change the following to celisus
a.-400f b.800f
please its urgent i will give u brainliest
unit of power is derived unit why
Answer:
it was given the name Newton (N). from this, the derived unit of energy (or work) is defined ,as the work produced when the unit of force causes a displacement equal to the unit of length of its point of application along its direction . It was given the name Joule (J).
Explanation:
relationship between voltage, resistance and current in a circuit
Answer:
V = I×R
where -
V = potential difference across
I = current flowing in the circuit
R = Equivalent Resistance in the circuit
Answer:
Answer:
V = I×R
where -
V = potential difference across
I = current flowing in the circuit
R = Equivalent Resistance in the circuit
Explanation:
what do electrons move from
Answer:
Negatively charged, to positively charged parts
Explanation:
Electrons are negative, negative is attracted to positive.
this is also for a Digital Electronics class
Answer:
Rt = 908.25 [ohm]
Explanation:
In order to solve this problem, we must remember that the resistors connected in series are added up arithmetically.
In this case, R2 and R3 are in series therefore.
R₂₃ = 200 + 470
R₂₃ = 670 [ohm]
Now this new resistor (R₂₃) is connected in parallel with the resistor R4. therefore we must use the following arithmetic expression, to add resistances in parallel.
[tex]\frac{1}{R_{4-23} }= \frac{1}{R_{4}}+\frac{1}{R_{23} } \\\frac{1}{R_{4-23} }=\frac{1}{1800}+\frac{1}{670} \\R_{4-23}=488.25[ohm][/tex]
In this way R₁, R₅ and R₄₋₂₃ are connected in series.
Rt = R₁ + R₅ + R₄₋₂₃
Rt = 150 + 270 + 488.25
Rt = 908.25 [ohm]
Under what circumstances will the distance traveled by an object be the same as the magnitude of the displacement of an object?
A student tries to measure the period of a pendulum that is already swinging
left and right. At the moment when the pendulum is fully to the left, she
counts 'One' and starts a stopwatch. She counts successive swings each time
that the pendulum returns to the left. When she counts ‘Ten' she stops the
stopwatch, and sees that it reads 12.0 s.
a. What was her mistake?
______________________________________________________________
b. What is the period of swing of this pendulum?
______________________________________________________________
c. In this particular experiment, explain the likely effect of her reaction time
on her answer.
Answer:
a. The student's mistake was that the student did not swing the pendulum and start the watch at the same time.
b. 1.2 s per swing.
c. The likely effect of her reaction time is that they will should subtract two seconds off the time.
Explanation:
The pupil made the error of not simultaneously starting the watch and swinging the pendulum.
What is pendulum?Pendulum is defined as a body that is suspended from a fixed point and moves back and forth while being pulled by gravity. The pendulum is used to gauge the gravitational pull because the force of gravity causes it to swing back toward its average position. A pendulum's time period can be used to tell the time because it is constant.
The swing of the pendulum is 1.2 sec. per swing. They should take two seconds off the timing due to her presumably slow reaction time. A pendulum's total time should be divided by the quantity of oscillations in order to determine its time period. When compared to a pendulum with a shorter string, the one back and forth cycle of a longer-stringed pendulum requires more time to complete.
Thus, the pupil made the error of not simultaneously starting the watch and swinging the pendulum.
To learn more about pupil, refer to the link below:
https://brainly.com/question/27874242
#SPJ2
What is the Range of the projectile motion?
Answer:
Range of projectile, R
For projection above ground surface, the range of the angle of projection with respect to horizontal direction, θ, is 0° ≤ θ ≤ 90° and the corresponding range of 2θ is 0° ≤ 2θ ≤ 180°.S
hope you're looking for this.
Place the location of a watermelon in order from most to least potential energy.
aboard a flying airplane
2
on a roof
3
above a refrigerator
4
on the ground
5
on top of a table
it would be on the ground
What is the difference between distance and position?
Explanation:
HERE you go. hope this helps.
Compare and contrast an earthquake and a tsunami.
Answer:
An earthquake is a trembling movement of the earth's crust. These tremors are generally caused by shifts of the plates that make up the earth's surface. ... A tsunami (pronounced soo-NAHM-ee) is a series of huge waves that occur as the result of a violent underwater disturbance, such as an earthquake or volcanic eruption.
Explanation:
Define potential energy. Give its mathematical formula and SI unit.
Answer:
The type of mechanical energy that is possessed due to the virtue of motion or state of a body is known as potential energy.
Its formula: PE= mgh
Its SI unit is joule.
Hope it helps you..
Which of the following is the best way to decrease an objects acceleration?
Increase mass
Reduce friction
Decrease mass
Increase force
Answer:
its D
Explanation:
i took the assignment, its D
Attachment Lab:Conservation of Linear Momentum
Answer:
This is what I got the teacher hasn’t graded it yet so sorry if it’s not right
Explanation:
Which object might have the pattern of magnetic domains shown in the
image?
