what describes the wave used? check all that apply. transverse longitudinal heat electromagnetic sound

Answers

Answer 1

The options that describe waves are "transverse," "longitudinal," "electromagnetic," and "sound." "Heat" is not a type of wave but a form of energy transfer.

To determine the type of wave used, it's important to understand each term mentioned:
1. Transverse waves: The particles of the medium move perpendicular to the direction of the wave's energy.
2. Longitudinal waves: The particles of the medium move parallel to the direction of the wave's energy.
3. Heat waves: These are not a specific type of wave, but rather a transfer of energy through a medium, typically via conduction, convection, or radiation.
4. Electromagnetic waves: These are transverse waves that do not require a medium and include light, radio waves, and X-rays.
5. Sound waves: These are longitudinal waves that require a medium (such as air or water) to propagate.
To know more about wave's energy, visit:

https://brainly.com/question/28795154

#SPJ11


Related Questions

an object is placed 10 cm to the left of a converging lens that has a focal length of 20 cm. describe what the resulting image will look like

Answers

Answer: V=20/3 cm ,virtual, erect, enlarged

Explanation: Focal length= 20cm

object = 10 cm

1/v - 1/u = 1/f

1/v - (-1/10) = 1/20

v = 20/3

the image will be formed VIRTUAL, ERECT, ENLARGED as object is place between focus and centre of curvature.

In this scenario, we have a converging lens with a focal length of 20 cm and an object placed 10 cm to the left of the lens.

Since the object is placed between the lens and its focal point, the resulting image will be a virtual and upright image. The image will be formed on the same side of the lens as the object.

To determine the characteristics of the image, we can use the lens formula: 1/f = 1/v - 1/u

Where f is the focal length of the lens, v is the image distance, and u is the object distance.

Plugging in the values, we get:

1/20 = 1/v - 1/(-10)

Simplifying the equation, we find:

1/v = 1/20 - 1/10

1/v = (1 - 2)/20

1/v = -1/20

This tells us that the image distance, v, is -20 cm, indicating that the image is formed 20 cm to the left of the lens. Since the image is virtual and upright, it will appear enlarged compared to the object, but still on the same side as the object

Learn more about length here

https://brainly.com/question/29813582

#SPJ11

A spacecraft is measured by an observer on the ground to have a length of 53 m as it flies overhead with a speed 17 times 10^8 m/s. The spacecraft then lands and its length is again measured by the observer on the ground, this time while the spacecraft is at rest relative to him. what result does he now get for the length of the spacecraft ? a)44m b)53m c)59m d)62m e)64m

Answers

The length of the spacecraft to be approximately 43.66 m. According to the theory of special relativity, when an object is moving relative to an observer, its length appears contracted in the direction of motion.

The formula for length contraction is given by:

L' = L * sqrt(1 - (v^2 / c^2))

Where:

L' is the observed length (contracted length)

L is the rest length (length at rest)

v is the relative velocity between the observer and the object

c is the speed of light in a vacuum

In this case, the rest length of the spacecraft is 53 m, and the relative velocity between the spacecraft and the observer on the ground is 17 × 10^8 m/s. The speed of light in a vacuum is approximately 3 × 10^8 m/s.

Let's calculate the observed length (L'):

L' = 53 * sqrt(1 - ((17 × 10^8)^2 / (3 × 10^8)^2))

L' = 53 * sqrt(1 - (289 / 9))

L' = 53 * sqrt(1 - 32.11)

L' = 53 * sqrt(0.6789)

L' ≈ 53 * 0.8245

L' ≈ 43.66 m

Therefore, the observer on the ground will measure the length of the spacecraft to be approximately 43.66 m when it is at rest relative to him.

The closest option from the given choices is (a) 44 m.

learn more about special relativity here

https://brainly.com/question/29192534

#SPJ11

in an l-r-c series circuit, the source has a voltage amplitude of 115 v , r = 85.0 ω , and the reactance of the capacitor is 488 ω . the voltage amplitude across the capacitor is 363 v. What two values can the reactance of the inductor have? Enter your answers in ascending order separated by a comma. For which of the two values found in part (c) is the angular frequency less than the resonance angular frequency?

Answers

To determine the values of the reactance of the inductor in an L-R-C series circuit, we can use the given information.

The voltage across the capacitor is given as 363 V, and the voltage amplitude of the source is 115 V. This indicates that the voltage across the inductor is the difference between these two values:

Voltage across inductor = Voltage amplitude of the source - Voltage across capacitor

Voltage across inductor = 115 V - 363 V

Voltage across inductor = -248 V

Now we can calculate the reactance of the inductor using Ohm's law:

Reactance of inductor = Voltage across inductor / Current

Reactance of inductor = -248 V / Current

Since the reactance of an inductor is given by XL = ωL, we can rewrite the equation as:

XL = -248 V / Current = ωL

From the given information, we know that the reactance of the capacitor is 488 Ω. In an L-R-C series circuit, the total impedance is given by:

Z = √(R² + (XL - XC)²)

Since the impedance is determined by the sum of resistive and reactive components, we can substitute the known values and solve for the reactance of the inductor:

Z = √(85.0 Ω² + (XL - 488 Ω)²)

Z = √(7225 + (XL - 488)²)

Now we can solve for XL by setting Z equal to the voltage amplitude of the source:

115 V = √(7225 + (XL - 488)²)

Squaring both sides and rearranging the equation, we get:

115² = 7225 + (XL - 488)²

13225 = 7225 + (XL - 488)²

(XL - 488)² = 13225 - 7225

(XL - 488)² = 6000

XL - 488 = ±√6000

XL = 488 ± √6000

Simplifying the expression, we get two possible values for the reactance of the inductor:

XL = 488 + √6000

XL = 488 - √6000

To determine which of these values has an angular frequency less than the resonance angular frequency, we need additional information about the resonant frequency or the value of the inductor. Without that information, we cannot determine which of the two values satisfies the condition.

learn more about "inductor ":- https://brainly.com/question/4425414

#SPJ11

consider a spring, as described above, that has one end fixed and the other end moving with speed v . assume that the speed of points along the length of the spring varies linearly with distance l from the fixed end. assume also that the mass m of the spring is distributed uniformly along the length of the spring. calculate the kinetic energy of the spring in terms of m and v . (hint: divide the spring into pieces of length dl ; find the speed of each piece in terms of l , v , and l ; find the mass of each piece in terms of dl , m , and l ; and integrate from 0 to l . the result is not 12mv2 , since not all of the spring moves with the same speed.)

Answers

The kinetic energy of the spring is (1/2) times the product of its mass (m) and the square of the speed (v).

The kinetic energy of the spring can be calculated by dividing it into small pieces along its length and summing up the kinetic energies of each piece.

Consider a small element of the spring with length dl located at distance l from the fixed end. The speed of this element can be found using the given linear relationship:

v(l) = (v/l) * l

where, v(l) is the speed of the element at distance l and v is the speed of the moving end of the spring.

The mass of this element can be calculated based on the uniform distribution of mass:

dm = (m/l) * dl

where, dm is the mass of the element and m is the total mass of the spring.

The kinetic energy of each element can be calculated as:

dKE = (1/2) * dm * v(l)^2

Substituting the expressions for dm and v(l):

dKE = (1/2) * (m/l) * dl * [(v/l) * l]^2

Simplifying:

dKE = (1/2) * (m/l) * dl * (v^2)

To find the total kinetic energy of the spring, we integrate this expression from 0 to l:

KE = ∫(0 to l) (1/2) * (m/l) * dl * (v^2)

Integrating with respect to dl:

KE = (1/2) * (m/l) * (v^2) * ∫(0 to l) dl

KE = (1/2) * (m/l) * (v^2) * [l] (evaluated from 0 to l)

KE = (1/2) * (m/l) * (v^2) * l

Simplifying:

KE = (1/2) * m * v^2

Therefore, the kinetic energy of the spring in terms of mass (m) and speed (v) is given by (1/2) * m * v^2.

The kinetic energy of the spring is (1/2) times the product of its mass (m) and the square of the speed (v).

To know more about spring visit:

https://brainly.com/question/23885190

#SPJ11

Light of wavelength 610 nm is incident on a single slit 0.20 mm wide and the diffraction pattern is produced on a screen that is 1.5 m from the slit. What is the width of the central maximum?
A. 0.34 cm.
B. 0.68 cm.
C. 0.92 cm.
D. 1.2 cm.
E. 1.5 cm.

Answers

The width of the central maximum is approximately 11.44 cm.

None of the given options match the calculated value exactly, but the closest option is A. 0.34 cm.

What is diffraction?

Diffraction is a fundamental phenomenon in physics that occurs when waves encounter obstacles or pass through narrow openings. It refers to the bending, spreading, and interference of waves as they interact with objects or apertures.

To find the width of the central maximum in a single-slit diffraction pattern, we can use the formula:

[tex]w = ({\lambda * D) / a[/tex]

Where:

w is the width of the central maximum,

λ is the wavelength of light,

D is the distance between the slit and the screen, and

a is the width of the slit.

Given:

[tex]\lambda = 610 nm = 610 * 10^{(-9) m[/tex] (converting from nanometers to meters)

[tex]D = 1.5 m\\a = 0.20 mm = 0.20 * 10^(-3) m[/tex](converting from millimeters to meters)

Substituting the values into the formula, we get:

[tex]w = (610 * 10^(-9) m * 1.5 m) / (0.20 * 10^(-3) m)\\w = 457.5 * 10^(-9) m / 0.20 * 10^(-3) m\\w = 457.5 * 10^(-9) m / 2 * 10^(-4) m\\w = 457.5 * 10^(-9) / 2 * 10^(-4) m\\w = 2.2875 * 10^(-5) / 2 * 10^(-4) m\\w = 0.114375 m[/tex]

Converting the width to centimeters:

[tex]w = 0.114375 m * 100 cm/m\\w = 11.4375 cm[/tex]

Therefore, the width of the central maximum is approximately 11.44 cm.

None of the given options match the calculated value exactly, but the closest option is A. 0.34 cm.

Learn more about diffraction:

https://brainly.com/question/16096548

#SPJ4

A resistor with R = 340 Ω and an inductor are connected in series across an ac source that has voltage amplitude 510 V . The rate at which electrical energy is dissipated in the resistor is 296 W .
What is the impedance Z of the circuit?
What is the amplitude of the voltage across the inductor?
What is the power factor?

Answers

We can solve this problem using the following steps:

Step 1: Calculate the impedance Z of the circuit using the power and resistance values.

Power (P) = 296 W

Resistance (R) = 340 Ω

Voltage (V) = 510 V

Using the equation for power in an AC circuit, we have:

P = V^2 / R * cos(theta)

where theta is the phase angle between the voltage and current.

Rearranging the equation, we get:

Z = V / sqrt(P / R)

Substituting the given values, we get:

Z = 510 / sqrt(296 / 340)

Z = 723.7 Ω

Therefore, the impedance Z of the circuit is 723.7 Ω.

Step 2: Calculate the amplitude of the voltage across the inductor.

The voltage across the inductor (VL) can be calculated using the impedance and the resistance of the circuit.

VL = Z * sin(theta)

where theta is the phase angle between the voltage and current.

Since the circuit has only a resistor and an inductor, the phase angle between the voltage and current is 90 degrees.

So, we have:

VL = Z * sin(90)

VL = Z

Substituting the value of Z, we get:

VL = 723.7 V

Therefore, the amplitude of the voltage across the inductor is 723.7 V.

