Hence the product of the slope of RT and SU is -1, so the lines are perpendicular
RS=ST, Hence RS, and ST are congruent to each other, which is why it is a rhombus.
A particular type of rhombus is a parallelogram. In a rhombus, the opposing sides and angles are parallel and equal. The diagonals of a rhombus meet at right angles to form its shape, and it also has equal-length sides on each side. Another name for the rhombus is a diamond or rhombus. The plural of a rhombus is a rhombus or rhombuses.
Quadrilateral RSTU has vertices at T(1,11), S(9,12), T(13,5) and U(2,-2).
The slope RT is k[tex]=-\frac{1}{2}[/tex] and the slope SU is [tex]l=2[/tex]
[tex]kl=-1\\\\RS=\sqrt{8^2+1}=\sqrt65\\and ST=\sqrt(65)\\\\[/tex]
RS=ST ,
hence RS is congurent to ST
learn more about rhombus.
https://brainly.com/question/27870968
#SPJ4
The diagram shows a quarter circle of radius 12 cm
12 cm
Work out the area of the shape.
Not drawn
accurately
Please help me this assignment is due at 12:00 and I really need help
I will mark the brainlest answer!! Help ASAP.
Answer:
-3
Step-by-step explanation:
someone help me asap
Answer:
Step-by-step explanation:
angle
Round all numbers to the nearest whole number. Find the missing measurements of the triangle
The missing measurements of the triangle given include:
Angle B = 63 degreesAB = 26 .4 units AC = 23. 6 units How to find the missing measurements ?The value of angle B can be found thanks to the knowledge that the interior angles of a triangle add up to 180 degrees and we have two of the angle measurements :
= 180 - angles measurements
= 180 - 27 - 90
= 63 degrees
The value of AB can be found by using the Sin theta operation such that:
Sin theta = Opposite / hypotenuse
Sin ( 27 degrees ) = 12 / hypotenuse which is AB
hypotenuse = 12 / ( Sin ( 27 degrees ))
= 26 .4 units
The value of AC measurement is:
Tan ( 27 degrees ) = 12 / AC
AC = 12 / Tan ( 27 degrees )
AC = 23. 6 units
Find out more on triangles at https://brainly.com/question/29110445
#SPJ1
Demonstrate and explain how to evaluate the derivative for each of the following definite integrals using the fundamental theorem of calculus. ?A)d/xd∫ 4x(2(6cos(t)+7) 4)dtB)d/xd∫ x3(4sin(t 3−3))dt
The derivative for each of the definite integrals using the fundamental theorem of calculus is
a) d/dx ∫ 4x(2(6cos(t)+7)⁴)dt is 4(2(6cos(b)+7)⁴) - 4(2(6cos(a)+7)⁴)
b) d/dx ∫ x³(4sin(t³−3))dt is 12(b²sin(b³-3) - a²sin(a³-3))
The fundamental theorem of calculus tells us that the derivative of the definite integral of a function f(x) with respect to x is equal to the function evaluated at the upper limit of integration minus the function evaluated at the lower limit of integration. In other words, if we have an integral of the form ∫f(x)dx evaluated from a to b, then
d/dx ∫f(x)dx = f(b) - f(a)
Let's apply this to the first integral, A).
A) d/dx ∫ 4x(2(6cos(t)+7)⁴)dt
We begin by recognizing that the function inside the integral is a function of t, not x. However, we want to take the derivative with respect to x. This means that we need to use the chain rule to differentiate the integrand with respect to x.
Using the chain rule, we have
d/dx [4x(2(6cos(t)+7)⁴)] = 4(2(6cos(t)+7)⁴)(d/dx [4x])
= 4(2(6cos(t)+7)⁴)(4)
= 32(2(6cos(t)+7)⁴)
Now, we can apply the fundamental theorem of calculus. Let's say we are evaluating the integral from a to b. Then,
d/dx ∫ 4x(2(6cos(t)+7)⁴)dt = [4b(2(6cos(t)+7)⁴)] - [4a(2(6cos(t)+7)⁴)]
= 4(2(6cos(b)+7)⁴) - 4(2(6cos(a)+7)⁴)
This is the final answer for A).
Now, let's move on to integral B).