114 114
114 114
11 11
A. Cotton fabric near a magnet
O B. A piece of iron, not near a magnet
O C. A piece of iron near a magnet
D. Cotton fabric, not near a magnet
Answer: a piece of iron near a magnet
Explanation:
a supersonic aircraft travels faster than the speed of sound. What might be the top speed of such an aircraft? 200 Kilometers per hour 500 Kilometers per hour O 1000 Kilometers per hour O 1500 Kilometers per hour
1500 kpm
A 56 kg diver runs and dives from the edge of a cliff into the water which is located 4.0 m below. If she is moving at 8.0 m/s the instant she leaves the cliff, determine the following.
Her gravitational potential energy relative to the water surface when she leaves the cliff
Her kinetic energy when she leaves the cliff
Her total mechanical energy relative to the water surface when she leaves the cliff
Her total mechanical energy relative to the water surface just before she enters the water.
The speed at which she enters the water.
Answer:
1) 2197.44 J
2) 0 J
3) 2197.44 J = Constant
4) 2197.44 J
5) Approximately 8.86 m/s
Explanation:
The given parameters are;
The mass of the diver, m = 56 kg
The height of the cliff, h = 4.0 m
The speed with which the diver is moving, vₓ = 8.0 m/s
The gravitational potential energy = Mass, m × Height of the cliff, h × Acceleration due to gravity, g
1) Her gravitational potential energy = 56 × 4.0 × 9.81 = 2197.44 J
2) The kinetic energy = 1/2·m·u²
Where;
u = Her initial velocity = 0 when she just leaves the cliff
Therefore;
Her kinetic energy when she just leaves the cliff = 1/2 × 56 × 0² = 0 J
3) The total mechanical energy = Kinetic energy + Potential energy
The total mechanical energy is constant
Her total mechanical energy relative to the water surface when she leaves the cliff = Her gravitational potential energy = 2197.44 J = Constant
4) Her total mechanical energy relative to the water surface just before she enters the water = 2197.44 J
5) The speed with which she enters the water, v, is given from, v² = u² + 2·g·h
Where;
u = The initial velocity at the top of the cliff before she jumps= 0 m/s
∴ v² = 0² + 2 × 9.81 × 4 = 78.48
v = √78.48 ≈ 8.86 m/s
The speed with which she enters the water, v ≈ 8.86 m/s
1) Her gravitational potential energy relative to the water surface when she leaves the cliff is; GPE(leaves cliff) = 2195.2 J
2) Her kinetic energy when she leaves the cliff is; KE = 0J
3) Her total mechanical energy relative to the water surface when she leaves the cliff is; ME_total = 2195.2 J
4) Her total mechanical energy relative to the water surface just before she enters the water is; ME_total = 2195.2 J
5) The speed at which she enters the water is; v = 8.85 m/s
We are given;
Mass of the diver; m = 56 kg
Height of the cliff; h = 4 m
Speed at which she is moving; vₓ = 8 m/s
1) Formula for gravitational potential energy is;
GPE = mgh
where;
m is mass
g is acceleration due to gravity
h is height
Thus;
GPE = 56 × 4 × 9.8
GPE(leaves cliff) = 2195.2 J
2) The formula for kinetic energy when she leaves the cliff is;
KE = ¹/₂mu²
Where;
m is mass
u = initial velocity = 0 m/s
Thus;
KE = ¹/₂ × 56 × 0²
KE(leaves cliff) = 0 J
3) The total mechanical energy relative to the water surface when she leaves the cliffis;
ME_total = GPE(leaves cliff) + KE(leaves cliff)
Thus;
ME_total = 2195.2 + 0
ME_total = 2195.2 J
4) Her total mechanical energy relative to the water surface just before she enters the water is same as that when she leaves the cliff = 2195.2 J
5) The speed with which she enters the water, v, is gotten from newtons third equation of motion;
v² = u² + 2gh
Thus;
v² = 0² + (2 × 9.8 × 4)
v² = 78.4
v = √78.4
v = 8.85 m/s
Read more at; https://brainly.com/question/25708521
A car speeds up from 0.00 m/s to 60.0
m/s in 8.53 s.
The acceleration of the car is:
A. 512 m/s2
B. 8.53 m/s2
C. 68.5 m/s2
D. 7.03 m/s2
Physics help, please? :)
3. Consider a locomotive and the rest of a freight train to be a single object. Suppose the locomotive is pulling the train up a hill. Describe the action and reaction forces that cause the locomotive to move up the hill, such as the reaction force and gravity.
4. Is the force of the earth’s gravity on the sun stronger, weaker, or the same as the force of the sun’s gravity on the earth? Explain why the sun’s attraction affects the motion of the earth more than the earth’s attraction affects the sun’s motion. Employ Newton’s second and third laws in your answer.
If anyone could help me at all, with either question it would be greatly appreciated, Physics is my hardest subject, and I struggle with it.