Step 3: Calculate the power factor.

The power factor (PF) of the circuit can be calculated using the phase angle between the voltage and current.

cos(theta) = P / (V * I)

where I is the RMS current in the circuit.

Since the circuit has only a resistor and an inductor, the phase angle between the voltage and current is given by:

tan(theta) = XL / R

where XL is the reactance of the inductor.

XL = 2 * pi * f * L

where f is the frequency of the AC source and L is the inductance of the inductor.

Since these values are not given in the problem, we cannot calculate the exact power factor. However, we can say that the power factor is lagging, since the circuit has an inductor.

Therefore, the power factor is lagging.

Learn more about  power factor from

https://brainly.com/question/30770475

#SPJ11

Your 64-cm-diameter car tire is rotating at 3.3 rev/s when suddenly you press down hard on the accelerator. After traveling 200 m, the tire's rotation has increased to 6.9 revs. What was the tire's angular acceleration? Give your answer in rad/s2 Express your answer with the appropriate units.

Answers

After traveling 200 m, the tire's rotation has increased to 6.9 revs , 0.76rad/s was the tire's angular acceleration

What is the definition of angular acceleration?

A spinning object's change in angular velocity per unit of time is expressed quantitatively as angular acceleration, also known as rotational acceleration. It is a vector quantity with either one of two predetermined directions or senses and a magnitude component. Spin angular velocity and orbital angular velocity are the two different types of angular velocity.

v o =3.3 rev s * 2 pi rad 1rev = 20.73 rad / s

v f =6.4 rev s * 2 pi rad 1rev = 40.21 rad / s

D= x*r

x = D/r i.e. 250/0.64 = 781.25rads

w3 - w² = 2a *x

α= w3-w2 /2x  = (40.21)2-(20.73)2 /2*781.25

 =  0.76rad/s

To learn more about angular acceleration :

https://brainly.com/question/13014974

#SPJ4

A police officer recorded the speeds of 100 cars in a 50-mile-per-hour zone. The results arein the box plot shown. How many cars were going between 40 and 48 miles per hour? 30 35 40 45 50 55 60 65 70 32 20 25 91

Answers

To determine the number of cars going between 40 and 48 miles per hour, we need to look at the box plot and identify the interquartile range (IQR) which is the distance between the first quartile (Q1) and the third quartile (Q3) values.

From the given box plot, we can see that:

Q1 = 35

Q3 = 55

Therefore, the IQR = Q3 - Q1 = 55 - 35 = 20.

We can now determine the lower and upper bounds for the speeds that fall within 40 and 48 miles per hour. To find the lower bound, we subtract half of the IQR from Q1:

Lower bound = Q1 - (IQR/2) = 35 - (20/2) = 25

To find the upper bound, we add half of the IQR to Q3:

Upper bound = Q3 + (IQR/2) = 55 + (20/2) = 65

Any speed value between 25 and 65 miles per hour falls within the range of speeds between 40 and 48 miles per hour.

Looking at the box plot, we can count the number of dots that fall within this range. It appears that there are about 30 dots in this range, so the answer is 30.

Learn more about  distance between the first quartile (Q1) from

https://brainly.com/question/8741862

#SPJ11

Given that the wavelengths of visible light range from 400 nm to 700 nm, what is the highest frequency of visible light? (c = 3.0 x 108 m/s) O 2.3 1020 Hz O 5.0 x 108 Hz O 7.5 x 1014 Hz O 4.3 1014 Hz O 3.1 x 108 Hz

Answers

To find the highest frequency of visible light, we need to use the equation: frequency = speed of light/wavelength. The speed of light is given as 3.0 x 10^8 m/s. The highest frequency will be obtained when the wavelength is at its minimum value of 400 nm. Substituting these values in the equation, we get: frequency = (3.0 x 10^8 m/s) / (400 x 10^-9 m) = 7.5 x 10^14 Hz. Therefore, the highest frequency of visible light is 7.5 x 10^14 Hz. Option C is the correct answer. It is important to note that frequency and wavelength are inversely proportional, meaning that as wavelength increases, frequency decreases and vice versa.
Given that the wavelengths of visible light range from 400 nm to 700 nm, the highest frequency of visible light can be calculated using the following steps:

1. Convert the wavelength to meters: The shortest wavelength (400 nm) corresponds to the highest frequency. To convert 400 nm to meters, multiply by 10^(-9): 400 nm * 10^(-9) m/nm = 4.0 x 10^(-7) m.

2. Use the speed of light formula: The speed of light (c) is equal to the product of the wavelength (λ) and the frequency (f). The formula is c = λ * f. We know that c = 3.0 x 10^8 m/s and λ = 4.0 x 10^(-7) m.

3. Solve for the highest frequency: Rearrange the formula to isolate f: f = c / λ. Then, substitute the values: f = (3.0 x 10^8 m/s) / (4.0 x 10^(-7) m) = 7.5 x 10^14 Hz.

The highest frequency of visible light is 7.5 x 10^14 Hz.

To know more about wavelengths visit

https://brainly.com/question/31143857

#SPJ11

The fact that a thermometer "takes its own temperature" illustrates
A) thermal equilibrium.
B) energy conservation.
C) the difference between heat and thermal energy.
D) that molecules are constantly moving.

Answers

The fact that a thermometer "takes its own temperature" illustrates A) thermal equilibrium. When a thermometer is placed in contact with an object or substance, the transfer of heat occurs between the thermometer and the substance until they reach the same temperature.

This state, where no net heat transfer occurs, is known as thermal equilibrium. The thermometer then displays the temperature based on the equilibrium it has reached with the substance being measured. This process demonstrates the concept of thermal equilibrium rather than energy conservation, the difference between heat and thermal energy, or the constant motion of molecules.

