Answer:
AC
Explanation:
One situation when alternating current would work better than direct current is if the operator is encountering magnetic arc blow.
Current works best when the operator encounters magnetic arc blow is AC
Magnetic arc blow is simply defined as the arc deflection due to the warping of the magnetic field that is produced by electric arc current.
This is caused as a result of the following;
- if the material being welded has residual magnetism at an intolerable level
- When the weld root is being made, and the welding current is direct current which indicates constant direction and maintains constant polarity (either positive or negative).
Since it is caused by DC(Direct Current) which means constant polarity , it means the opposite will be better which is AC(alternating current) because it means that electricity direction will be switching to and fro and as such the polarity will also be revered in response to this back and forth switch manner.Thus, Current works best when the operator encounters magnetic arc blow is AC
Read more at; brainly.in/question/38789815?tbs_match=1
A group of students launches a model rocket in the vertical direction. Based on tracking data, they determine that the altitude of the rocket was 89.6 ft at the end of the powered portion of the flight and that the rocket landed 16.5 s later. The descent parachute failed to deploy so that the rocket fell freely to the ground after reaching its maximum altitude. Assume that g = 32.2 ft/s2.
Determine
(a) the speed v1 of the rocket at the end of powered flight,
(b) the maximum altitude reached by the rocket.
Answer:
[tex]u = 260.22m/s[/tex]
[tex]S_{max} = 1141.07ft[/tex]
Explanation:
Given
[tex]S_0 = 89.6ft[/tex] --- Initial altitude
[tex]S_{16.5} = 0ft[/tex] -- Altitude after 16.5 seconds
[tex]a = -g = -32.2ft/s^2[/tex] --- Acceleration (It is negative because it is an upward movement i.e. against gravity)
Solving (a): Final Speed of the rocket
To do this, we make use of:
[tex]S = ut + \frac{1}{2}at^2[/tex]
The final altitude after 16.5 seconds is represented as:
[tex]S_{16.5} = S_0 + ut + \frac{1}{2}at^2[/tex]
Substitute the following values:
[tex]S_0 = 89.6ft[/tex] [tex]S_{16.5} = 0ft[/tex] [tex]a = -g = -32.2ft/s^2[/tex] and [tex]t = 16.5[/tex]
So, we have:
[tex]0 = 89.6 + u * 16.5 - \frac{1}{2} * 32.2 * 16.5^2[/tex]
[tex]0 = 89.6 + u * 16.5 - \frac{1}{2} * 8766.45[/tex]
[tex]0 = 89.6 + 16.5u- 4383.225[/tex]
Collect Like Terms
[tex]16.5u = -89.6 +4383.225[/tex]
[tex]16.5u = 4293.625[/tex]
Make u the subject
[tex]u = \frac{4293.625}{16.5}[/tex]
[tex]u = 260.21969697[/tex]
[tex]u = 260.22m/s[/tex]
Solving (b): The maximum height attained
First, we calculate the time taken to attain the maximum height.
Using:
[tex]v=u + at[/tex]
At the maximum height:
[tex]v =0[/tex] --- The final velocity
[tex]u = 260.22m/s[/tex]
[tex]a = -g = -32.2ft/s^2[/tex]
So, we have:
[tex]0 = 260.22 - 32.2t[/tex]
Collect Like Terms
[tex]32.2t = 260.22[/tex]
Make t the subject
[tex]t = \frac{260.22}{ 32.2}[/tex]
[tex]t = 8.08s[/tex]
The maximum height is then calculated as:
[tex]S_{max} = S_0 + ut + \frac{1}{2}at^2[/tex]
This gives:
[tex]S_{max} = 89.6 + 260.22 * 8.08 - \frac{1}{2} * 32.2 * 8.08^2[/tex]
[tex]S_{max} = 89.6 + 260.22 * 8.08 - \frac{1}{2} * 2102.22[/tex]
[tex]S_{max} = 89.6 + 260.22 * 8.08 - 1051.11[/tex]
[tex]S_{max} = 1141.0676[/tex]
[tex]S_{max} = 1141.07ft[/tex]
Hence, the maximum height is 1141.07ft
Lab scale tests performed on a cell broth with a viscosity of 5cP gave a specific cake resistance of 1 x1011 cm/g and a negligible medium resistance. The cake solids (dry basis) per volume of filtrate was 20 g/liter. It is desired to operate a larger rotary vacuum filter (diameter 8 m and length 12 m) at a vacuum pressure of 80 kPA with a cake formation time of 20 s and a cycle time of 60 s. Determine the filtration rate in volumes/hr expected for the rotary vacuum filter.
Answer:
5.118 m^3/hr
Explanation:
Given data:
viscosity of cell broth = 5cP
cake resistance = 1*1011 cm/g
dry basis per volume of filtrate = 20 g/liter
Diameter = 8m , Length = 12m
vacuum pressure = 80 kpa
cake formation time = 20 s
cycle time = 60 s
Determine the filtration rate in volumes/hr expected fir the rotary vacuum filter
attached below is a detailed solution of the question
Hence The filtration rate in volumes/hr expected for the rotary vacuum filter
V' = ( [tex]\frac{60}{20}[/tex] ) * 1706.0670
= 5118.201 liters ≈ 5.118 m^3/hr
I don’t know the answer to this question
Answer:
I dont know the answer either
Explanation:
Answer:
flux
Explanation: