Which is NOT true about the electrical charges in chemistry?
A. Protons carry a positive charge.
B. In an atom, the number of protons and neutrons must be equal.
C. An atom is neutral when the positive and negative charges balance.
D. An ion contains one or more positive or negative charges.

Answers

Answer 1

The statement that is NOT true about the electrical charges in chemistry is:
B. In an atom, the number of protons and neutrons must be equal.



In an atom, protons carry a positive charge (A) and are found in the nucleus, along with neutrons, which carry no charge. Electrons, which carry a negative charge, orbit the nucleus. An atom is neutral when the positive and negative charges balance (C), meaning the number of protons equals the number of electrons.

However, the number of protons and neutrons does not have to be equal in an atom. The difference in the number of neutrons between atoms of the same element creates isotopes. The number of protons determines the element's identity, while the number of neutrons can vary.

An ion (D) is an atom or molecule that has an unequal number of protons and electrons, resulting in a net positive or negative charge. When an atom loses or gains electrons, it becomes an ion. Cations are ions with a net positive charge (due to loss of electrons), while anions are ions with a net negative charge (due to gain of electrons).

Learn More about atomhere :-

https://brainly.com/question/16666188

#SPJ11


Related Questions

In the chemical industry, ammonia is manufactured by the Haber process according to the following chemical equation. N2(g) + 3 H2(g) = 2 NH3(g) + heat This is an exothermic reaction. How can the yield of ammonia production be improved?

Answers

In the chemical industry, ammonia is manufactured by the Haber process according to the following chemical equation: N₂(g) + 3 H₂(g) = 2 NH₃(g) + heat. This is an exothermic reaction. To improve the yield of ammonia production, you can follow these steps:

1. Increase pressure: Increasing the pressure will shift the equilibrium towards the side with fewer moles of gas, which is the ammonia side in this case. This will increase the yield of ammonia.

2. Decrease temperature: Since the reaction is exothermic, lowering the temperature will shift the equilibrium towards the side that produces heat, which is also the ammonia side. However, this step must be balanced with the need for a reasonable reaction rate, as lower temperatures slow down the reaction rate.

3. Use a catalyst: The use of a suitable catalyst, like iron with added promoters, can help increase the rate of the reaction without affecting the position of the equilibrium. This allows for a faster production of ammonia at the desired yield.

By applying these principles, we can improve the yield of ammonia production in the chemical industry using the Haber process.

To know more about the Haber process refer here :

https://brainly.com/question/21867752#

#SPJ11

The most basic source of immediate energy for most organisms is ________.
A) amino acids
B) lipids
C) starches
D) water
E) glucose

Answers

The most basic source of immediate energy for most organisms is glucose. Therefore the correct option is option E.

Most organisms use glucose as their main source of energy since it is a simple sugar. It is created by plants during the process of photosynthesis, and both plants and animals break it down during the process of cellular respiration to release energy in the form of ATP (adenosine triphosphate).

The breakdown of complex carbohydrates (like starches), the breakdown of glycogen, which is stored glucose in animals, or the ingestion of simple sugars or carbs in the food are some of the different ways that glucose can be produced.

After being absorbed by cells, glucose can be used to fuel cellular functions like muscular contraction or active transport of molecules across cell membranes by turning it into ATP. Therefore the correct option is option E.

For such more question on glucose:

https://brainly.com/question/397060

#SPJ11

How is it possible that water can exist in three different states of matter in the same area? How might this be significant for the distribution of thermal energy on earth

Answers

The thermal energy distribution of the water molecules may be shown using statistical thermodynamics. Even at a temperature of 0 degrees Celsius, water molecules will have enough energy to evaporate at a certain point.

These two factors allow for the simultaneous existence of water as a solid, liquid, and gas. In other words, the only temperature at which water can exist in all three forms of matter—solid (ice), liquid (water), and gas (water vapour)—is known as the triple point of water.

This is a 0.01°C temperature.  Ice, steam, and water can all be present in the same container at the same time when the pressure is low. The term "triple point" refers to a substance's intersection of temperature and pressure.

Learn more about thermal energy visit: brainly.com/question/19666326

#SPJ4

Which electron configuration represents an atom of aluminum in an excited state?

Answers

Answer:

An example of the electron configuration of aluminum in an excited state is 1s22s22p63s13p2

Answer:

The electron configuration of an aluminum atom in its ground state is 1s² 2s² 2p⁶ 3s² 3p¹.

An excited state of aluminum means that one or more of its electrons have been promoted to a higher energy level. One possible excited state electron configuration for aluminum is 1s² 2s² 2p⁶ 3s² 3p², where one of the 3p electrons has been promoted to a higher energy level.

A chemist needs to neutralize 349 L of HF solution that has a molarity of 3.6 M. She currently has an NaOH solution with a
molarity of 5.4 M. How many liters of her NaOH solution would she need to neutralize the HF?
The chemical equation for this reaction is HF + NaOH → NaF + H₂O
Enter a number with units.

Answers

The volume (in L) of 5.4 M NaOH solution needed to neutralize the HF solution is 232.67 L

How do i determine the volume of NaOH needed?

The volume of NaOH needed can be obtained as illustrated below:

HF + NaOH → NaF + H₂O

The mole ratio of the acid, HF (nA) = 1The mole ratio of the base, NaOH (nB) = 1Volume of acid, HF (Va) = 349 L Molarity of acid, HF (Ma) = 3.6 MMolarity of base, NaOH (Mb) = 5.4 MVolume of base, NaOH (Vb) =?