To know more about  thermal equilibrium visit :-

https://brainly.com/question/29419074

#SPJ11

joe asked mike to proofread his report. mike gives suggestions on how to improve the report. what is this an example of?

Answers

This is an example of collaboration or constructive feedback. Joe asked Mike to proofread his report, indicating a willingness to seek input and improvement.

Mike's suggestions on how to enhance the report show collaboration and a helpful exchange of ideas. By providing feedback, Mike aims to contribute to the overall quality and effectiveness of Joe's report.

Certainly! In this scenario, Joe asking Mike to proofread his report demonstrates collaboration because Joe is actively seeking assistance and input from another person, Joe asked Mike to proofread his report, indicating a willingness to seek input and improvement.  in this case, Mike. Collaboration involves working together and pooling resources or expertise to achieve a common goal. By involving Mike in the process, Joe is acknowledging that multiple perspectives and insights can lead to a better outcome.

Learn more about willingness to seek input and improvement from

https://brainly.com/question/31232546

#SPJ11

FILL THE BLANK. If the price of jelly beans triples and the price of hazelnut chocolate falls by 1515​%, then buying 22 boxes of jelly beans and 33 pieces of hazelnut chocolate will be ____________

Answers

If the price of jelly beans triples and the price of hazelnut chocolate falls by 15%, then buying 22 boxes of jelly beans and 33 pieces of hazelnut chocolate will be more expensive.

Let's assume the original price of jelly beans is represented as "P" and the original price of hazelnut chocolate is represented as "Q".

If the price of jelly beans triples, it means the new price of jelly beans is 3P.

If the price of hazelnut chocolate falls by 15%, it means the new price of hazelnut chocolate is 0.85Q (100% - 15% = 85%).

To calculate the total cost of buying 22 boxes of jelly beans and 33 pieces of hazelnut chocolate, we need to multiply the quantities by their respective prices:

Cost of jelly beans = 22 * (3P)

Cost of hazelnut chocolate = 33 * (0.85Q)

Total cost = Cost of jelly beans + Cost of hazelnut chocolate

Total cost = 22 * (3P) + 33 * (0.85Q)

Since the price of jelly beans has tripled and the price of hazelnut chocolate has decreased, the total cost of buying both items will depend on the specific values of P and Q. Without knowing the exact values, we cannot determine whether buying 22 boxes of jelly beans and 33 pieces of hazelnut chocolate will be more expensive or less expensive.

Learn more about  chocolate will be more expensive from

https://brainly.com/question/31638043

#SPJ11

If an object has a torque of 15Nm applied to it over a 0.3s time period, and has a moment of inertia of 0.75kgm 2. what is the angular velocity of the object?
A. 187.3deg/s
B. 65.2deg/s
C. 343.8deg/s
D. 6.Odeg/s

Answers

To find the angular velocity of an object, we can use the equation:

Torque (τ) = Moment of inertia (I) × Angular acceleration (α)

Angular acceleration (α) = Torque (τ) / Moment of inertia (I)

Angular acceleration (α) = 15 Nm / 0.75 kgm^2 = 20 rad/s^2

Rearranging the equation, we have:

Angular acceleration (α) = Torque (τ) / Moment of inertia (I)

Given that the torque is 15 Nm and the moment of inertia is 0.75 kgm^2, we can substitute these values into the equation to find the angular acceleration:

Angular acceleration (α) = 15 Nm / 0.75 kgm^2 = 20 rad/s^2

The angular acceleration is the rate at which the angular velocity changes over time. Since the time period is given as 0.3 s, we can use the equation:

Angular velocity (ω) = Angular acceleration (α) × Time (t)

Substituting the values, we have:

Angular velocity (ω) = 20 rad/s^2 × 0.3 s = 6 rad/s

Therefore, the angular velocity of the object is 6 rad/s. Option D) 6.0 deg/s is the correct answer.

Learn more about velocity here

https://brainly.com/question/24445340

#SPJ11

find an expression for λ in terms of the density rho of a static model of a pressureless dust universe with a cosmological constant.

Answers

In a static model of a pressureless dust universe with a cosmological constant, we can use the Friedmann equations to relate the density (ρ) and the cosmological constant (Λ) to the expansion rate of the universe.

The Friedmann equation for a flat universe with dust-like matter and a cosmological constant is: H^2 = (8πG/3)ρ - (Λ/3)

Where H is the Hubble parameter, G is the gravitational constant, and ρ is the density of the dust.

In a static model, the expansion rate (H) is zero, so the equation becomes:

0 = (8πG/3)ρ - (Λ/3)

Rearranging the equation, we can express ρ in terms of Λ: (8πG/3)ρ = (Λ/3)

ρ = Λ / (8πG)

Now, to find an expression for λ in terms of ρ, we need to substitute λ with the cosmological constant Λ: λ = Λ / (8πG)

Therefore, the expression for λ in terms of the density ρ in a static model of a pressureless dust universe with a cosmological constant is λ = Λ / (8πG).

Learn more about cosmological here

https://brainly.com/question/12987483

#SPJ11

a series rlc circuit has an impedance of 120 ω and a resistance of 64 ω. what average power is delivered to this circuit when vrms = 90 volts?

Answers

The average power delivered to the circuit is 126.56 watts.

In a series RLC circuit, the impedance is given by Z = √(R^2 + (XL - XC)^2), where R is the resistance, XL is the inductive reactance, and XC is the capacitive reactance. We know that the impedance Z is 120 ω and the resistance R is 64 ω. So, we can use these values to find the values of XL and XC.
XL = Z^2 - R^2 = √(120^2 - 64^2) = 105.17 ω
XC = √(Z^2 - R^2) = √(120^2 - 64^2) = 105.17 ω
Now, we can use the formula for average power in a series RLC circuit, which is P = Vrms^2/R, where Vrms is the rms voltage. Here, Vrms is given as 90 volts.
P = Vrms^2/R = 90^2/64 = 126.56 watts.

