Answer:
Most potential energy: A
Most kinetic energy: D
Explanation:
Kinetic Energy is the type of energy an object has due to its state of motion. It's proportional to the square of the speed.
The equation for the kinetic energy is:
[tex]\displaystyle K=\frac{1}{2}mv^2[/tex]
Where:
m = mass of the object
v = speed at which the object moves
The gravitational potential energy is the energy stored in an object because of its height h in a gravitational field.
It can be calculated with the equation:
U=m.g.h
The point where the object has the most potential energy is that where it has more height. It corresponds to point A.
When the object is at zero height, all of its potential energy was transformed to kinetic, thus the point where the kinetic energy is D.
Most potential energy: A
Most kinetic energy: D
Answer:
potentail enegry at point a and kinetic enegy at point c
Explanation:
i did this i fourth grade please mark brainlist
deducing the acceleration = deduce the gradient of velocity-time graphs
true or false?
Answer:
True
Explanation:
Understanding the relationship between change in velocity with time will explain to you how the object is accelerating or decelerating. This means acceleration is a ratio calculated from the change in velocity of an object and change in time. In a velocity time graph, the y-axis represents the velocity and the x-axis represents the time.
The slope of the graph m = Δ y-axis values/Δ x-axis values
m= Δvelocity / Δ time
m= Δ v / Δ t ------this the definition of acceleration so;
a= Δ v / Δ t
Conclusion : The slope/gradient of a velocity -time graph is acceleration.
What distance does a biker travel if he rides at a constant speed or 22 m/s for 45 seconds?
Answer:
it would be 990 m.
Explanation:
22 m/s x 45 seconds.
A person weighs 734 N. What is their mass?
Answer:
Explanation:
Mass / Weight Converter Definitions. Ounce Avoir. An avoirdupois ounce is equal to 28.349523125 grams. The ounce is commonly used as a unit of mass in the United States and around the World. Ounce Troy. A troy ounce (abbreviation: t oz) is equal to 31.1034768 grams.
Answer:
74.84717
Explanation:
What is the work energy transfer equation?
Answer:
The equation used to calculate the work done is: work done = force × distance. W = F × d. This is when: work done (W) is measured in joules (J)
Answer:
The equation used to calculate the work done is: work done = force × distance. W = F × d. This is when: work done (W) is measured in joules (J)
Explanation:
The net work done on a particle equals the change in the particle's kinetic energy:
Bob can run the 100 meter dash in 25 seconds. What is his speed?
Answer:
4 meters a second
Explanation:
100/25
plzz mark brainiest
a motorbike can travel 1000 meters in 10 minutes calculate how car it can travel in 1 sec.
Answer:
1.67meter
Explanation:
if it can travel 1000 meters in 10 minutes, 10 minutes are 600 secs (10×60), 1000÷600 is 1.67
Answer:
HI
Explanation:
Engine 1 produces twice the power of engine 2.
If it takes engine 1 the time T to do the work W, how long does it take engine 2 to do the same work?
Express your answer in terms of some of all of the variables T and W.
T2=________________
Answer:
[tex]T_2=\frac{T}{2}[/tex]
Explanation:
Given that engine 1 produces twice the power of engine 2.
Let [tex]P_1[/tex] and [tex]P_2[/tex] be the power of engine 1 and engine2.
So, the power of the engine 2,
[tex]P_2 = 2P_1\cdots(i)[/tex]
As, Work = Power x time,
So, the work, W, done by an engine 1:
[tex]W=P_1\timesT\cdots(ii)[/tex]
The work, W, done by an engine 2:
[tex]W_2=P_2\times T_2\cdots(iii)[/tex]
If the work done by both the engines are the same, then
[tex]W_2=W[/tex]
[tex]\Rightarrow P_2\times T_2=P_1\timesT[/tex] [from (ii) nd (iii)]
[tex]\Rightarrow 2P_1\times T_2=P_1\timesT[/tex] [by using (i)]
[tex]\Rightarrow 2 T_2=T \\\\\Rightarrow T_2=\frac{T}{2}[/tex]
Hence, [tex]T_2=\frac{T}{2}.[/tex]
The time taken for engine 2 to do the same amount of work is given by:
T₂ = 2TLet the power of the 1st engine be P₁
Let the power of the 2nd engine be P₂
Power = Work / timeFrom the question given above,
Engine 1 produces twice the power of engine 2.