Answer:
Explanation:
3. Newton’s third law explains how every action has an equal but opposite reaction, meaning that forces comes in pairs. While the locomotive’s wheels are pushing back against the ground as the action force, the ground is producing a reaction force towards the locomotive, propelling it forward. Another pair of forces that act on the locomotive is gravity and normal force. While gravity is pulling the locomotive towards the ground, the normal force the ground exerts on the locomotive is why the locomotive doesn’t fall through the ground.
4. The force of Earth’s gravity on the Sun is weaker than the force of the Sun’s gravity on Earth. The Sun’s attraction affects the motion of Earth more than the Earth’s attraction affects the Sun’s motion because according to Newton’s second law, force has mass as one of its factors. The Sun has a significantly higher mass than Earth, meaning that its force of gravity would also be significantly higher. Newton’s third law is why the Earth doesn’t get marginally closer to the Sun, stating that every action has an equal and opposite reaction. As the Sun is pulling Earth towards itself, Earth is pulling away from the Sun.
A metal ball has a mass of 2.05 kg and a volume of 6.8 cm. What is its density? Remember
Answer:
the density is 0.301 :)
Which of the following is not an example of work?
1.a man pushing a heavy box across the floor
2.an air hockey puck traveling at a constant speed
3.a magnet repelling a 4.compass needle
ship movement that causes ripples in the water
Answer:
3 a is the ans i think so ....
What is Latin word for "little lumps?"
Answer:
tura paulo
Explanation:
sry if im wrong ;)
When a toy car is moving across a flat surface, what forces are acting on it (gravity, tension, spring, friction,air,normal,applied)?
Answer:
I believe gravity is acting on it
What does it mean for objects to be at different temperatures?
How does Health & Physical Education relate to any other subject you now study in
school?
Answer:
Health relates to science because
in science you study, research, and knowledge in this case, health science, which helps you under stand more about how humans and animals function. And Physical education relates to science because , you study the way of human movement, think of push-ups as a example.
I hope I helped U ´꓃ ` U
A student wishes to conduct an investigation on heat transfer that demonstrates convection, Which
method should the student use?
A.
Pour hot, colored water into a bowl of cooler water that is another color,
B.
Melt chocolate bars in a microwave at different settings,
C.
Leave a glass of ice water outside in the direct sunshine.
D.
Place a spoon that is room temperature on top of a hot burner on a stove,
A crane lifts a 75kg mass a height of 8 m. Calculate the gravitational potential energy gained by the mass (g = 9.8 N/kg.
1. What are valence electrons used for by an element?
Answer:
An element's valence electron tells us about its ability to react and not react. More rules to this, but that's the gist of it. it also helps us form bonds
Explanation:
Valence electrons are used by an element for bonding and ionization, contributing to the element's chemical reactivity and behavior.
Valence electrons also play a vital role in ionization, which refers to the process of gaining or losing electrons to form ions. Elements tend to gain or lose electrons in order to achieve a stable electron configuration, typically by acquiring a full valence shell.
Metals, located on the left side of the periodic table, have fewer valence electrons, often one or two, and tend to lose them to form positive ions (cations). This characteristic makes them good conductors of electricity.
Nonmetals, located on the right side of the periodic table, have a nearly full valence shell and tend to gain electrons to achieve a stable configuration, forming negative ions (anions). Nonmetals generally do not conduct electricity as well as metals.
In summary, valence electrons are used by an element for bonding, where they participate in the formation of covalent and ionic bonds, and for ionization, where they are gained or lost to form ions and achieve a stable electron configuration.
To know more about electrons here
https://brainly.com/question/12001116
#SPJ6
Why are black holes so deeply part of the collective imagination (books, movies, songs, video games, comics, paintings, etc)?
Answer:
Black holes are some of the strangest and most fascinating objects in outer space. They're extremely dense, with such strong gravitational attraction that even light cannot escape their grasp if it comes near enough. so when in books, movies, songs, video games, comics, paintings, etc you can imagine the impossible. as in escaping a black hole
Explanation:
A block of cheese Bhangs from the ceiling by rope 1 A wheel of cheese Whangs from the block of
cheese by rope 2
What is the correct free body diagram for the block of cheese B?
URGENT
Answer:
Explanation:
KHAN ACADEMY
The correct free body diagram is option (B). There will only be two forces acting on cheese B.
Given that Cheese B hangs on rope 1. The weight of the cheese is balanced by the tension force on the rope. That is, the cheese experiences a force in the upward direction due to the tension on rope 1.Similarly, a wheel of cheese W hangs from block B by a rope 2. This rope has a tensional force that is balanced by the weight of the cheese W. This causes a downward pull on block B due to the tension on rope 2.By representing the tensional forces by the ropes 1 and 2 as [tex]F_{T1}[/tex] and [tex]F_{T2}[/tex] respectively, the correct free body diagram will be option B.
Learn more about free body diagrams here:
https://brainly.in/question/12953409