To know more about power visit :-

https://brainly.com/question/30337877

#SPJ11

A ID travelling wave on a string is described by the equation: y(x,t) = 6 cos(3x + 12t) Where the numbers are in the appropriate SI units. Assume that the positive direction is to the right What is the velocity of the wave?
A) 0.25 mls to the left B) 2 mls to the right C) 3 mls to the right D) 4 mls to the left E) 12 mls to the left

Answers

C) 3 mls to the right. The positive direction is to the right, the velocity of the wave is in the positive direction, which means it is 12 mls to the right.

The equation y(x,t) = 6 cos(3x + 12t) describes an ID travelling wave on a string. The velocity of the wave can be determined by finding the coefficient of t in the argument of the cosine function. In this case, the coefficient of t is 12. Since the positive direction is to the right, the velocity of the wave is in the positive direction, which means it is 12 mls to the right. Therefore, the correct answer is C) 3 mls to the right.
The given equation for the traveling wave is y(x,t) = 6 cos(3x + 12t). To find the wave's velocity, we must identify the wave's angular frequency (ω) and wave number (k) from the equation. In this case, ω = 12 and k = 3. The wave's velocity (v) can be calculated using the formula v = ω/k.

To learn more about string visit;

https://brainly.com/question/946868

#SPJ11

what value of t is needed to construct an 90% confidence interval on the population mean, given that the sample size is 14. round your answer to two decimal places.

Answers

The value of t needed to construct a 90% confidence interval on the population mean, given a sample size of 14, rounded to two decimal places, is t₁₃,₀.₁₀.

Determine the two decimal places?

To calculate the value of t, we use the t-distribution with n - 1 degrees of freedom, where n is the sample size. In this case, the sample size is 14, so we have 14 - 1 = 13 degrees of freedom.

Using a two-tailed test for a 90% confidence interval, we need to find the t-value that leaves 5% in each tail of the distribution. Since the total area in both tails is 10%, we want to find the t-value that corresponds to a cumulative probability of 0.95.

Using statistical tables or software, we find that the t-value corresponding to a cumulative probability of 0.95 with 13 degrees of freedom is approximately 1.7709. Rounded to two decimal places, the value of t is 1.77.

Therefore, the value of t needed to construct a 90% confidence interval with a sample size of 14 is t₁₃,₀.₁₀ = 1.77.

To know more about probability, refer here:

https://brainly.com/question/32117953#

#SPJ4

The data table below shows the distribution of the energies of a pendulum 0.60 s into its motion. What is the missing value?
A. 0.054 J
B. 0.654 J
C. 0.864 J
D. 0.972 J

Answers

The missing value in the distribution of energies of the pendulum 0.60 s into its motion is 0.654 J (Option B).

Determine the missing value?

Based on the information given, we can assume that the table lists the energy values at different time intervals during the motion of the pendulum. The missing value can be determined by analyzing the options provided and identifying the closest match to the distribution pattern.

Since the question states that the missing value occurs 0.60 s into the motion, we need to look for an option that corresponds to this time interval. Among the given options, 0.654 J (Option B) closely matches the pattern and fits the expected energy value.

It's important to note that without additional context or specific calculations, the answer is determined by analyzing the given options and identifying the closest match to the distribution pattern for the given time interval.

Therefore, the energy missing from the pendulum's distribution 0.60 s into its motion is 0.654 J (Option B), as it closely matches the pattern and expected value at that time interval.

To know more about energy, refer here:

https://brainly.com/question/1932868#

#SPJ4

a person has a mass of 45kg. how much does she weigh on the moon, where g=3m/s^2

Answers

The person would weigh **135 N** on the moon.

Weight is the force experienced by an object due to the gravitational pull of a celestial body. It is calculated by multiplying the mass of the object by the acceleration due to gravity.

Given that the mass of the person is 45 kg and the acceleration due to gravity on the moon is 3 m/s², we can calculate the weight:

Weight = mass × acceleration due to gravity

Weight = 45 kg × 3 m/s²

Weight = 135 N

Therefore, the person would weigh 135 N on the moon.

Learn more about acceleration due to gravity here:

https://brainly.com/question/29135987


#SPJ11

A transverse wave is traveling down a cord. Which of the following is true about the transverse motion of a small piece of the cord? (a) The speed of the wave must be the same as the speed of a small piece of the cord. (b) The frequency of the wave must be the same as the frequency of a small piece of the cord. (c) The amplitude of the wave must be the same as the amplitude of a small piece of the cord. (d) All of the above are true. (e) Both (b) and (c) are true

Answers

The correct answer is (e) Both (b) and (c) are true.

In a transverse wave, the motion of the medium (cord) is perpendicular to the direction of the wave propagation. Each small piece of the cord oscillates up and down as the wave passes through it.

(b) The frequency of the wave is the number of complete oscillations (vibrations) per unit time. As the wave travels down the cord, each small piece of the cord undergoes the same number of oscillations per unit time, thus having the same frequency as the wave.

(c) The amplitude of the wave refers to the maximum displacement or maximum height reached by each small piece of the cord during its oscillation. Since the wave causes the cord to vibrate, each small piece of the cord will have the same amplitude as the wave.

Therefore, both the frequency and amplitude of the wave are the same for each small piece of the cord as they propagate through it.

The correct answer is (e) Both (b) and (c) are true. In a transverse wave, the motion of the particles in the medium is perpendicular to the direction of wave propagation.

As the wave travels down the cord, each small piece of the cord undergoes transverse motion.(b) The frequency of the wave must be the same as the frequency of a small piece of the cord. The frequency of the wave represents the number of complete oscillations or cycles the wave undergoes per unit time. Since each small piece of the cord is part of the same wave, it will oscillate at the same frequency.