MaVa / MbVb = nA / nB

(3.6 × 349) / (5.4 × Vb) = 1

1256.4 / (5.4 × Vb) = 1

Cross multiply

1 × 5.4 × Vb = 1256.4

5.4 × Vb = 1256.4

Divide both side by 0.2

Vb = 1256.4 / 5.4

Vb = 232.67 L

Thus, we can conclude that the volume of NaOH needed is 232.67 L

Learn more about volume:

https://brainly.com/question/19053582

#SPJ1

Which acid/base pair will give an equivalence point above a pH of 7?
I am a little fuzzy on this topic. I know NH3 and HCL will be below 7. So... My thinking is the answer should be NaOH and CH3COOH?
Thanks for the help :)
Select the correct answer below:
A---NaOH and HCl
B---NH3 and HCl
C---NH3 and CH3COOH
D---NaOH and CH3COOH

Answers

NaOH and CH3COOH will give an equivalence point above a pH of 7. NaOH is a strong base and CH3COOH is a weak acid. During titration, as NaOH is added to the solution containing CH3COOH, the pH gradually increases due to the neutralization of the acidic protons of CH3COOH by the hydroxide ions of NaOH.

The equivalence point is reached when all the acid has reacted with the base, resulting in salt and water. At this point, the solution is neutral (pH 7). However, since CH3COOH is a weak acid, the initial pH of the solution is lower than 7, and it gradually increases as NaOH is added. Therefore, NaOH and CH3COOH form an acid/base pair that gives an equivalence point above a pH of 7.

Learn more about titration here:

https://brainly.com/question/31271061

#SPJ11

Answer: NH3 and HCl is the answer

Aqua regia is a mixture of
- HCl and H2SO4
- HNO3 and H2SO4
- HNO3 and HNO2
- HCl and HNO3

Answers

Aqua regia is a highly corrosive mixture of nitric acid (HNO3) and hydrochloric acid (HCl) in a 1:3 ratio. Therefore the correct option is option D.

Noble metals like gold and platinum, which are resistant to other acids, can be dissolved by this substance, which is why it is known as "royal water."

The hydrochloric acid-produced chloride ions oxidise the metal, and they combine with the metal ions to form soluble chlorides, which is how the mixture functions.

Metallurgy, etching, and analysis are just a few of the uses for aqua regia. Aqua regia needs to be handled carefully and cautiously due to its extremely reactive nature. Therefore the correct option is option D.

For such more question on hydrochloric:

https://brainly.com/question/1602388

#SPJ11

Ammonium chloride decomposes according to the equation NH4Cl(s) ⇌ NH3(g) + HCl(g) with Kp = 5. 82 × 10−2 bar2 at 300°C. Calculate the equilibrium partial pressure of each gas and the number of grams of NH4Cl(s) produced if equal molar quantities of NH3(g) and HCl(g) at an initial total pressure of 8. 87 bar are injected into a 2. 00-liter container at 300°C

Answers

The molar mass of NH₄Cl is 53.49 g/mol, so the mass of NH₄Cl produced is:

0.0536 mol NH₄Cl x 53.49 g/mol = 2.86 g NH₄Cl

First, we can use the equilibrium constant Kp to calculate the equilibrium partial pressures of NH3 and HCl.

Kp = (PNH₃)(PHCl) / (PNH₄Cl)

Since we have equal molar quantities of NH₃ and HCl at the start, we can assume that the equilibrium partial pressures of NH₃ and HCl are equal and represent them as x.

Kp = (x)(x) / (PNH₄Cl)

x²= Kp(PNH₄Cl) = 5.82 × 10⁻² (PNH₄Cl)

Next, we can use the ideal gas law to relate the partial pressure of NH3 and HCl to the total pressure and the partial pressure of NH₄Cl.

PV = nRT

For 1 mole of NH₄Cl, we have 1 mole of NH₃ and 1 mole of HCl at equilibrium, so the total moles of gas is 1 + 1 + 1 = 3. The number of moles of NH₄Cl at equilibrium is also 1 since we started with equal moles of NH₃ and HCl.

We can use the ideal gas law for each gas:

PNH3 = (1/3)PT and PHCl = (1/3)PT

where PT is the total pressure at equilibrium.

Substituting into the Kp expression:

x² = Kp(PNH4Cl) = Kp(1/3 PT)²

x = √(Kp/3) * PT

Now we can solve for PT using the fact that the total pressure is 8.87 bar and the volume is 2.00 L.

PT = nRT/V = (3 moles)(0.0831 L bar K⁻¹mol⁻¹)(573 K)/(2.00 L) = 6.66 bar

Substituting into the expression for x:

x = √(Kp/3) * PT = sqrt(5.82 × 10⁻² / 3) * 6.66 = 0.467 bar

Therefore, the equilibrium partial pressure of NH₃ and HCl are both 0.467 bar.

To find the number of grams of NH₄Cl(s) produced, we can use the ideal gas law to calculate the number of moles of NH₄Cl:

PV = nRT

(1 mol)(0.467 bar)(2.00 L) = n(0.0831 L bar K⁻¹mol⁻¹)(573 K)

n = 0.0536 moles

Since NH₄Cl is the limiting reagent, we produced 0.0536 moles of NH₄Cl.

The molar mass of NH₄Cl is 53.49 g/mol, so the mass of NH₄Cl produced is:

0.0536 mol NH₄Cl x 53.49 g/mol = 2.86 g NH₄Cl

Learn more about molar mass,

https://brainly.com/question/22997914

#SPJ4

purification of chromium can be achieved by electrorefining chromium from an impure chromium anode onto a pure chromium cathode in an electrolytic cell. how many hours will it take to plate 17.5 kg of chromium onto the cathode if the current passed through the cell is held constant at 34.0 a ? assume the chromium in the electrolytic solution is present as cr3 . time:

Answers

It will take approximately 948.7 hours to plate 17.5 kg of chromium onto the cathode at a constant current of 34.0 A.

The amount of electric charge required to plate a certain amount of a metal in an electrolytic cell can be calculated using Faraday's law, which states that the amount of charge (Q) required to deposit a certain amount of metal is proportional to the number of electrons transferred in the electrode reaction:

Q = nF

where n is the number of moles of metal deposited, and F is the Faraday constant (96,485 C/mol e-).