Thus,
P₁ = 2P₂
P₂ = ½P₁
Next, we shall determine the power used by engine 1 to do the work in time T.Work = W
Time (T₁) = T
Power (P₁) =?Power = Work / time
[tex]P_{1} = \frac{W}{T}\\\\[/tex]Finally, we shall determine the time taken for engine 2 to do the same work.Work = W
Power of engine 1 (P₁) = [tex]\frac{W}{T}\\\\[/tex]
Power of engine 2 (P₂) = ½P₁
Power of engine 2 (P₂) = [tex]\frac{1}{2} (\frac{W}{T}) = \frac{W}{2T}[/tex]
Time (T₂) =?[tex]Power = \frac{Work}{time} \\\\ P_{2} = \frac{W}{T_{2}} \\\\\frac{W}{2T} = \frac{W}{T_{2}} \\\\\frac{1}{2T} = \frac{1}{T_{2}}\\\\[/tex]
Invert
T₂ = 2TTherefore, the time taken for engine 2 to do the same amount of work is: T₂ = 2T
Learn more: https://brainly.com/question/21822614
HELP ASAP Which statement is true about magnetic field lines?
A. There is no consistent pattern in the lines, B. The lines form a loop from the north pole back to the north pole and from the south pole to the south pole. C. The lines point away from the south pole of a magnet and toward the north pole. D. The lines point away from the north pole of a magnet and toward the south pole.
Answer:
i think it's c
Explanation:
but I'm not sure
Answer:
The answer is D
Explanation:
What is thermodynamics?
the movement of energy
the classification of energy
the way energy changes
the movement of heat
Answer:
The movement of energy
Explanation:
Answer:
the movement of energy
I need a little help with this
Answer:
truck 1 has the most velocity
Explanation:
Because it weights less which means it faster and yea
What wavelength would a ripple in water have if the frequency is 1.8 Hz and a
wave speed of 825 m/s?
Explanation:
825m/s / 1.8Hz = 458.33m
λ=v/f
λ-wavelength
v-speed
f-frequency
λ=825/1.8=458.33m
When electrons are moving freely between many positive ions, what type of bond is occuring?
a
metallic
b
ionic
c
covalent
d
crystalline
Answer:
a metallic
Explanation:
Metal atoms are joined together by metallic bonds. Metals can form cations (positive ions) with a sea of delocalized electrons.
How should the amount of elastic potential energy when the spring is fully stretched compare to the amount of kinetic energy when the spring is relaxed?
If there are no dissipative forces acting on the string, than the principle of conservation of energy holds.
When the string is relaxed, it has zero elastic potential energy
If we were strech the she spring, we would increase it's potential energy. After releasing the spring, when it's relaxed again, all potential energy will have been converted into kinetic energy.
Therefore, the elastic potential energy of the stretched spring should be equal to the amount of kinetic energy when it's relaxed
Consider an elevator carrying Kermit the frog weighing 4000.0 N is held 5.00 m above a spring with a force constant of 8000.0 N/m. The elevator falls onto the spring while subject to a frictional force (brake) of 1000.0 N. Determine the maximum compression distance, x, of the spring.
Answer:
Maximum compression distance (x) = 2.236 m (Approx)
Explanation:
Given:
Weight of frog = 4,000 N
Height = 5 m
Constant force = 8,000 N/m
Frictional force = 1,000 N
Find:
Maximum compression distance (x)
Computation:
Using Law of conservation;
mgh = 1/2(k)(x)²
4,000(5) = 1/2(8,000)(x)²
Maximum compression distance (x) = 2.236 m (Approx)
the velocity of a body of mass 60kg reaches 15m/s from 0m/s in 12 second. calculate the kinetic energy and power of the body.