B) d/dx ∫ x³(4sin(t³−3))dt
Again, we need to use the chain rule to differentiate the integrand with respect to x.
d/dx [x³(4sin(t³−3))] = (d/dx [x³])(4sin(t³−3))
= 3x²(4sin(t³−3))
Now, we apply the fundamental theorem of calculus. Let's say we are evaluating the integral from a to b. Then,
d/dx ∫ x³(4sin(t³−3))dt = [3b²(4sin(t³−3))] - [3a²(4sin(t³−3))]
= 12(b²sin(b³-3) - a²sin(a³-3))
This is the final answer for B).
To know more about integral here
https://brainly.com/question/18125359
#SPJ4
If the exponential model f(x)=8(9)x is written with the base e, it will take the form A0ekx. What is A0 and what is k?
Answer:
429
Step-by-step explanation:
3. Write these measurements in order of size, starting with the smallest. 2.3 cm 24 mm 0.2 m 21 cm 2.3 mm
The measurements in order of size, starting with the smallest are: 2.3 mm, 24 mm, 2.3 cm, 21 cm, and 0.2 m.
How to order sizes starting with the smallest?Given the measurements in the question;
2.3 cm, 24 mm, 0.2 m, 21 cm, 2.3 mm
To arrange the measurements in order of size, we need to convert them to a common unit of measurement.
We can convert all the measurements to meters, as it is the largest unit given.
Hence;
2.3 mm = 2.3 ÷ 1000 = 0.0023 m
24 mm = 24 ÷ 1000 = 0.024 m
21 cm = 21 ÷ 100 = 0.21 m
2.3 cm = 2.3 ÷ 100 = 0.023 m
0.2 m = 0.2 m
Now that all the measurements are in meters, we can compare them:
0.0023 m < 0.024 m < 0.023 m < 0.21 m < 0.2 m
Therefore, the measurements in order of size, starting with the smallest, are:
2.3 mm < 24 mm < 2.3 cm < 21 cm < 0.2 m
Learn more about conversion of unit of measurement here: https://brainly.com/question/11795061
#SPJ1
what are the rational roots of f(d)=5d^3-6d^2+d-8
Answer: To find the rational roots of f(d) = 5d^3 - 6d^2 + d - 8, we can use the Rational Root Theorem, which states that any rational root of a polynomial equation must be of the form p/q, where p is a factor of the constant term (in this case, -8) and q is a factor of the leading coefficient (in this case, 5).
The factors of -8 are ±1, ±2, ±4, and ±8, and the factors of 5 are ±1 and ±5. Therefore, the possible rational roots of f(d) are:
±1/1, ±2/1, ±4/1, ±8/1, ±1/5, ±2/5, ±4/5, and ±8/5
We can try these values one by one to see if they are roots of f(d). For example, when we try d = 1, we get:
f(1) = 5(1)^3 - 6(1)^2 + 1 - 8 = 5 - 6 + 1 - 8 = -8
Since f(1) is not equal to zero, d = 1 is not a root of f(d). We can continue this process until we find all the rational roots of f(d).
Step-by-step explanation:
Banks and Credit Unions. (choose all that apply)
A. . Are very similar. They offer the same products and services. What makes them different is the way in which they are legally organized.
B. . Have similar interest rates. However, credit unions often have higher savings rates (better) and lower loan rates (better) than banks.
C. . Are different because credit unions cannot issue ATM and credit cards, making it inconvenient to access your funds.
D. . Are very different. Most people cannot join a credit union
A. Differently organized; B. Different rates; C. Inconvenient access; D. Limited membership.
To calculate the interest rate on a loan, you will need to figure out the amount of interest you will need to pay over the life of the loan. First, you will need to determine the loan amount, the interest rate, and the loan term. Then, you will need to calculate the total interest by multiplying the loan amount by the interest rate and the loan term. Finally, you will need to divide the total interest by the loan amount and then multiply that by 100 to get the annual percentage rate (APR). This will give you the interest rate you will need to pay over the life of the loan.
Learn more about rate here
https://brainly.com/question/199664
#SPJ4
Is rotated
An angle whose measure is
more than halfway around a circle.