To calculate the time required to plate a certain amount of metal at a certain current, we need to know the relationship between the current, the charge, and the time. This relationship is given by:

Q = It

where I is the current, and t is the time.

Combining these equations, we get:

nF = It

Solving for t, we get:

t = nF/I

The number of moles of chromium deposited can be calculated from the mass of chromium and its molar mass. The molar mass of chromium is 52 g/mol.

Therefore, the number of moles of chromium deposited is:

n = 17.5 kg / 52 g/mol = 336.5 mol

Substituting the given values, we get:

t = (336.5 mol × 96,485 C/mol e-) / 34.0 A

Simplifying, we get:

t = 948.7 hours

to know more about Faraday's law refer here:

https://brainly.com/question/13369951#

#SPJ11

Corrosion occurs when there is a _____ differential between two components of a system
A) current
B) voltage
C) supply
D) pH
E) carbon

Answers

The pH differential between two components of a system. Corrosion is a natural process that occurs when a material, usually a metal, starts to degrade due to the chemical reactions with its environment. The process of corrosion typically involves the flow of electrons between the two components of a system, which are at different pH levels.

This pH differential creates an electrochemical cell that drives the corrosion process. When a system has a pH differential, the more acidic component (lower pH) acts as an anode, while the more alkaline component (higher pH) acts as a cathode. This electrochemical cell causes the flow of electrons from the anode to the cathode, resulting in the oxidation of the anode and the reduction of the cathode. The oxidation process leads to the formation of corrosion products such as rust or oxide layers on the surface of the anode material. To summarize, corrosion occurs when there is a pH differential between two components of a system, leading to the formation of an electrochemical cell that drives the degradation process.

learn more about pH differential here.

https://brainly.com/question/11893798

#SPJ11

PART OF WRITTEN EXAMINATION:
The quantity of polarization is determined by
A) on structure to electrolyte potential
B) off structure to electrolyte potential
C) on- off structure to the electrolyte potential
D) off - native structure to electrolyte potential

Answers

The quantity of polarization is determined by the "on- off structure to the electrolyte potential." Therefore the correct option is option C.

A potential difference between the metal and the electrolyte is created when the two are in contact. The movement of electrons between the metal and the electrolyte as a result of this potential difference might result in corrosion or other electrochemical processes.

A reference electrode, such as a standard hydrogen electrode (SHE), and a voltmeter can be used to measure the potential difference between the metal and the electrolyte.

The amount of polarisation can be calculated by measuring the potential difference between the metal when it is in contact with the electrolyte (on structure) and when it is not (off structure). Therefore the correct option is option C.

For such more question on polarization:

https://brainly.com/question/23631454

#SPJ11

Frenkel defects exist in ZrO2. For each of these defects, note how many of the following vacancies and interstitials form: (a) i Zr4+ vacancies (b) i Zr4+ interstitials (c) i 02- vacancies (d) i 02- interstitials

Answers

In ZrO2, Frenkel defects occur due to the presence of Zr4+ and O2- ions. These defects involve the displacement of cations and anions from their lattice sites. In a Frenkel defect, a cation leaves its original site and occupies an interstitial site, while an anion leaves its original site and creates a vacancy.

For each Frenkel defect, there is one vacancy and one interstitial formed. Therefore, (a) i Zr4+ vacancies and (b) i Zr4+ interstitials form one each, and (c) i O2- vacancies and (d) i O2- interstitials also form one each. These defects have significant impacts on the physical and chemical properties of materials, including ZrO2, which is used in various applications, including ceramics, fuel cells, and catalysts.

For more information on ZrO2 see:

https://brainly.com/question/15281001

#SPJ11

What mass of HI should be present in 0.200L of solution to obtain a solution with each of the following pH's?
pH=1.20
pH=1.75
pH=2.85

Answers

The mass of HI should be present in 0.200l of solution to obtain a solution with pH value's,

(a) pH value is 1.20 the mass is 1.08g

(b) pH value is 1.75 the mass is 0.0066g

(c) pH value is 2.85 the mass is 0.00012g

To solve this problem, we must determine the concentration of H+ ions in the solution using the pH of the solution and the dissociation constant of HI. The concentration of HI and the mass of HI required to make the solution may then be calculated.

The dissociation reaction for HI is:

HI(aq) ↔ H+(aq) + I-(aq)

The dissociation constant, Ka, for this reaction, is:

Ka = [H+][I-]/[HI]

This formula may be simplified by assuming that the starting concentration of HI is equal to the concentration of I- produced, which is equal to the concentration of H+ produced due to the reaction's 1:1 stoichiometry. This results in:

Ka = [H+]^2/[HI]

Solving for [H+], we get:

[H+] = sqrt(Ka*[HI])

Taking the negative log of both sides gives us the pH of the solution:

pH = -log[H+] = -log(sqrt(Ka*[HI]))

pH= -0.5*log(Ka) - 0.5*log([HI])

Rearranging this equation, we get:

[HI] = 10^(-(pH + 0.5*log(Ka)))/V

where V is the volume of the solution.

Now we can calculate the mass of HI required for each pH:

(a) For pH = 1.20:

Ka for HI is 1.3 x 10^-10. Substituting this value into the equation above, we get:

[HI] = 10^(-(1.20 + 0.5*log(1.3 x 10^-10)))/0.200L ≈ 0.0042 M

The mass of HI required is:

mass = concentration x volume x molar mass

     = 0.0042 mol/L x 0.200 L x 127.91 g/mol

     ≈ 1.08 g

Therefore, approximately 1.08 grams of HI is required to prepare a solution with a pH of 1.20.

(b) For pH = 1.75:

[HI] = 10^(-(1.75 + 0.5*log(1.3 x 10^-10)))/0.200L ≈ 0.00026 M

mass = 0.00026 mol/L x 0.200 L x 127.91 g/mol ≈ 0.0066 g

Therefore, approximately 0.0066 grams of HI is required to prepare a solution with a pH of 1.75.

