Option d...
Move more slowly........
When the temperature of a substance is lowered its particles move more slowly. Option d is correct. Temperature directs to the hotness or coldness of a body.
What is temperature?Temperature directs to the hotness or coldness of a body. In clear terms, it is the method of finding the kinetic energy of particles within an entity. Faster the motion of particles more the temperature.
Temperature is essential in all areas of Science right from Physics to Geology and also it is important in most parts of our everyday life.
As the temperature of a substance is lowered its particles move more slowly.
Hence Option d is correct.
To learn more about the temperature refer to the link;
https://brainly.com/question/7510619
The driver of a 1.5 x 103 kg car is traveling east at 10 m/s and increases its speed to 30 m/s east over 15 seconds. What was the change in momentum of the car? Kgm/s
Answer:
30,000kgm/s
Explanation:
Change in momentum is expressed as;
Change in momentum = mass × change in velocity
∆M = m∆v
Mass m = 1.5×10³kg = 1500kg
∆v = 30-10 =20m/s
Substitute into the formula
Change in momentum = 1500(20)
Change in momentum = 30,000kgm/s
A lift travelling up to the top floor of the Empire State building with a mass of 4200kg and a kinetic energy of 4116J. Find the velocity
Answer:
1.4 m/sExplanation:
The velocity can be found by using the formula
[tex]v = \sqrt{ \frac{2k}{m} } \\ [/tex]
k is the kinetic energy
m is the mass
From the question we have
[tex]v = \sqrt{ \frac{2 \times 4116}{4200} } \\ = 1.4[/tex]
We have the final answer as
1.4 m/sHope this helps you
Answer:
The speed of the lift is 1.4 m/s
Explanation:
Kinetic Energy
Is the type of energy of an object due to its motion. It's proportional to the square of the speed and the mass.
The equation for the kinetic energy is:
[tex]\displaystyle K=\frac{1}{2}mv^2[/tex]
Where:
m = mass of the object
v = speed at which the object moves
The kinetic energy is expressed in Joules (J)
It's given the mass of the lift as m=4,200 kg and its kinetic energy K=4,116 J. To calculate the speed (magnitude of velocity), we solve the formula for v as follows:
[tex]\displaystyle v=\sqrt{\frac{2k}{m}}[/tex]
[tex]\displaystyle v=\sqrt{\frac{2*4,116}{4,200}}[/tex]
[tex]\displaystyle v=\sqrt{1.96}[/tex]
v = 1.4 m/s
The speed of the lift is 1.4 m/s
which unit would be most
suitable for its scale?
Answer:
down below
Explanation:
for a scale, kg is used, as well as grams
for force, newtons is used
A ball is thrown with 50J of kinetic energy, it hits a target which moves with 30J of kinetic energy, how much energy goes to the thermal store of the surroundings?
Answer:
The energy that will go will for thermal store of the surroundings is 20 J.
Explanation:
Given;
kinetic of the thrown ball, K.E₁ = 50 J
kinetic energy used to move the target, K.E₂ = 30 J
The excess energy that will go will for thermal store of the surroundings;
ΔK.E = K.E₁ - K.E₂
ΔK.E = 50J - 30J
ΔK.E = 20 J
Therefore, the energy that will go will for thermal store of the surroundings is 20 J.
On Earth, a spring stretches by 5.0 cm when a mass of 3.0 kg is suspended from one end.
The gravitational field strength on the Moon is
1/6 of that on Earth.
Which mass, on the Moon, would stretch the spring by the same extension?
Reasons too :(
igcse physics
Answer:
Mass = 18.0 kg
Explanation:
From Hooke's law,
F = ke
where: F is the force, k is the spring constant and e is the extension.
But, F = mg
So that,
mg = ke
On the Earth, let the gravitational force be 10 m/[tex]s^{2}[/tex].
3.0 x 10 = k x 5.0
30 = 5k
⇒ k = [tex]\frac{30}{5}[/tex] ................ 1
On the Moon, the gravitational force is [tex]\frac{1}{6}[/tex] of that on the Earth.
m x [tex]\frac{10}{6}[/tex] = k x 5.0
[tex]\frac{10m}{6}[/tex] = 5k
⇒ k = [tex]\frac{10m}{30}[/tex] ............. 2
Equating 1 and 2, we have;
[tex]\frac{30}{5}[/tex] = [tex]\frac{10m}{30}[/tex]
m = [tex]\frac{900}{50}[/tex]
= 18.0
m = 18.0 kg
The mass required to produce the same extension on the Moon is 18 kg.
Answer:
18 kg
Explanation:
weight (N) = mass (kg) × gravitational acceleration (m/s²)force (N) = k (spring constant) × extension (m)On Earth, acceleration of gravity is 10 m/s²
weight = 3.0 (kg) × 10 (m/s²)weight = 30 (N)Since weight is a force, the force is 30 N. The value of spring constant is unknown
30 (N) = k × 5 (m)k = 6 (m/N)Spring constant is 6. Now let's find the mass on the Moon
mass (kg) × gravitational acceleration (m/s²) = k (spring constant) × extension (m)Gravitational acceleration of the moon is 1/6 of that on Earth. Earth's g = 10, so Moon's g = 10/6
m × 10/6 = 6 × 5m = 30/(10/6)m = 18The mass is 18 kg
If Minnie the Mouse starts moving at 2m/s and increases her velocity to 4m/s because she is being chased, what is heracceleration if the time is 2 seconds?
Answer:
1m/s²
Explanation:
Given parameters:
Initial velocity = 2m/s
Final velocity = 4m/s
Time of chase = 2s
Unknown:
Acceleration = ?
Solution:
Acceleration is the rate of change of velocity with time;
A = [tex]\frac{v - u }{t}[/tex]
A is the acceleration
v is the final velocity
u is the initial velocity
t is the time taken
A = [tex]\frac{4 - 2}{2}[/tex] = 1m/s²
A horizontal pole is attached to the side of a building. There is a pivot P at the wall and a chain is connected from the end of the pole to a point higher up the wall. There is a tension force F in the chain. What is the moment of the force F about the pivot P?
Answer:
Fscos63
Explanation:
Given that a horizontal pole is attached to the side of a building. There is a pivot P at the wall and a chain is connected from the end of the pole to a point higher up the wall. There is a tension force F in the chain. What is the moment of the force F about the pivot P?
Taking the moment from the pivot point P, that means the moment at point p = 0
Then, if we consider the weight mg of the pole, according to the principle of equilibrium : sum of the upward forces equal to the sum of the downward forces.
Therefore, mg = Fsinø ....... (1)
Also, taking moment at point P
Let the length of the pole = s
The length of the weight of the pole = 1/2 S
Fscosø = mgs/2
The distance s will cancel out
2Fcosø = mg ...... (3)
Substitute mg in equation 1 into equation 3
2fcosø = fsinø
F will cancel out
Tanø = 2
Ø = tan^-1(2)
Ø = 63.4 degree
The moment of force F about pivot point P will be
Moment = force × distance
Moment = Fcos63 × S
Moment = Fscos63
How much work is done if a force of 20 N is used to move an object 6 meters
Explanation:
W=f×d
=20×6
w=120 joule
If the boy travelled 2 meters to the right and 4 meters to the left what is the total distance that he travelled?
4 m
-4 m
6 m
2 m
Answer:
6m
Explanation:
2+4=6
Fig. 2.1 shows a train
Fig. 2.1
The total mass of the train and its passengers is 750000kg. The train is travelling at a speed of 84m/s.
The driver applies the brakes and the train takes 80s to slow down to a speed of 42m/s.
(a) Calculate the impulse applied to the train as it slows down,
impulse =
[3]
(b) Calculate the average resultant force applied to the train as it slows down,
force =
(2)
Answer:
[tex]\mathrm{(a)\:}32,000,000\:\mathrm{Ns},\\\mathrm{(b)\:}390,000\:\mathrm{N}[/tex]
Explanation:
The impulse-momentum theorem states the impulse on an object is equal to the change in momentum of that object. Momentum is given by [tex]p=mv[/tex]. Since mass is constant, the train's change in momentum is:
[tex]\Delta p=m\Delta v=750,000\cdot42=31,500,000=\fbox{$32,000,000\:\mathrm{Ns}$}[/tex](two significant figures).
Impulse is also given as [tex]\Delta p = F\Delta t[/tex], where [tex]F[/tex] is the average force applied and [tex]\Delta t[/tex] is change in time. Since [tex]t[/tex] is given as [tex]80\mathrm{s}[/tex], we have the following equation:
[tex]F\Delta t=\Delta p\\\\F=\frac{\Delta p}{\Delta t},\\\\F=\frac{31,500,000}{80},\\\\F=393,750=\fbox{$390,000\:\mathrm{N}$}[/tex](two significant figures).