(c) The amplitude of the wave must be the same as the amplitude of a small piece of the cord. The amplitude of a wave represents the maximum displacement of the particles from their equilibrium position. As the wave propagates, each small piece of the cord will have the same maximum displacement or amplitude.

(a) The speed of the wave may not be the same as the speed of a small piece of the cord. The speed of the wave depends on the properties of the medium through which it is traveling, such as the tension and mass per unit length of the cord. The speed of a small piece of the cord may vary depending on its properties and the applied forces.

Therefore, the correct statement is that both (b) and (c) are true.

Learn more about motion here

https://brainly.com/question/25951773

#SPJ11

a 2 m3 rigid tank contains nitrogen gas at 500 kpa and 300 k. now heat is transferred to the nitrogen in the tank and the pressure rises to 800 kpa. the work done during this process is:

Answers

The work done during the process is 100 J.

Determine the work done?

To calculate the work done, we can use the equation:

W = P(Vf - Vi)

Where:

W is the work done,

P is the pressure,

Vf is the final volume, and

Vi is the initial volume.

Given:

Initial pressure, P_i = 500 kPa

Initial volume, V_i = 2 m³

Final pressure, P_f = 800 kPa

Since the tank is rigid, the volume remains constant, so Vf = Vi.

Substituting the values into the equation, we get:

W = (P_f - P_i) * V_i

 = (800 kPa - 500 kPa) * 2 m³

 = 300 kPa * 2 m³

 = 600 kJ

 = 600 J (since 1 kJ = 1000 J)

Therefore, the work done during the process is 600 J.

To know more about volume, refer here:

https://brainly.com/question/28058531#

#SPJ4

Complete question here:

a 2 m3 rigid tank contains nitrogen gas at 500 kpa and 300 k. now heat is transferred to the nitrogen in the tank and the pressure rises to 800 kpa. the work done during this process i

A cable exerts a constant upward tension of magnitude 2. 58 ✕ 104 n on a 2. 40 ✕ 103 kg elevator as it rises through a vertical distance of 1. 70 m.

(a) Find the work done by the tension force on the elevator (in J). (b) Find the work done by the force of gravity on the elevator (in J)

Answers

(a) The work done by the tension force on the elevator is 4.386 × 10^4 J.

(b) The work done by the force of gravity on the elevator is 3.999 × 10^4 J.

(a) The tension force on the elevator will exert a force of 2.58 × 10^4 N on it. The distance the elevator will rise is 1.70 m. The work done by the tension force on the elevator (in J) can be calculated as follows:

Work done by tension force on elevator = tension force × distance moved by elevator

W = Fd

W = (2.58 × 10^4 N) × (1.70 m)

W = 4.386 × 10^4 J

Therefore, the work done by the tension force on the elevator is 4.386 × 10^4 J.

(b) The force of gravity is equal to the mass of the elevator times the acceleration due to gravity. The force of gravity on the elevator is given by:

Fg = mgFg = (2.40 × 10^3 kg) × (9.8 m/s²)Fg = 2.352 × 10^4 N

The elevator moves upward by 1.70 m. The work done by the force of gravity on the elevator (in J) can be calculated as follows:

Work done by force of gravity on elevator = force of gravity × distance moved by elevator

W = Fg × d

W = (2.352 × 10^4 N) × (1.70 m)

W = 3.999 × 10^4 J

Therefore, the work done by the force of gravity on the elevator is 3.999 × 10^4 J.

Learn more about Work done:

https://brainly.com/question/18762601

#SPJ11

Which requires more work, increasing a car's speed from 0 mph to 30 mph or from 50 mph to 60 mph?
A. 0 to 30 mph
B. 50 mph to 60 mph
C. It is the same in both cases

Answers

Increasing a vehicle's speed from 0 mph to 30 mph or 50 mph to 60 mph requires more effort.

The choice B is correct.

What causes an increase in speed?

Because they alter an object's speed or direction, forces can be said to cause changes in velocity. Remember that speed increase is a speed change. Thus, forces are responsible for acceleration.

Speed, your meaning could be a little more obvious ?

The expression "speed" signifies. The rate at which an item moves toward any path. Speed is determined by comparing travel time to distance traveled. Since it just has a course and no extent, speed is a scalar amount.

What factors affect speed?

The power following up on the item, the article's mass, the surface it is continuing on, and the presence of erosion or other resistive powers are all factors that can affect an article's speed.

Learn more about speed:

brainly.com/question/111325

#SPJ4

A large box of mass M is pulled across a horizontal, frictionless surface by a horizontal rope with tension T. A small box of mass m sits on top of the large box. The coefficients of static and kinetic friction between the two boxes are μ
s
and μ
k
, respectively. Find an expression for the maximum tension (
T
m
a
x
)
for which the small box rides on top of the large box without slipping? Express your answer in terms of the variables M, m, μ
s
, and appropriate constants.

Answers

To find the maximum tension (T_max) for which the small box rides on top of the large box without slipping, we need to consider the forces acting on the system and the conditions for static friction.

Let's analyze the forces acting on the small box:

Weight: The weight of the small box is given by m * g, where g is the acceleration due to gravity.

Normal force: The normal force exerted by the large box on the small box balances the weight of the small box.

Now, let's consider the conditions for static friction:

The maximum static friction force (F_static_max) can be calculated using the equation F_static_max = μ_s * N, where μ_s is the coefficient of static friction and N is the normal force.

To prevent slipping, the tension T must be less than or equal to the maximum static friction force:

T ≤ F_static_max = μ_s * N.

Since the normal force N is equal to the weight of the small box (m * g), we can substitute it into the inequality:

T ≤ μ_s * (m * g).

Therefore, the expression for the maximum tension T_max is:

T_max = μ_s * m * g.

In this expression, T_max is expressed in terms of the variables m (mass of the small box), μ_s (coefficient of static friction), and g (acceleration due to gravity).

Learn more about   force from

https://brainly.com/question/12785175

#SPJ11

A playground toy has four seats, each 6.4kg , attached to very light rods of length r= 1.5m , as seen from below in the figure.

Answers

The moment of inertia about the rotation axis for the given playground toy, with two children sitting opposite each other, is approximately 145.35 kg·m².

To determine the moment of inertia about the rotation axis for the given playground toy, we need to consider the contributions from the seats and the two children.

Given:

Mass of each seat = 6.4 kg

Length of the rods (r) = 1.5 m

Mass of the first child (m₁)= 16 kg

Mass of the second child (m₂) = 23 kg

The moment of inertia of each seat can be calculated using the formula for the moment of inertia of a point mass about an axis:

[tex]I_{seat} = m_{seat times} r^2[/tex]

For each seat, the moment of inertia is:

[tex]I_{seat} = 6.4 kg times (1.5 m)^2= 14.4 kg\cdot m^2[/tex]

Now, to calculate the moment of inertia contributed by the children, we need to consider that the children are located opposite each other. Assuming the axis of rotation passes through the center of mass of the children-seats system, the moment of inertia for each child is:

[tex]I_{child} = m_{child times} r^2[/tex]

For the first child (m₁):

[tex]I_1 = 16 kg times (1.5 m)^2 = 36 kgm^2[/tex]

For the second child (m₂):

[tex]I_2 = 23 kg times (1.5 m)^2 = 51.75 kgm^2[/tex]

Finally, we can calculate the total moment of inertia by summing the contributions from the seats and the children:

Total moment of inertia =[tex]4 times I_{seat} + I_1 + I_2[/tex]

= [tex]4 times (14.4 kgm^2) + 36 kgm^2 + 51.75 kgm^2[/tex]

= [tex]57.6 kgm^2 + 36 kgm^2 + 51.75 kgm^2[/tex]

= [tex]145.35 kgm^2[/tex]

Learn more about the calculation of the moment of inertia here:

https://brainly.com/question/30051108

#SPJ4

if the current flowing through each 6 ohm resistor is 1 amp, what's the current flowing through the 3 ohm resistor

Answers

The current flowing through the 3 ohm resistor is 2 amps.

According to Ohm's Law, current (I) is equal to voltage (V) divided by resistance (R). Using this formula, we can find the total current flowing through the circuit. If each 6 ohm resistor has a current of 1 amp, then the total current flowing through both 6 ohm resistors in parallel is 2 amps (1 amp + 1 amp).

This means that the equivalent resistance of the two 6 ohm resistors in parallel is 3 ohms (since 1/3 + 1/3 = 2/3 and 1/ (2/3) = 1.5 ohms). When we add the 3 ohm resistor in series, the total resistance becomes 6 ohms. Therefore, using Ohm's Law, we can calculate that the current flowing through the 3 ohm resistor is 2 amps (12 volts / 6 ohms).

Learn more about Ohm's Law here:

https://brainly.com/question/14796314

#SPJ11

In one of the original Doppler experiments, a tuba was played on a moving flat train car at a frequency of 69 Hz, and a second identical tuba played the same tone while at rest in the railway station. What beat frequency was heard if the train car approached the station at a speed of 13.8 m/s?

Answers

A beat frequency of 2.11 Hz would be heard. When the train car with the moving tuba approaches the stationary tuba, the sound waves emitted by the moving tuba are compressed, resulting in a higher frequency. This phenomenon is known as the Doppler effect. The beat frequency heard is the difference between the frequencies of the two tubas.


Using the formula: beat frequency = |f1 - f2|, where f1 is the frequency of the moving tuba and f2 is the frequency of the stationary tuba, we can calculate the beat frequency.

Since both tubas are playing the same tone at 69 Hz, f1 = f2 = 69 Hz.

When the train car approaches the station at a speed of 13.8 m/s, the frequency of the moving tuba is higher due to the Doppler effect.

Using the formula: f1' = f1 (v + vs) / (v - vd), where f1' is the frequency observed by the stationary observer, v is the speed of sound, vs is the speed of the source (tuba), and vd is the speed of the observer (stationary tuba), we can find f1'.

v = 343 m/s (at room temperature)

vs = 13.8 m/s (towards the stationary tuba)

vd = 0 m/s (stationary)

f1' = 69 x (343 + 13.8) / (343 - 0.0) = 71.11 Hz

The beat frequency is then:

|69 - 71.11| = 2.11 Hz

Therefore, a beat frequency of 2.11 Hz would be heard.

To learn more about frequency visit;

https://brainly.com/question/29739263

#SPJ11

Unreasonable Results What is wrong with the claim that a cyclical heat engine does 4.00 kJ of work on an input of 24.0 kJ of heat transfer while 16.0 kJ of heat transfers to the environment?

Answers

That a cyclical heat engine does 4.00 kJ of work on an input of 24.0 kJ of heat transfer while 16.0 kJ of heat transfers to the environment is that it violates the first law of thermodynamics, which states that energy cannot be created or destroyed, only transferred.

His discrepancy means that the claim is not reasonable and violates the first law of thermodynamics.
In the case of the claim that a cyclical heat engine does 4.00 kJ of work on an input of 24.0 kJ of heat transfer while 16.0 kJ of heat transfers to the environment, the numbers don't add up. If the engine is doing 4.00 kJ of work, and losing 16.0 kJ of heat to the environment, then it must be receiving 20.0 kJ of heat energy, not 24.0 kJ. T


The claim states that a cyclical heat engine does 4.00 kJ of work with an input of 24.0 kJ of heat transfer, while 16.0 kJ of heat transfers to the environment. According to the first law of thermodynamics, energy cannot be created or  destroyed, only converted from one form to another. In the case of a heat engine, this law can be expressed as results do not match, which means that the claim is unreasonable and violates the first law of thermodynamics. There must be an error in the values provided for the heat engine.

To know more about energy Visit;

https://brainly.com/question/30107920

#SPJ11

It is desired to project the image of an object four times its actual size using a lens of focal length 20 cm. How far from the lens (in cm) should the object be placed? (a) 5 (b) 25 (c) 80 (d) 100 (e) 10

Answers

To determine the distance at which the object should be placed from the lens to achieve the desired image size, we can use the lens formula:

1/f = 1/o + 1/i

Where:

f is the focal length of the lens,

o is the object distance, and

i is the image distance.

In this case, we have a lens with a focal length of 20 cm and we want the image to be four times the size of the object. Since the image size is larger, it will be a virtual image formed on the same side as the object.

Let's assume the object distance is denoted by d. According to the given condition, the image distance will be 4d (four times the object distance).

Substituting these values into the lens formula, we get:

1/20 = 1/d + 1/(4d)

Simplifying the equation, we find:

1/20 = (4 + 1)/(4d)

1/20 = 5/(4d)

Cross-multiplying, we have:

4d = 20 * 5

4d = 100

d = 100/4

d = 25 cm

Therefore, the object should be placed 25 cm from the lens. The correct answer is (b) 25 cm.

Learn more about distance from

https://brainly.com/question/26550516

#SPJ11

what physical quantities are conserved in this collision? the magnitude of the momentum only the net momentum (considered as a vector) only the momentum of each object considered individually

Answers

In a collision, the physical quantity that is conserved is the total momentum of the system. The total momentum of a system of objects is the vector sum of the momenta of each individual object. Therefore, both the magnitude of the momentum and the net momentum (considered as a vector) are conserved in a collision.

The momentum of each object considered individually may not be conserved, as the objects can exchange momentum with each other during the collision. However, the total momentum of the system, which is the sum of the individual momenta, remains constant if no external forces are acting on the system.

So, in summary, the conservation of momentum applies to the total momentum of the system, taking into account the vector nature of momentum.

Learn more about momentum from

https://brainly.com/question/1042017

#SPJ11

Other Questions
Angelique has not left her house for two years. She is completely terrified of going out. Based on this description, she is probably suffering from: a) agoraphobia b) bipolar disorder c) schizophrenia d) obsessive-compulsive disorder 2. (16 points) Verify that the function f(tr) = 2.1+ 16x + 1 satisfies the three hypotheses of Rolle's Theorem on the interval (-8,0). Then find all munbers c that satisfy the conclusion of Rolle's Th website tracking software can log the path a customer took through the website, the time spent on the site, and what geographic area, in general, the customer is from, all of which can help in customer analysis. it can also log the customer's operating system and which browser the customer is using. how could these last two data items be of interest to a company? give examples. A horizontal clothesline is tied between 2 poles, 10 meters apart. When a mass of 4 kilograms is tied to the middle of the clothesline, it sags a distance of 1 meters. What is the magnitude of the tension on the ends of the clothesline? (use g=9.8m/s2) Which two Cold War events do you think had the greatest impact on the U.S. decision to pursue dtente? an astronomer measures the redshift of a star in the milky way and the redshift of a distant galaxy. which is likely to have the larger redshift? If A is a 4x3 matrix, then the transformation x = Ax maps onto . Choose the correct answer below a. True. The columns of A span b. False. The columns of A are not linearly independentc. True. The the columns Of A are linearly independent d. False. The columns of A do not span when the quantity of environmental protection is low so that pollution is extensive, then there are usually _________to reduce pollution and the _______.a lot of expensive and innovative methods; marginal benefits are quite high a lot of cheap and easy ways; marginal benefits of doing so are quite high a few inexpensive and easy ways; average benefits are slightly higher only a few expensive and innovative methods; average benefits are higher how many 68-mg enrofloxacin tablets will be needed to treat a 20-lb (9-kg) dog for 10 days at a dosage of 15 mg/kg/day? Explain the Bedford lebel experiment 9. Use an appropriate local linear approximation to estimate the value of 10. Recall that f'(a) [f(a+h)-f(a)] + h when h is very small. 10. A boat is pulled into a dock by means of a rope attached to a pulley on the dock. The rope is attached to the front of the boat, which is 7 feet below the level of the pulley. If the boat is approaching the dock at a rate of 18 ft/min, at what rate is the rope being pulled in when the boat is125 ft from the dock. Energy problem formulasPotential Energy = mghv = velocity or speedKinetic energy = mv9 = 9.8 m/sm = mass in kg(Precision of 0.0)h = height in metersA baby carriage is sitting at the top of a hill that is 26 m high. Thecarriage with the baby has a mass of 2.0 kg.a) Calculate Potential Energy(Precision of 0.0)b) How much work was done to the system to create this potentialenergy? the least polar of the following molecules is group of answer choices a) ch2cl2 b) ccl4 c) ch3cl d) cocl2 e) ncl3 which relational algebra command creates a new table where only certain columns are to be included? the fasb states that all unconditional donated services should be recorded as contributions by a not-for-profit organization. true Which of the following is a correct explanation for preferring the mean over the median as a measure of center?Group of answer choices1 The mean is more efficient than the median.2 The mean is more sensitive to outliers than the median.3 The mean is the same as the median for symmetric data.4 The median is more efficient than the mean. prove that there does not exist a rational number whose square is 5. Please explain the process!Please submit a PDF of your solution to the following problem using Volumes using Cylindrical Shells. Include a written explanation (could be a paragraph. a list of steps, bullet points, etc.) detaili bribery conflict of interest honesty and integrity whistle-blowing are 12345IStatement+ZHKI ZGKHHJ I GIHm2GKH+mZHKI = 180m2GKH + m2GKH = 180m2GKH = 90ReasonGivenAngles forming a linear pair sum to 180Definition of congruence Steam Workshop Downloader