol of H2 = 2 mol of NH3
x mol of H2 = 24 mol of NH3
x = (24 * 3) / 2 = 36 mol of H2
Compare ionic, covalent, and metallic bonds based on each's strength
Answer:
Covalent bond involves the sharing of electrons, while metallic bonds have strong attractions and ionic bonds involve the transferring and accepting of electrons from the valence shell. The adhering property of an atom, in order to arrange themselves in a most stable pattern by filling their outermost electrons orbit
Explanation:
hope it helps:)
The escape velocity from Earth’s surface is 1.12*10^4 meters per second. At this speed, how many kilometers would a rocket travel in 3 minutes
Answer:
2016 Km.
Explanation:
The following data were obtained from the question:
Speed (S) = 1.12×10⁴ m/s
Time (t) = 3 mins
Distance (d) =.?
Next, we shall convert 3 mins to seconds. This can be obtained as follow:
1 min = 60 s
Therefore,
3 mins = 3 min × 60 s / 1 min
3 mins = 180 s
Next, we shall determine the distance travelled by the rocket. This is illustrated below:
Speed (S) = 1.12×10⁴ m/s
Time (t) = 180 s
Distance (d) =.?
Speed (S) = distance (d) /time (t)
S = d/t
1.12×10⁴ = d/ 180
Cross multiply
d = 1.12×10⁴ × 180
d = 2016000 m
Finally, we shall convert 2016000 m to Km. This can be obtained as shown below:
1000 m = 1 Km
Therefore,
2016000 m = 2016000 m × 1 Km / 1000 m
2016000 m = 2016 Km
Therefore, the rocket will travel 2016 Km in 3 mins