DONE
The statement "rotated an angle whose measure is more than halfway around a circle" is incorrect. An angle whose measure is 60 degree is rotated more than halfway around a circle.
A rotated angle is an angle that has been moved or transformed from its original position, while an angle that measures more than halfway around a circle is called a reflex angle. A reflex angle measures between 180 and 360 degrees, which means that it has rotated more than halfway around a circle.
In contrast, an angle that measures less than 180 degrees is called an acute angle, while an angle that measures exactly 180 degrees is called a straight angle. Understanding the different types of angles is important in geometry and mathematics.
To know more about Circle:
https://brainly.com/question/11833983
#SPJ4
You rent an apartment that costs $1600 per month during the first year, but the rent is set to go up 9. 5% per year. What would be the rent of the apartment during the 9th year of living in the apartment? Round to the nearest tenth (if necessary). ASAP PLEASEEEE
The rent of the apartment during the 9th year of living in the apartment would be approximately $3,510.45 per month.
If the rent starts at $1600 per month and increases by 9.5% each year, then we can use the formula for compound interest to calculate the rent after 9 years.
The formula for compound interest is:
A = P(1 + r/n)^(nt)
where:
A is the final amount
P is the initial principal (the starting amount)
r is the annual interest rate (as a decimal)
n is the number of times the interest is compounded per year
t is the number of years
In this case, P = $1600, r = 9.5% = 0.095, n = 1 (compounded once per year), and t = 9. We want to find A, the rent after 9 years.
A = 1600(1 + 0.095/1)^(1×9)
A = 1600(1.095)^9
A ≈ $3,510.45
Learn more about compound interest here
brainly.com/question/14295570
#SPJ4
the area of base of a cylindrical tank is 38.5m². Find the perimeter of base
Answer: We know that the area of the base of a cylinder is given by the formula:
A = πr²
where A is the area of the base, π is the mathematical constant pi (approximately equal to 3.14), and r is the radius of the base.
To find the perimeter of the base, we need to know the circumference of the circle that forms the base of the cylinder. The formula for the circumference is:
C = 2πr
where C is the circumference and r is the radius.
To find the radius of the base, we can rearrange the formula for the area:
A = πr²
r² = A/π
r = √(A/π)
Substituting the given value for the area of the base, we get:
r = √(38.5/π) ≈ 3.5 m
Now, we can use the formula for the circumference to find the perimeter of the base:
C = 2πr = 2π(3.5) ≈ 22 m
Therefore, the perimeter of the base is approximately 22 meters.
Step-by-step explanation:
4e-6e-5=15 solve for e
Answer:
e = - 10
Step-by-step explanation:
4e - 6e - 5 = 15
- 2e - 5 = 15 ( add 5 to both sides )
- 2e = 20 ( divide both sides by - 2 )
e = - 10
Answer: e = -10
Step-by-step explanation:
4e-6e-5=15
-2e-5=15
add 5 on both sides
-2e=20
divide 20 on both sides
e=-10
Use the graph to determine
(a) open intervals on which the
function is increasing, if any.
(b) open intervals on which the function is decreasing if any
(c) open intervals on which the function is constant if any
using graph f(x) is concave down on (-1,0), (1,∞).
What is derivative?
A function's varied rate of change with respect to an independent variable is referred to as a derivative. When there is a variable quantity and the rate of change is irregular, the derivative is most frequently utilized. The derivative is used to assess how sensitive a dependent variable is to an independent variable (independent variable). In mathematics, a quantity's instantaneous rate of change with respect to another is referred to as its derivative. Investigating the fluctuating nature of an amount is beneficial.
f(x) is concave up where f'(x) is increasing and concave down where f'(x) is decreasing
So, using graph f(x) is concave down on (-1,0), (1,∞).
Hence, using graph f(x) is concave down on (-1,0), (1,∞).
Learn more about derivatives, by the following link.
https://brainly.com/question/23819325
#SPJ1
The cost for an eighth-grade party is $600 for room rental, entertainment, and decorations, plus $15 per person for food. Tickets for the party are sold for $20. What is the break-even point?
A. 120 tickets
B. 90 tickets
C. 60 tickets
The break-even point is 120 tickets, which is option A.