Answer:
KE=1/2m v^2
1/2*60*15*15
30*15*15
6750 joules
power=work/time
I Need help asappp!!!
Answer: Inertia
Explanation: If it is multiple choice chose acceleration and inertia
A rose plant inherited two alleles for white flower petals.
Which conclusion is best supported by the given information?
Answer:
a
Explanation:
Answer:
A or each parent had at least one allele for white pedals
Explanation:
PLS HELP which ones would be made of cells? and which ones show cell walls?
Cork, Sponge, Wood, Plastic, Tree
The first question's answer depends on what you mean by "sponge". If you're talking about sea sponges, then all but plastic are made up of cells. Some sponges used for cleaning are also made of plant material but also other, non-organic materials like dyes.
Cell walls are only present in plant cells, so they would be found in cork (derived from a certain tree bark), wood, and trees. Synthetic sponges made with plant material might also contain them, but they wouldn't be made entirely of cells with walls.
From given options or choices all are made up of cells except plastic and among the other four Cork, Sponge, Wood, and tree all show cell walls except Sponge.
A cell is the basic structural unit of all living organisms and contains various cell organelles. On the base of different cell organelles or presence or absence of the certain organelles help in distinct and divide the cell type.
The major types of cells are:
Prokaryotic cellsEukaryotic cellsPlastic is not a living organism as there are no cells and is made up of polymers of hydrocarbon.
The cell wall is one of the major cellular structures that helps in identifying the type of cell organism and protects the organism from the external environment. It classifies the organism on its constituent of the cell wall.
In eukaryotic cells, animal cells have no cell wall, however, fungi cells, plant cells have a cell wall. A sponge is an animal and other cork wood, and trees are plants or plant-based products.
Thus, the sponge does not show the cell wall.
Learn more about the cell wall:
https://brainly.com/question/18662393
[tex] \frac{1}{(1 - \sqrt{3) {}^{2} } } [/tex]
Answer:
\frac{2+\sqrt{3}}{2}
Explanation:
so we simplify tthe denominator first
[tex](1-\sqrt{3})^2=[/tex][tex]4-2\sqrt{3}[/tex]
so the new fraction is:[tex]\frac{1}{4-2\sqrt{3}}[/tex]
We'll ratinalize the fraction to get: [tex]\frac{2+\sqrt{3}}{2}[/tex]
A stone dropped from the top of a 80m high building strikes the ground at 40 m/s after falling for 4 seconds. The stone's potential energy with respect to the ground is equal to its kinetic energy
Answer:
A
Explanation:
Given that a stone dropped from the top of a 80m high building strikes the ground at 40 m/s after falling for 4 seconds. The stone's potential energy with respect to the ground is equal to its kinetic energy. (use 9 - 10 m/s)
O at the moment of impact
2 seconds after the stone is released after the stone has fallen 40 m
when the stone is moving at 20 m/s
At the top of the hill, the P.E = mgh
P.E = 10 × 80 × m
P.E = 800m
At the moment of impact, K.E = 1/2mv^2
K.E = 1/2 × 40^2 × m
K.E = 1/2 × 1600 × m
K.E = 800m
Since both P.E and K.E are the same, we can therefore conclude that the stone's potential energy with respect to the ground is equal to its kinetic energy at the moment of impact.
The correct answer is option A.
Nore ordered an ice cream cone.
Answer:
okay
Explanation:
okay
Answer:
Cool
Explanation:
6th grade science I mark as brainliest.
Answer:
divide 10 by 50.
Explanation:
Because its time over speed 10/50
5 meter/ second
I think it's helpful
follow me and don't forget to Mark me as brainlist please
Circular motion requires the application of a constant force in which direction?
Outward from the circle
Toward the center of the circle
Toward the object in motion
Away from an object
A 2450 kg stunt airplane accelerates from 120 m/s to 162 m/s in 2.10s. If the airplane is putting out an average force of 5.8810x10^4 N during this time, what is the average friction force exerted on the airplane by the air?