(c) For pH = 2.85:

[HI] = 10^(-(2.85 + 0.5*log(1.3 x 10^-10)))/0.200L ≈ 0.0000047 M

mass = 0.0000047 mol/L x 0.200 L x 127.91 g/mol ≈ 0.00012 g

Therefore, approximately 0.00012 grams of HI is required to prepare a solution with a pH of 2.85.

Learn more about Dissociation Reaction:

https://brainly.com/question/29411272

#SPJ4

Consider a 0. 244 m aqueous solution of sodium hydroxide, naoh. (1pts) a. How many grams of naoh are dissolved in 24. 39 ml? B. How many individual hydroxide ions (OH') are found in 23. 34 ml?

Answers

There are 0.238 grams of NaOH dissolved in 24.39 mL of a 0.244 M solution. There are 3.43 × [tex]10^{21}[/tex] individual OH- ions in 23.34 mL of a 0.244 M solution of NaOH.

a. To determine the grams of NaOH dissolved in 24.39 mL of a 0.244 M solution, we can use the formula:

moles of solute = molarity × volume of solution (in liters)

First, we need to convert the volume of solution from milliliters to liters:

24.39 mL = 24.39 ÷ 1000 L = 0.02439 L

Then, we can calculate the moles of NaOH present in this volume of solution:

moles of NaOH = 0.244 M × 0.02439 L = 0.00595 moles

Finally, we can use the molar mass of NaOH to convert moles to grams:

grams of NaOH = 0.00595 moles × 40.00 g/mol = 0.238 g

B). To determine the number of individual hydroxide ions (OH-) present in 23.34 mL of a 0.244 M solution, we first need to calculate the total number of moles of NaOH present in this volume of solution:

moles of NaOH = 0.244 M × 0.02334 L = 0.00570 moles

Since NaOH dissociates in water to form one Na+ ion and one OH- ion, we know that there is the same number of moles of Na+ and OH- ions present in the solution.

Therefore, the number of individual OH- ions present in 23.34 mL of a 0.244 M solution is:

number of OH- ions = moles of OH- ions × Avogadro's number

= moles of NaOH × 1 × 6.022 × [tex]10^{23}[/tex]

= 0.00570 × 6.022 × [tex]10^{23}[/tex]

= 3.43 × [tex]10^{21}[/tex] OH- ions

A solution is a homogeneous mixture of two or more substances that are evenly distributed at the molecular or atomic level. In a solution, the solute is the substance that is being dissolved, while the solvent is the substance that does the dissolving. The concentration of the solute in a solution can vary, and it is usually expressed as the amount of solute dissolved in a certain amount of solvent.

Solutions can be classified into different categories based on their physical state and the nature of the solute and solvent. For example, a solution in which the solvent is water is called an aqueous solution, while a solution in which the solute is a gas is called a gas solution. Solutions can also be classified as dilute or concentrated based on the amount of solute present in a given amount of solvent.

To learn more about Solution visit here:

brainly.com/question/7932885

#SPJ4

Write the formulas for the following coordination compounds:
(i) Tetraamminediaquacobalt(III) chloride
(ii) Potassium tetracyanonickelate(II)
(iii) Tris(ethane−1,2−diamine) chromium(III) chloride
(iv) Amminebromidochloridonitrito-N-platinate(II)
(v) Dichloridobis(ethane−1,2−diamine)platinum(IV) nitrate
(vi) Iron(III) hexacyanoferrate(II)

Answers

The formulas for the following coordination compounds:

(i) Tetraamminediaquacobalt(III) chloride: [Co(NH₃)₄(H₂O)₂]Cl₃;

(ii) Potassium tetracyanonickelate(II): K₂[Ni(CN)₄];

(iii) Tris(ethane−1,2−diamine) chromium(III) chloride: [Cr(en)₃]Cl₃;

(iv) Amminebromidochloridonitrito-N-platinate(II): [Pt(NH₃)₂BrCl(NO₂)];

(v) Dichloridobis(ethane−1,2−diamine)platinum(IV) nitrate: [PtCl₂(en)₂]NO₃;

(vi) Iron(III) hexacyanoferrate(II): [Fe(H₂O)₆][Fe(CN)₆].

(i) Tetraamminediaquacobalt(III) chloride: [Co(NH₃)₄(H₂O)₂]Cl₃
The coordination sphere of the complex contains cobalt (III) ion surrounded by four ammine (NH₃) ligands and two aqua (H₂O) ligands. The counter ion, chloride (Cl⁻), is outside the coordination sphere and hence written in square brackets.

(ii) Potassium tetracyanonickelate(II): K₂[Ni(CN)₄]
The coordination sphere of the complex contains nickel (II) ion surrounded by four cyano (CN⁻) ligands. The two potassium (K⁺) ions are outside the coordination sphere and hence written separately.

(iii) Tris(ethane−1,2−diamine) chromium(III) chloride: [Cr(en)₃]Cl₃

The coordination sphere of the complex contains chromium (III) ion surrounded by three ethane-1,2-diamine (en) ligands. The counter ion, chloride (Cl⁻), is outside the coordination sphere and hence written in square brackets.

(iv) Amminebromidochloridonitrito-N-platinate(II): [Pt(NH₃)₂BrCl(NO₂)]
The coordination sphere of the complex contains platinum (II) ion surrounded by two ammine (NH₃) ligands, one bromido (Br⁻) ligand, one chlorido (Cl⁻) ligand, and one nitrito (NO₂⁻) ligand.

(v) Dichloridobis(ethane−1,2−diamine)platinum(IV) nitrate: [PtCl₂(en)₂]NO₃
The coordination sphere of the complex contains platinum (IV) ion surrounded by two ethane-1,2-diamine (en) ligands and two chlorido (Cl⁻) ligands. The counter ion, nitrate (NO₃⁻), is outside the coordination sphere and hence written in square brackets.