ANSWER QUICK 30 POINTS
What force controls the movement of the planets around the sun, holds together stars grouped in galaxies, and galaxies grouped in clusters? Thoroughly explain your answer, making sure to include an example and describe how this force keeps planets in orbit. Make sure to write at least 3-5 sentences and proper conventions (spelling, grammar, punctuation, etc.) to respond. Put all answers in your own words
Answer:
Gravity controls the movement of the planets around the sun, holds together stars grouped in galaxies, and galaxies grouped in clusters. The Universal Law of Gravitation depends on two things. First it depends on mass of each object and the second factor is the distance between two objects. If the mass of one object is Larger, the gravitational pull towards it will be larger and the smaller distance, the larger the gravitational pull will be between the objects. Therefore the Larger planets have more moon and the inner planets have less.
Explanation:
A pickle sits 8.0 cm from the center of a circular, rotating platter. The platter rotates such
that the pickle's tangential speed is 4.8 cm/s. What is the pickle's centripetal
acceleration?
(A) 0.36 cm/s
(B) 0.60 cm/s2
(C) 1.2 cm/s2
(D) 2.9 cm/s2
(E) 5.8 cm/s2
can be answered using momentum.
momentum = p
p1= mass1 * velocity1
p1 = p2
therefore
p1 = 6kg * 4m/s
p1 = 24kgm/s
p2=m2 * v2
24 kgm/s = 7kg * v2
v2 = 24 kgm/s / 7kg
v2= 3.42 m/s
a train has an initial velocity of 44m/s and an accelaration of _4m/s calculate its velocity
Answer:
It's 4m/s
Explanation:
V = u _ at, at u = 44m/s
44 + [-4]10
4m/s
.A water tank has dimensions
of 6m x 4m x 4m. Find the pressure exerted by
water at the base of dam when it is half
filled. ( Density of water - 1000 kg/ m2,
acceleration
due to to gravity is 9.8m/s2
Answer:
9800Nm⁻²
Explanation:
Given parameters:
Dimensions of the water tank = 6m x 4m x 4m
Density of water = 1000kgm⁻³
Gravity = 9.8m/s²
Unknown:
Pressure exerted by the water at the base of the dam = ?
Solution:
The pressure exerted by the water is given as:
Pressure = density of water x acceleration due to gravity x height of water
The height of the water here is half = 1m
Pressure = 1000 x 9.8 x 1 = 9800Nm⁻²
Please help i will give brainliest
Answer:
Answers below--
Explanation:
1. F/Force
2.H/Contact force
3.A/Non-contact force
4.C/electric force
5.D/gravity
6.I(i)/magnetic force
7.J/kilogram
8.G/newton
9.B/friction
10.E/lubricant
Metals are good conductors of heat because .
Answer:
They have the highest melting point so that mean that the temperature and the are a conductive to electricity.
Explanation:
Question 17 of 25
A sound wave from a brass bell passes through the air with a
wavelength of 3.5 m. When the sound wave originated in the
brass bell, its wavelength was 47 m. If the sound wave has a
constant frequency of 100 Hz, what was its speed as it
traveled through the brass bell? (The equation for wave speed
is v= f*1.)
A. 3,500 m/s
B. 4,700 m/s
C. 350 m/s
D. 470 m/s
Answer:
The speed of the wave as it travelled through the brass bell is;
B. 4,700 m/s
Explanation:
The given parameters are;
The wavelength of the sound wave produced from the brass bell, [tex]\lambda _{(air)}[/tex] = 3.5 m
The wavelength of the wave in the brass bell, [tex]\lambda _{(brass \ bell)}[/tex] = 47 m
The frequency of the wave in the brass bell, f = 100 Hz
The given equation for wave speed, v = f × λ
Therefore, the speed of the wave as it travelled through the brass bell, [tex]v _{(brass \ bell)}[/tex], is given as follows;
[tex]v _{(brass \ bell)}[/tex] = f × [tex]\lambda _{(brass \ bell)}[/tex] = 100 Hz × 47 m = 4,700 m/s
The speed of the wave as it travelled through the brass bell = [tex]v _{(brass \ bell)}[/tex] = 4,700 m/s
Answer:
B.) 4700 m/s
Explanation:
A wave has frequency of 50 Hz and a wavelength of 10 m. What is the speed of the wave? Group of answer choices
Explanation:
hehshehebdbajahwwdszsjshshs shsbw
explain how balanced and unbalanced forces effect an objects motion differently
Answer:
Balanced Forces will not change the object's motion.
Unbalanced Forces will change the object's motion.
Explanation:
Which two life functions of animals help maintain the water cycle by recycling water back into the environment?
Answer:
Respiration and excretion
Explanation:
Respiration. When animals breathe, their lungs release water vapour to the atmosphere.