Given :
A 2450 kg stunt airplane accelerates from 120 m/s to 162 m/s in 2.10 s.
If the airplane is putting out an average force of [tex]5.8810\times 10^4 \ N[/tex].
To Find :
The average friction force exerted on the airplane by the air.
Solution :
Acceleration is given by :
[tex]a = \dfrac{162-120}{2.10}\ m/s^2\\\\a = 20 \ m/s^2[/tex]
Now, force equation is given by :
[tex]F - F_{friction} = ma\\\\F_{friction} = F-ma\\\\F_{friction} = 58810 - (2450\times 20 )\\\\F_{friction} = 9810\ N[/tex]
Therefore, frictional force exerted in the airplane by the air is 9810 N.
4. What does doubling the voltage do to the strength of the electromagnet?
Answer:
it can make it stronger!
Answer:
The strength of the magnet in this case is directly proportional to the total voltage sum of all of the batteries
A book that weighs 5 N sits on a table. What force does the table apply to the book?
Answer:
E =F.d =[1/2]mv^2
mad = [1/2]mv^2
d= v^2/2a ,v=u+at , v^2 = [at]^2 since u=0
So d = at^2/2
F = ma= 20a= 50 , a=5/2 and t=2
so d = [5/2][2^2]/2=5
Explanation:
Every action has an equal and opposite reaction. It is an action-reaction principle. Therefore the table exerts a force of 5 N on the book in order to be in stable condition.
What is Newton's third law of motion?Newton's third law of motion state that every action has an equal and opposite reaction. It is an action-reaction principle. It stated that the force always exists in a pair.
Therefore the table exerts a force of 5 N on the book in order to be in stable condition.
The given data in the problem is ;
W is the weight of the book sits on table = 5N
N is the normal force on the book
From the equilibrium equation ;
Weight -Normal force on the book =0
Weight =Normal force on the book
The normal force on the book =5N
Hence the table exerts a force of 5 N on the book in order to be in stable condition.
To learn more about Newton's third law of motion refer to the link;
https://brainly.com/question/1077877
A person with a mass of 75 kg is accelerated to 3m/s2 how much force applied to him
Answer:
225 NExplanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 75 × 3
We have the final answer as
225 NHope this helps you
5. Describe the relationship between the buoyant force and the weight of an object if the object:
a) is floating
b) is sinking
c) is rising up through the water.
A) the state of deep mental and physical therapy or relaxation
B) falling or moving to a lower level
C) up to owns kness
Question 5 (1 point)
A child kicks a ball horizontally with a speed of 4.8 m/s off a deck 3.5 m off the
ground. How far, in meters, from the deck does the ball land on the ground?
Answer:
The horizontal distance the ball travels is approximately 4.055 meters
Explanation:
The given parameters are;
The height from which the child kicks the ball = 3.5 m
The horizontal speed of the ball = 4.8 m/s
Therefore, we have;
The time it takes the ball to hit the ground is given by the relation;
h = u·t + 1/2·g·t²
Where;
u = The initial vertical velocity of the ball = 0 m/s
t = The time it takes the ball to hit the ground
g = The acceleration due to gravity = 9.81 m/s²
h = The height of the ball = 3.5 m
3.5 = 0 × t + 1/2 × 9.81 × t²
3.5 = 1/2 × 9.81 × t²
∴ t² = 3.5/(1/2 × 9.81)
∴ t = √(3.5/(1/2 × 9.81) = 0.8447 s
t ≈ 0.8447 s
The time the ball takes in flight = t ≈ 0.8447 s
Therefore;
The horizontal distance the ball travels = The horizontal velocity × The time of flight
∴ The horizontal distance the ball travels = 4.8 × 0.8447 ≈ 4.055
The horizontal distance the ball travels ≈ 4.055 meters.
A girl pushes a wagon at constant velocity. If the
momentum of the wagon is 50 kg*m/s at a
velocity of 2 m/s, the mass of the wagon is what