(vi) Iron(III) hexacyanoferrate(II): [Fe(H₂O)₆][Fe(CN)₆]
The coordination sphere of the complex contains two entities. The first entity contains iron (III) ion surrounded by six aqua (H₂O) ligands. The second entity contains hexacyanoferrate (II) ion, which is coordinated to the first entity through cyanide (CN⁻) ligands. The two entities are separated by a square bracket.

To know more about coordination compounds, refer to the link below:

https://brainly.com/question/29766591#

#SPJ11

Buffers stabilize pH by releasing hydrogen ions when a(n)

Answers

Buffers stabilize pH by releasing hydrogen ions when a solution becomes too basic (high pH). They help maintain a constant pH by neutralizing excess hydrogen ions or hydroxide ions in the solution.

Buffers stabilize pH by releasing hydrogen ions when a solution becomes too basic (alkaline) or by absorbing hydrogen ions when a solution becomes too acidic. The pH of a solution is a measure of its acidity or alkalinity and is determined by the concentration of hydrogen ions present. Buffers help to maintain a stable pH by preventing large changes in the concentration of hydrogen ions.

To learn more about, buffer, click here, https://brainly.com/question/27959511

#SPJ11

Water has a high specific heat because a large input of thermal energy is needed to break the many

Answers

Water has a high specific heat because it has a strong attraction between its molecules, known as hydrogen bonding.

Water can absorb a lot of heat energy thanks to hydrogen bonding without significantly raising its temperature. Accordingly, water can serve as a buffer, soaking up extra heat from the surroundings and assisting in temperature control.

Additionally, the high specific heat of water has significant effects on living things because it enables them to keep their internal temperatures constant despite changes in their environment.

The high specific heat of water, for instance, contributes to the ability of living things to control their internal temperature through sweating and panting, which serves to moderate the climate of coastal regions.

For such more question on molecules:

https://brainly.com/question/475709

#SPJ11

What is the density of water in lb/m3 (pounds per cubic meter)? (Hint: 1 lb = 454 g)

Answers

The density of water in lb/m3 is 62.4279.The density of water is an important physical property of this substance.

The density of water is defined as the mass per unit volume of water. In other words, it is the amount of mass contained within a particular volume of water. This property is particularly important in applications such as calculating the buoyancy of objects in water.
The density of water is typically expressed in kilograms per cubic meter (kg/m3) or in grams per milliliter (g/mL). However, since the question asks for the density of water in lb/m3 (pounds per cubic meter), we need to convert the units.
One pound (lb) is equal to 454 grams (g). Therefore, we can use the conversion factor of 1 lb/m3 = 16.0185 kg/m3. Using this conversion factor, we can calculate the density of water in lb/m3 as:
Density of water = 1000 kg/m3 * (\frac{1 lb }{454 g}) * (\frac{1 m3 }{ 1000 L}) * (\frac{1000 L }{ 1 m3}) * (\frac{1 lb }{ 16.0185 kg})
Density of water = 62.4279 lb/m3
Therefore, the density of water in lb/m3 is 62.4279.

learn more about density Refer: https://brainly.com/question/29775886

#SPJ11

write out the net-ionic equation for the precipitation reaction that will happen with hydrogenphosphate ion upon the addition of 1 m

Answers

The net-ionic equation for the precipitation reaction that occurs upon the addition of a 1 M solution of calcium ions to a solution containing hydrogen phosphate ions is Ca²⁺ + HPO₄²⁻ → CaHPO₄(s).

To write out the net-ionic equation for the precipitation reaction that occurs when hydrogen phosphate ion is combined with a 1 M solution of a cation,  include the terms net-ionic equation, precipitation reaction, hydrogen phosphate ion, and 1 M solution.

Step 1: Identify the reacting ions.
In this case, the hydrogen phosphate ion is  HPO₄²⁻

Step 2: Identify the cation that would form a precipitate with the hydrogen phosphate ion.
A common cation that forms a precipitate with hydrogen phosphate ion is calcium (Ca^(2+)). When added to a 1 M solution, the calcium ions will react with the hydrogen phosphate ions.

Step 3: Write out the molecular equation for the reaction.
Ca²⁺ + HPO₄²⁻ → CaHPO₄(s)

Step 4: Write out the net-ionic equation for the precipitation reaction.
Since there are no spectator ions in this reaction, the net-ionic equation is the same as the molecular equation:

Ca²⁺ + HPO₄²⁻ → CaHPO₄(s)

So, the net-ionic equation for the precipitation reaction that occurs upon the addition of a 1 M solution of calcium ions to a solution containing hydrogen phosphate ions is Ca²⁺ + HPO₄²⁻ → CaHPO₄(s)

To know more about precipitation reaction, refer

https://brainly.com/question/13016165

#SPJ11

whats the answer to this. me and my class are all stuck

Answers

The iodide ion is denoted by the sign I-. This ion has a charge of -1, as indicated by the minus sign, which implies it has one more electron than the iodine atom (I), which is neutral.

Iodine (I), whose atomic number is 53, has 53 electrons in its neutral state. The iodide ion, which has a charge of -1, is created when an iodine atom gains one electron. The iodide ion (I-) therefore has 54 electrons :

53 electrons from the neutral iodine atom + 1 additional electron gained when it becomes an ion = 54 electrons in the iodide ion.

Всё легко и просто, удачи.

Answer:

The answer would be 8 electrons

As the element would want to complete its valence shell with "8 electrons", it will gain electrons hence attaining a negative charge

The "negative sign only" also shows that this element gained 1 electron so we can conclude that this element is in group VII A (Group 7 A elements gain 1 electron to complete their valence shell)

Lela's teacher showed the class the image above. She explained that the image is a small crystal of salt. Lela's teacher gave the class the following information:

Some molecules bond to other molecules in a pattern. These groups of molecules are called crystals because they have a crystalline structure. They are made of molecules that join to other molecules that are the same.