Animals excrete water by respiration and by passing urine.
please answerrr asapp tyty Laura goes for cycle from her house to the post office 4km away how long did it take for Laura to reach the post office
Answer:
See the answer below
Explanation:
The time Laura took to reach the post office would depend on the speed of cycling.
We know that;
speed = [tex]\frac{distance}{time}[/tex]
hence,
time = [tex]\frac{distance}{speed}[/tex]
Since the distance from Laura's house to the post office is 4 km, the equation becomes;
time = [tex]\frac{4}{speed}[/tex]
Just ensure that the speed is in km per hour, minute, or seconds in order to obtain the time in hours, minutes, or seconds respectively.
Hi!! Does anyone know this answer? :D
Answer:
Im not fully corrrect but I would say C
Explanation:
How high did a worker lift a 25 kg bag of sand if it now has 2940 of gravitational potential energy
Answer:
12 m
Explanation:
From the question given above, the following data were obtained:
Mass (m) of bag = 25 kg
Potential energy (PE) = 2940 J
Height (h) =?
Objects carried to a particular height will always experience an acceleration due to gravity of 9.8 m/s².
With the above in mind, we can obtain the height to which the load is lifted to as shown below:
Mass (m) of bag = 25 kg
Potential energy (PE) = 2940 J
Acceleration due to gravity (g) = 9.8 m/s².
Height (h) =?
PE = mgh
2940 = 25 × 9.8 × h
2940 = 245 × h
Divide both side by 245
h = 2940 / 245
h = 12 m
Therefore, the worker lifts the load to a height of 12 m.
what is projectile. what is projectile motion
The projectile is any object thrown into space upon which the only acting force is gravity. In other words, the primary force acting on a projectile is gravity. This doesn’t necessarily mean that the other forces do not act on it, just that their effect is minimal compared to gravity. The path followed by a projectile is known as a trajectory. A baseball batted or thrown and the instant the bullet exits the barrel of a gun are all examples of the projectile.
Projectile Motion:When a particle is thrown obliquely near the earth’s surface, it moves along a curved path under constant acceleration that is directed towards the center of the earth (we assume that the particle remains close to the surface of the earth). The path of such a particle is called a projectile and the motion is called projectile motion. Air resistance to the motion of the body is to be assumed absent in projectile motion.
In a Projectile Motion, there are two simultaneous independent rectilinear motions:
Along the x-axis: uniform velocity, responsible for the horizontal (forward) motion of the particle.
Along y-axis: uniform acceleration, responsible for the vertical (downwards) motion of the particle.
Accelerations in the horizontal projectile motion and vertical projectile motion of a particle: When a particle is projected in the air with some speed, the only force acting on it during its time in the air is the acceleration due to gravity (g). This acceleration acts vertically downward. There is no acceleration in the horizontal direction, which means that the velocity of the particle in the horizontal direction remains constant.
[tex]\sf~~~~~~~~~~~~~~~{\red{\underbrace{\underline{\green{projectile~motion}}}}}[/tex]
Projectile motion is a form of motion in which object or particle is thrown near earth's surface and it moves along a curved path under the action of gravity only.
Help, please! Thank you for your kind gesture
Answer:
The last option.
Explanation:
Since you are going down, the gravitational potential energy would go down too. Thus, the gravitational potential energy decreases.
Since the gravitational potential energy is converted to kinetic energy when you move down, there is an increase in kinetic energy.
Answer:
The fourth option
Explanation:
Marina walked 2km in half an hour, what was her average speed during her walk?
Answer:
4km/hr
Explanation:
What is the volume of a liquid in a 50 mL cup?
A. 50mL
B. 10mL
C. There is not enough information to answer this question.
Answer:
there is not enough information
A professional golfer walks at an at an average rate of 4.20 meters per second on the golf course. The amount of time required for her to walk from the tee to the green 622 meters away is
Answer:
T try d add b CD c
Explanation:
Cdgffd
How many moons are in our solar system?
At the height of 800 meters, a skydiver falls from an airplane flying horizontally at 40 m/sec. What is the horizontal distance of the skydivers travel before they "hit" the ground?
Answer:
The horizontal distance traveled by the skydiver is 510.8 m.
Explanation:
Given;
height of fall, h = 800 m
initial velocity of the airplane, u = 40 m/s
The time to fall to the ground is calculated as;
[tex]t = \sqrt{\frac{2h}{g} } \\\\t = \sqrt{\frac{2 \times 800}{9.81} }\\\\t = 12.77 \ s[/tex]
The horizontal distance or range of the motion is calculated as;
R = ut
R = 40 m/s x 12.77 s
R = 510.8 m
Therefore, the horizontal distance traveled by the skydiver is 510.8 m.