Describe Revenue?It is the income generated by a business, which includes all the money received from customers for the products or services sold, as well as any other sources of income. Revenue is calculated by multiplying the price of a product or service by the number of units sold. It is an important financial metric that helps businesses determine their profitability and growth potential.
Let's assume that x number of students are attending the party.
The cost for food per person is $15 and the revenue generated per person is $20, so the profit per person is $20 - $15 = $5.
The total cost of the party is $600 + $15x.
We need to find the number of tickets sold to cover the cost of the party, which is the break-even point.
So, we set the revenue generated equal to the cost of the party:
20x = 600 + 15x
5x = 600
x = 120
Therefore, the break-even point is 120 tickets, which is option A.
To know more about cost visit:
https://brainly.com/question/15221299
#SPJ1
2 + 3x = 12 - 5x
Why I am having so much trouble with this?
Answer:x=5/4
Step-by-step explanation:
you can take numbers with same variable(i mean x or y or other) in the same side:
2+3x=12-5x
2-12=-5x-3x
-10=-8x
x=10/8=5/4
Answer:
x = 5/ 4
Step-by-step explanation:
2 + 3x =12- 5x
3x + 5x = 12 - 2
8x = 10
x = 10/8
x = 5/4
PLEASE HELP ASAP!!!
Question in photo
Answer:
-5 is your answer
Step-by-step explanation:
What do you mean leading coefficient of the following polynomial.
Look at the x^n and see who has the biggest values.
-5x^7 is the leading coefficient.
Which system of equations is represented by the graph? Graph of a quadratic function intersecting a linear function at point 2 comma 0. y = x2 + 3x + 2 x + y = 2 y = x2 − 3x + 2 x − y = 2 y = x2 − 3x + 2 x − y = 3 y = x2 − 3x + 2 x + y = 3
After answering the presented question, we can conclude that The point of intersection of these two equations is (2, 0), which is the spot on the graph where the parabola and line intersect.
What is equation?An equation is a mathematical statement that validates the equivalent of two expressions linked by the equal symbol '='. For example, 2x - 5 = 13. 2x-5 and 13 are two phrases. The character '=' is used to connect the two expressions. An equation is a mathematical formula that has two algebras on either side of an assignment operator (=). It illustrates the equivalency relationship between the left and middle formulas. In any formula, L.H.S. = R.H.S. (left side = right side).
The graph represents the following equation system:
[tex]y = x^2 + 3x + 2 x + y = 2[/tex]
This is due to the fact that the graph of a quadratic function intersecting a linear function at point (2, 0) is represented by a parabola and a straight line intersecting at that point (2, 0).
The equation [tex]y = x^2 + 3x + 2[/tex] represents an upward-opening parabola that goes through the point (-2, 0).
The equation x + y = 2 denotes a straight line that connects the locations (0, 2) and (2, 0).
The point of intersection of these two equations is (2, 0), which is the spot on the graph where the parabola and line intersect.
To know more about equation visit:
https://brainly.com/question/649785
#SPJ1
Does anyone know B? I need some help
The estimated life expectancy for someone born in 2005 is approximately 85.09 years.
Describe Life expectancy?Life expectancy is the average number of years that a person is expected to live, based on statistical data and various demographic factors such as age, gender, health status, lifestyle, and environmental conditions. It is usually calculated from birth and is a useful indicator of the overall health and well-being of a population.
Life expectancy can vary widely between different countries and regions, as well as between different demographic groups within a population. Factors that can influence life expectancy include access to healthcare, nutrition, education, economic development, social support, and public health policies.
To estimate the life expectancy for someone born in 2005, we need to use the line of best fit equation:
y = 0.40x - 716.91
where x is the birth year and y is the corresponding life expectancy.
To find the estimated life expectancy for someone born in 2005, we substitute x = 2005 into the equation:
y = 0.40(2005) - 716.91
y = 802 - 716.91
y = 85.09
Therefore, the estimated life expectancy for someone born in 2005 is approximately 85.09 years.
To know more about expectancy visit:
https://brainly.com/question/30036353
#SPJ1
Fill in the gaps below:
a. from A to B
b. from B to C
c. from A to C
Answer:
a. from A to B, a rotation by 90 degrees anti-clockwise about (0,0).
b. from B to C, a translation by vector (-3/4, -1/4).
c. from A to C, a rotation by 60 degrees, anti-clockwise about (0,0).