Salt molecules are made of sodium and chlorine, two elements (atoms) that join together to make a salt molecule. The sodium is smaller than the chlorine.

Which of the following is TRUE?

Answers

Based on the information that "Salt molecules are made of sodium and chlorine, two elements (atoms) that join together to make a salt molecule. The sodium is smaller than the chlorine". The statement that is correct is that the small purple sphere is sodium and large green sphere is chlorine, and one salt molecule is made up of one small sphere and one large sphere. Hence, option C is correct.

Generally in chemical terms, salts are described as ionic compounds. To most of the people, salt usually refers to table salt, which is chemically sodium chloride.

Basically, Sodium chloride is formed from the ionic bonding of sodium ions and chloride ions.

Hence, option C is correct.

Learn more about sodium chloride from the link given below.

https://brainly.com/question/9811771

#SPJ1

Mercury spills
- Are not much of a concern since elemental mercury has such a low vapor pressure
- Are not much of a concern since mercury is primarily toxic by ingestion
- Must be cleaned up using special techniques
- Can effectively be swept up with a small broom and dustpan

Answers

Mercury spills must be cleaned up using special techniques. It is important to note that even though elemental mercury has a low vapor pressure, exposure to mercury vapor can still be harmful.

In addition, mercury is primarily toxic by ingestion, but it can also be absorbed through the skin. Therefore, it is recommended to use protective equipment, such as gloves and goggles, and to follow proper cleanup procedures to avoid exposure. Simply sweeping up a mercury spill with a small broom and dustpan is not recommended as it can spread the mercury particles and create a larger contamination area.

To learn more about Mercury click here https://brainly.com/question/4025230

#SPJ11

If 3.28g of a gas occupies a volume of 6.22 liters at a pressure of 845mmHg and a temperature of 378k

A) how many moles of gas exist in the container?
B) what is the molar mass of the gas?

SHOW YOUR WORK!!!!

Answers

0.22 moles of gas exist in the container and the molar mass of the gas is 15g/mol.

The Ideal gas law is the equation of state of a hypothetical ideal gas. It is a good approximation to the behaviour of many gases under many conditions, although it has several limitations. The ideal gas equation can be written as

                                PV = nRT

where,

P = Pressure

V = Volume

T = Temperature

n = number of moles

Given,

Mass = 3.28g

Volume = 6.22 L

Temperature = 378K

Pressure = 845 mm Hg

PV = nRT

845 × 6.22 = n × 62.36 × 378

number of moles = 0.22 moles

Moles = mass / molar mass

Molar mass = mass / moles

= 3.28 / 0.22

= 15 g/mol

Learn more about Ideal Gas Law, here:

https://brainly.com/question/28257995

#SPJ1

What is the relation for entropy change for reversible process?

Answers

If the process is irreversible, the entropy change may be positive, negative, or zero, depending on the direction of heat flow.

The relation for entropy change for a reversible process is given by the equation ΔS = Qrev/T, where ΔS is the change in entropy, Qrev is the heat absorbed or released during the reversible process, and T is the temperature at which the process occurs. In a reversible process, the entropy change is positive for an increase in temperature and negative for a decrease in temperature. This equation is important in thermodynamics because it allows us to calculate the change in entropy for a reversible process and determine the maximum efficiency of a heat engine.

To learn more about entropy click here https://brainly.com/question/13999732

#SPJ11

Which of the following ions have the same ground state electron configuration: S2-, N3-, Mg2+, and Br- ?
a. N3- and Mg2+
b. S2-, N3-, and Br-
c. S2- and Br--
d. Mg2+ and Br-
e. S2-, N3-, Mg2+, and Br-

Answers

Answer:

A. N 3- and Mg 2+

Explanation:

To compare electron configurations of each option, it is important to understand how to assign orbitals (s, p, d, f) to atoms. S is assigned for the first two columns of the periodic table, the p orbital is assigned to columns 13-18, the d orbital begins on row 4 and encompasses the transition metals.

The coefficient (ex. 2p5) comes from what number in the orbital (s, p, d, or f) the atom/ion is located in. In this example, atom 2p5 is fluorine because it is 5th in the p orbital block.

For a future exam I recommend memorizing the periodic table linked.

1. Write the electron configuration out like normal, do not consider the charges of the atoms yet

S: 1s2, 2s2, 2p6, 3s2, 3p4

2. Then write the electron configuration considering the positive or negative charge of the atom

POSITIVE CHARGE= remove electrons from the highest orbital first

NEGATIVE CHARGE= add electrons to the highest orbital

S -2:  1s2, 2s2, 2p6, 3s2, 3p6

The original 3p4 orbital gains two electrons due to the -2 charge, making a complete orbital: 3p6

N: 1s2, 2s2, 2p3

N -3: 1s2, 2s2, 2p6 (-3 charge means adding three electrons to the highest orbital of this atom, 2p)

Mg: 1s2, 2s2, 2p6, 3s2

Mg +2: 1s2, 2s2, 2p6 (the 3s2 is gone because of the +2 charge on the ion which indicates to remove 2 electrons from the highest orbital, 3s)

Br: 1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p5

Br -1: 1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6 (add an electron to the highest orbital due to the -1 charge on the Br ion)

Now, compare the electron configurations for each ion. It is faster to compare the highest orbital of each ion to each other than the whole configuration itself.

Taking the highest orbital...

S -2: 3p6

N -3: 2p6

Mg +2: 2p6

Br -1: 4p6

The highest orbital in both N -3 AND Mg +2 is 2p6, signifying that these atoms have the same ground state electron configuration.

The ions that have the same ground state electron configuration are: a. N³⁻ and Mg²⁺

To determine this, we need to find the electron configuration for each ion:

1. S²⁻: Sulfur has 16 electrons, but since it gained 2 electrons, it has a total of 18 electrons. Its electron configuration is [Ne]3s²3p⁶.

2. N³⁻: Nitrogen has 7 electrons, but since it gained 3 electrons, it has a total of 10 electrons. Its electron configuration is [He]2s²2p⁶.

3. Mg²⁺: Magnesium has 12 electrons, but since it lost 2 electrons, it has a total of 10 electrons. Its electron configuration is [He]2s²2p⁶.

4. Br-: Bromine has 35 electrons, but since it gained 1 electron, it has a total of 36 electrons. Its electron configuration is [Ar]3d¹⁰4s²4p⁶.

Comparing the electron configurations, we can see that N³⁻ and Mg²⁺ have the same ground state electron configuration. Therefore, the correct answer is a. N³⁻ and Mg²⁺.

To know more about the refer electron configuration here :

https://brainly.com/question/29757010#

#SPJ11

Primary amines with three or four carbon atoms are _____ at room temperature whereas higher ones are ______.

Answers

Primary amines are a class of organic compounds that contain a nitrogen atom bonded to two hydrogen atoms and a carbon atom. The carbon atom can be bonded to one, two, or three other carbon atoms.

The number of carbon atoms in the primary amine molecule can affect its physical properties, including its boiling and melting points.Primary amines with three or four carbon atoms are generally liquid at room temperature, while higher ones are solids. This is due to the difference in intermolecular forces between the molecules. In general, the larger the molecule, the stronger the intermolecular forces, which result in higher melting and boiling points. This is because the larger the molecule, the more atoms are present, and the greater the potential for intermolecular interactions such as van der Waals forces.Carbon atoms play a key role in determining the physical and chemical properties of organic compounds, including primary amines. The number and arrangement of carbon atoms in a molecule can affect its reactivity, solubility, and stability. The presence of multiple carbon atoms in a primary amine molecule can also result in the formation of different isomers, which have similar chemical properties but different physical properties. Overall, the number of carbon atoms in a primary amine molecule is an important factor in determining its behavior and properties.

Learn more about carbon here

https://brainly.com/question/27860158

#SPJ11

PART OF WRITTEN EXAMINATION:
What is the first line of defense in Cathodic Protection?
A) impressed current systems
B) grounding rods
C) coating of the pipe
D) holidays
E) carbon

Answers

The first line of defense in Cathodic Protection is the coating of the pipe. This is because the coating serves as a barrier that prevents the pipe from coming into contact with the corrosive environment. The coating, if applied properly, can last for many years and protect the pipe from corrosion.

The coating such as holidays areas where the coating is missing, then the pipe will be exposed to the corrosive environment and will start to corrode. This is where Cathodic Protection comes in. It is a technique used to protect metallic structures from corrosion by making the structure the cathode of an electrochemical cell. By doing so, the metal is protected from corrosion as it is the cathode and not the anode. Impressed current systems and grounding rods are both methods of providing Cathodic Protection, but they are not the first line of defense. Carbon is not a relevant term in the context of Cathodic Protection. In summary, the coating of the pipe is the first line of defense in Cathodic Protection, and if it is damaged, then Cathodic Protection methods such as impressed current systems and grounding rods can be used to protect the structure.

learn more about Cathodic Protection here.

https://brainly.com/question/13031370

#SPJ11

Based on the Lewis structure of NO2-, and your knowledge of VSEPR, which statement most accurately estimates the bond angle about the central N?it is slightly less than 120°it is slightly less than 121°it is slightly less than 180°

Answers

Based on the Lewis structure of NO2- and VSEPR theory, the central N in NO2- has a trigonal planar electron geometry due to the three electron pairs surrounding it.

The two oxygen atoms are located in the equatorial positions, while the lone pair of electrons occupies the axial position. The lone pair-lone pair repulsion is stronger than the lone pair-bond pair or bond pair-bond pair repulsions. This leads to a compression of the bond angles. Therefore, the estimated bond angle about the central N in NO2- is slightly less than 120°. The bond angle can be affected by various factors such as the electronegativity of the atoms involved and the presence of lone pairs. In the case of NO2-, the presence of a lone pair on the central N leads to a deviation from the ideal 120° bond angle. This is due to the repulsion between the lone pair and the oxygen atoms, causing a decrease in the bond angle. Therefore, the statement that most accurately estimates the bond angle about the central N in NO2- is "it is slightly less than 120°".

learn more about NO2- here

https://brainly.com/question/9331100

#SPJ11

For the fuel cell described above in problem 2.14, assuming operation on pure hydrogen fuel, how much water would be produced during 24 hours of operation at P = 2 kW? (Recall: molar mass of water = 18 g/mol, density of water = 1 g/cm3.)
(a) 0.49 L
(b) 10.7 L
(c) 32.2 L
(d) 66.3 L

Answers

During 24 hours of operation at a power of 2 kW, approximately (c) 32.2 liters of water would be generated in the fuel cell when using pure hydrogen fuel.

First, we calculate the number of moles of hydrogen consumed in 24 hours of operation at 2 kW using the equation:

n(H₂) = (Power / Ecell) * (time / (2 * 96500))

n(H₂) = (2 kW / 1.23 V) * (24 h / (2 * 96500 C/mol))

n(H₂) ≈ 0.202 mol

Since the balanced chemical equation shows that 2 moles of water are produced for every 2 moles of hydrogen consumed, the number of moles of water produced is the same:

n(H₂O) = n(H₂) ≈ 0.202 mol

Finally, we convert the number of moles of water produced to volume using the molar mass of water and the density of water:

V(H₂O) = n(H₂O) * (molar mass of water / density of water)

V(H₂O) = 0.202 mol * (18 g/mol / 1 g/cm³)

V(H₂O) ≈ 3.64 L

Since 3.64 L is not one of the given answer choices, we round it to the nearest option, which is (c) 32.2 L.

To know more about the hydrogen fuel refer here :

https://brainly.com/question/21255086#

#SPJ11

Calculate the number of moles in 273. 8 g of gold

Answers

The number of moles present in 273.8 g of gold is 1.39 mol, under the condition that the molar mass of gold is 196.97 g/mol.

The number of moles in 273.8 g of gold can be evaluated utilizing the formula
Number of moles = Mass of substance / Molar mass
The given molar mass of gold is 196.97 g/mol.
Then, the number of moles in 273.8 g of gold is
Number of moles = 273.8 g / 196.97 g/mol
= 1.39 mol (approx)
Molar mass is known as the mass of one mole of a substance. It is projected in grams per mole (g/mol). The molar mass of a compound can be evaluate by adding up the atomic masses of all the atoms present in one molecule of that compound.

For instance, gold has an atomic mass of 196.97 g/mol. Then, one mole of gold atom measures up to 96.97 grams.

To learn more about molar mass
https://brainly.com/question/837939
#SPJ4

Other Questions
What is mandatory of victims of hazardous material exposure? What is the definition of physical weathering?A) Chemical reactions produce new substances.B) Mechanical processes add chemicals to create new substances.C) Rock is dissolved by chemicals.D) Mechanical processes break substances into smaller pieces.E) Rocks fall apart. REPORT: ISRAEL IN CANAANThis assignment allows you to reflect on the importance of the book of Joshua in understanding God's plan for Israel.Here are your goals for this assignment:Research a topic making appropriate use of reference resourcesWrite a 500-word reportSelect one of the following topics:1. Joshua: The Book of Conquest and Division.2. Did the sun and moon stand still?3. Trace briefly the revelation of God's redemptive plan in Genesis through Joshua (the first six books of the Bible).4. Israel in Canaan: fulfillment or failure?5. In the light of other Scriptures, interpret Joshua 11:20.I will mark as Brainliest Differentiate between accounting, normal and economic profit earned by firms, and evaluate the notion that profits and losses help to promote economic efficiency within market based systems. Consider one of the following large firms (Borders, Blockbuster, Circuit City) that have gone by the wayside and discuss what led to their demise. What current company do you think will no longer exist in 10 years (and discuss why)? in 75 g of a 12% by mass solution of barium chloride, (a)how many grams of solute are present? 9 g bacl2 (b) how many grams of solvent are present? 66 g h2o 2. calculate the molarity of the solution made by mixing 175 ml of 3.0 m hcl with 250 ml of water 1.2 m 3. when 80.5 ml of 0.642 m ba(no3)2 are mixed with 44.5 ml of 0.743 m koh, a precipitate of ba(oh)2 forms. how many grams of ba(oh)2 do you expect? 2.84 g ba(oh)2 4. you need to make a large quantity of a 5.0 % solution of hcl but only have 25.0 ml hcl. what volume of 5.0 % solution can be made from this volume of hcl? 500 ml (assume 5% solution is by volume) 5. concentrated nitric acid is 16 m. how much water must be added to a 175 ml sample of concentrated acid to make a 0.15 m nitric acid solution? 18.49 l h2o (remember to subtract 175 ml (v1) from v2 to get volume of water added) 6. a hospital glucose, c6h12o6, solution is analyzed to confirm its concentration. a 10.0 ml sample with a mass of 10.483 g is evaporated to dryness. if the solid glucose residue has a mass of 0.524 g, find the following: density A piston-cylinder device contains helium gas. During a reversible, isothermal process, the entropy of the helium will _____ (never, sometimes, always) increase. a) Let be an unbiased estimator for , and X be a random variable with mean zero. Show that + X is also an unbiased estimator for . b) Given E() = a +b and a 0, show that (-b)/a is an unbiased estimated for . PLEASE HELP ANSWER! ! : ( The dot plots show the distribution of heights, in inches, for third grade girls in two classrooms. Which statement is true? A. The center of the graph of class 1 is best measured by the median, and the center of the graph of class 2 is best measured by the mean. B. The center of the graph of class 1 is best measured by the mean, and the center of the graph of class 2 is best measured by the median. C. The centers of the graphs of class 1 and class 2 are best measured by the median. D. The centers of the graphs of class 1 and class 2 are best measured by the mean. order the types of competitive markets from most competitive to least competitive. note: the most competitive market should be the top item in your list. Lactated Ringer's (LR) solution is a hypotonic fluid.True or False Pls help me i rlly need this What is the distance between (1, 2) and (1, -10)? How can you optimize the performance of a function written in assembly language, while ensuring that it still performs the intended functionality and produces correct outputs? What factors should you consider when making trade-offs between speed and correctness? Use mathematical induction to prove that the statement is true for all positive integers: 30 + 138 + 318... What is the benefit of a feed-in tariff?The tariff includes the true cost pricing for renewable energy generation.Owners of renewable energy equipment have part of the cost of the equipment paid for before it is installed.Owners of renewable energy equipment can be paid for energy they sell back to the grid.The tariff pays to store the excess electricity generated by renewable energy equipment. 1 Let V = Span{ 2 3 1:00 3 3 5}. Find a condition which must be true if 4 x is in V: Z y+ X + z = 0 which of the following systems of equations have nonzero solutions? if the solution is not unique, give the set of all possible solutions. What would you say in your letter?Now imagine you are the editor of the paper that receives a letter like this. If you print it, you might be arrested, too. Your family and friends may have to answer questions by the police. What would you do?Respond to a student who chose to do the opposite. Try to talk them into doing what you would do What further steps are taking in isolating the benzoic acid? Suppose you saw in a shopping mall a woman you had never seen before whose hair, nails, and clothing were black and who had several face and ear piercings and tattoos. You immediately figured that she was a tattoo artist, which is very rare, rather than a college student, which is much more common. What heuristic does this illustrate?A. RepresentativenessB. AvailabilityC. Mental accountingD. Framing effects Steam Workshop Downloader