Hope this helps, I'm sorry if it doesn't. If you need more help, ask me! :]
A rectangular portrait is 1 yard wide and 2 yards high. It costs $10.17 per yard to put a gold frame around the portrait. How much will the frame cost?
Answer:
The perimeter of the portrait is $2\times(1+2)=6$ yards.
To find the cost of the frame, we need to calculate the length of the frame needed, which is the same as the perimeter of the portrait. So, the length of the frame needed is 6 yards.
The cost of the frame will be the cost per yard multiplied by the length of the frame:
$6~\text{yards} \times $10.17/\text{yard} = $61.02$
Therefore, the frame will cost $61.02.
To find the distance from point C to the line AB, you must find the length of the segment from C_______ to AB.
A. Widthwise
B. Perpendicular
C. Parallel
D. Lengthwise
the distance from point C to line AB, you must find the length of the segment from C perpendicular to AB
A line segment in geometry has two different points on it that define its boundaries. A line segment is sometimes referred to as a section of a line that links two places. The difference between a line and a line segment is that a line has no endpoints and can go on forever in either direction. A ray has only one endpoint and an endlessly long another end, as opposed to a line segment that has two ends.
When the angle of inclination between two line segments is exactly equal, those two segments are said to be perpendicular.
The plus symbol is formed when two perpendicular line segments cross one other.
To find the distance from point C to line AB, you must find the length of the segment from C_______ to AB
learn more about perpendicular,
https://brainly.com/question/29268451
#SPJ4
15. The expression √x is equivalent to 14i√3. What is the value of x?
a.-588
b. -588i
c.588
d. 588i
16. An expression is shown below.
x^5 + 6x^3 +8x
Which value of x makes the expression equal to 0?
a. -2i²
b. -2i
c. 4i
d. 4i²
(15) The value of x is -588 (option A).
(16) The value of x makes the expression equal to 0 is -2i. (option B).
What is the value of x?The value of x is calculated by solving the equation as follows;
(15) We have the equation:
√x = 14i√3
Squaring both sides, we get:
x = (14i√3)^2
x = -588
(16) Factoring the expression, we get:
x(x⁴ + 6x² + 8)
Setting each factor equal to 0, we get:
x = 0 or x⁴ + 6x² + 8 = 0
Let's solve for the second equation:
Let y = x²
Then we have:
y² + 6y + 8 = 0
Factorizing, we get:
(y + 2)(y + 4) = 0
So y = -2 or y = -4
Since y = x², this means:
x² = -2 or x² = -4
Taking the square root of both sides, we get:
x = ±√(-2) or x = ±√(-4)
Simplifying using imaginary numbers, we get:
x = ±i√(2) or x = ±2i
Thus, for the expression √x is equivalent to 14i√3, the value of x is -588. And for the expression x⁵ + 6x³ + 8x, x = -2i.
Learn more about expression here: https://brainly.com/question/4344214
#SPJ1
There are 28 students in a class
13 of the students are boys
two students from the class are chosen at random
if the first person chosen is a boy what is the probability that the second person also chosen is also a boy
The probability that the second person chosen will also be a boy is roughly 0.872, or 87.2%.
Since the first person chosen is a boy, there are now 12 boys and 15 girls left in the class. We want to find the probability that the second person chosen is also a boy.
The probability of choosing a boy for the first selection is 13/28. Then, for the second selection, there are now 12 boys and 27 students left, so the probability of choosing a boy is 12/27.
Using conditional probability, we can calculate the probability that the second person chosen is also a boy given that the first person chosen is a boy:
P(Second person is a boy | First person is a boy) = P(Both are boys) / P(First person is a boy)
P(Second person is a boy | First person is a boy) = (12/27) / (13/28)
P(Second person is a boy | First person is a boy) ≈ 0.872
Therefore, the probability that the second person chosen is also a boy given that the first person chosen is a boy is approximately 0.872 or 87.2%.
To learn more about probability refer to:
brainly.com/question/30034780
#SPJ4
The Water Department checks the city water supply on a regular basis for
contaminants such as trihalomethanes (THMs). The Water Department takes
200 samples and estimates that the concentration of THMs in your drinking
water is 3 ppb (parts per billion), with a standard deviation of 0. 3 ppb.
Assuming the samples were random and unbiased, how much confidence
can you have in this data?
We can be 95% confident that the true mean concentration of THMs in your drinking water lies within the range [2.9584 ppb, 3.0416 ppb]. This was calculated using a confidence interval formula for the mean.
The confidence interval for the mean concentration of THMs can be calculated using the formula x ± z * (s/√n), where x is the sample mean, z is the z-score for a given confidence level, s is the sample standard deviation and n is the sample size.
In this case, we have x = 3 ppb, s = 0.3 ppb, and n = 200. To calculate the confidence interval at a certain confidence level (e.g. 95%), we need to find the corresponding z-score. For a 95% confidence level, the z-score is approximately 1.96.
Substituting these values into the formula above gives us:
3 ± 1.96 * (0.3/√200) = [2.9584, 3.0416]
So we can be 95% confident that the true mean concentration of THMs in your drinking water lies within the range [2.9584 ppb, 3.0416 ppb].
Learn more about confidence interval here: brainly.com/question/24131141
#SPJ4
Find the measurements of the numbered angles of this circle
98 Degrees and 82 degrees are the measurements of the numbered angles of this circle.
What is a circle?
With no sides or edges, a circle is a figure with a round shape. A circle can be characterized in geometry as a closed shape, a two-dimensional shape, or a curved shape.
The collection of all points in the plane that make up a circle are all equally spaced from a certain point known as the "centre," making the form a closed two-dimensional shape. The symmetry line of reflection is formed by each line that traverses the circle. Moreover, it possesses rotational symmetry around the center for each angle.
Measure of angle 1 = (33 + 131)/2
= 82 degrees
Measure of angle 2 = 180 - 82
= 98 Degrees
Learn more about circle
brainly.com/question/29142813
#SPJ1
What is the length of the hypotenuse?
8ft 6ft c=?
Answer:10ft
Step-by-step explanation:
we must use pythagorean theorem
[tex]which \ is \ a^{2} +b^{2} =c^{2} \\6^{2} + 8^{2} =36+64=100=10^{2}\\c=10--- > hypotenuse[/tex]
A car traveled 4 miles in 4 minutes. How many yards did it travel in that time? Answer yards
Answer:0.27 miles
Step-by-step explanation:
Answer:
The answer to your question is 7040
Step-by-step explanation:
How many yards are in 1 mile:
So 1 mile = 1760 yards
Speed = 1760 yard per minute
= 1760 yd/min
Since we have 4 miles, we are gonna multiply 4 multiplied by 1760.
So 4 miles x 1760 = 7040
I hope this helps and have a wonderful day!
simplify: 1÷2+2 3÷4-3÷8
The expression 1÷2+2 3÷4-3÷8 when simplified is 9/4
How to simplify the expressionFrom the question, we have the following parameters that can be used in our computation:
1÷2+2 3÷4-3÷8
Express the terms properly as fractions
So, we have the following
1/2 + 2 3/4 - 3/8
Express each term as proper/improper fraction
So, we have the following representation
1/2 + 11/4 - 3/8
Express the denominator as the same
So, we have
4/8 + 22/8 - 3/8
Evaluate the like terms
18/8
So, we have
9/4
Hence, the solution is 9/4
Read more about fractions at
https://brainly.com/question/1330447
#SPJ1
Valeria is attending a school orchestra concert. She sees her math teacher seated 4 meters ahead of her and her science teacher seated 1 meter to her right. How far apart are the two teachers? If necessary, round to the nearest tenth.
Please use the Pythagorean Theorem.
Thank you!
Answer:
The two teachers are approximately 4.1 meters apart.
Step-by-step explanation:
Let's use the following variables:
d = distance between the two teachers
Using the Pythagorean theorem:
d^2 = 4^2 + 1^2
d^2 = 16 + 1
d^2 = 17
d = sqrt(17)
d ≈ 4.1
Answer: 4.1
Step-by-step explanation:
[tex]\sqrt{1^2+4^2}[/tex]
evaluate the equation / expression
4.12311
round
4.12311 to the required place
4.1