Answer:
742.3N
Explanation:
Given parameters:
Distance = 39m
Mass 1 = 9.2 x 10⁷kg
Mass 2 = 1.84 x 10⁸kg
Unknown:
Gravitational force between the ships = ?
Solution:
To solve this problem, we apply the newton's law of universal gravitation:
Fg = [tex]\frac{G x mass 1 x mass 2}{r^{2} }[/tex]
G is the universal gravitation constant = 6.67 x 10⁻¹¹
r is the distance or separation
Fg = [tex]\frac{6.67 x 10^{-11} x 9.2 x 10^{7} x 1.84 x 10^{8} }{39^{2} }[/tex] = 742.3N
Assuming no friction, how does the initial gravitational potential energy of
the marble on a downward slope compare to the final kinetic energy?
a) they are the same
b) the initial gravitational potential energy is greater than the final kinetic energy
c) the initial gravitational potential energy is less then the final kinetic energy
Answer:
a) They are the same.
Explanation:
Assuming no friction, there should be no energy transfer and thus the Law of Conservation of Energy says:
[tex]PE=KE,\\mgh=\frac{1}{2}mv^2[/tex]
These types of problems also disregard any air resistance the surface of the object may cause. Therefore, no energy is transferred and from the Law of Conservation of Energy, [tex]100\%[/tex] of energy is preserved.
Can someone please help meee .
Answer:
32 amu is the right choice because both protons and neutrons have a mass of 1 amu. Electrons have no mass so go with the last choice
How many miles per day can you walk at a MODERATE Intensity level and your heart rate is 170?
Answer:
Not enough detail as it is very defendant on the person and a bunch of factors in health, but overall your heart rate shouldn't reach 170 as an adult walking at a moderate intensity level, that would be closer to extreme intensity.
Explanation:
Which action will leave the dump trucks inertia unchanged?? PLEASE ANSWER FAST!!!
A. add gas
B. increase force applied to engine
Answer:
B.
Explanation:
Starting from the front door of your ranch house, you walk 50.0 m due east to your windmill, and then you turn around and slowly walk 30.0 m west to a bench where you sit and watch the sunrise. It takes you 27.0 s to walk from your house to the windmill and then 47.0 s to walk from the windmill to the bench. For the entire trip from the front door to the bench, what are your :
a. average velocity
b. average speed
Answer:
Explanation:
Total displacement for entire trip = final position - initial position
= 50 m - 30 m = 20 m
Total time = 27 + 47 = 74 s
Average velocity = Total displacement / total time
= 20 / 74 = .27 m /s
Total distance covered in entire trip = 50 + 30 = 80 m
Total time = 74 s
Average speed = Total distance covered / total time
= 80 / 74 = 1.08 m /s .
A safety plug is designed to melt when the pressure inside a metal tank becomes too high. A gas
at 51.0 atm and a temperature of 23.0°C is contained in the tank, but the plug melts when the
pressure reaches 75.0 atm. What temperature did the gas reach?
John runs 3 km north then walks 2 km south. What is his total distance traveled and displacement?
Answer:
the total distance is 5km and the displacement is 1km
Explanation:
The total distance would be the addition of John running both ways so 3 km, 2 km.
However since he only walked back from a distance of 3 km to 2 km, he would be displaced 1 km because displacement is more like the position from the original point.
Think about 2 km as a positive value for the first part of the question and a negative value for the second part.
Do it in order.
from smallest to largest
Answer:
The earth, The sun, the solar system and the milky way.
Q1. A man wants to install a surveillance mirror in his shop, which mirror should he use?(1)
a) Convex mirror
b) Concave mirror
c) Plane mirror
d) Both (a) and (b)
answer is convex mirror
Explanation:
A
Because convex mirror will provide maximum view
Kiara starts at 4, walks 6 blocks left and 2 blocks right. What is her displacement?
calculate the average speed of talias car during the trip
Answer:
We're no strangers to love
You know the rules and so do I
A full commitment's what I'm thinking of
You wouldn't get this from any other guy
I just wanna tell you how I'm feeling
Gotta make you understand
Never gonna give you up
Never gonna let you down
Never gonna run around and desert you
Never gonna make you cry
Never gonna say goodbye
Never gonna tell a lie and hurt you
We've known each other for so long
Your heart's been aching but you're too shy to say it
Inside we both know what's been going on
We know the game and we're gonna play it
And if you ask me how I'm feeling
Don't tell me you're too blind to see
Never gonna give you up
Never gonna let you down
Never gonna run around and desert you
Never gonna make you cry
Never gonna say goodbye
Never gonna tell a lie and hurt you
No, I'm never gonna give you up
No, I'm never gonna let you down
No, I'll never run around and hurt you
Never, ever desert you
We've known each other for so long
Your heart's been aching but
Never gonna give you up
Never gonna let you down
Never gonna run around and desert you
Never gonna make you cry
Never gonna say goodbye
Never gonna tell a lie and hurt you
No, I'm never gonna give you up
No, I'm never gonna let you down
No, I'll never run around and hurt you
I'll never, ever desert you
Explanation:
RICK ROLLED
An 88 kg person steps into a car of mass 2002 kg, causing it to sink 5.36 cm on itssprings. Assuming no damping, with what fre-quency will the car and passenger vibrate onthe springs? Answer in units of Hz. The acceleration of gravity is 9.81 m/s^2.
Answer:
The required frequency = 0.442 Hz
Explanation:
Frequency [tex]f = ( \dfrac{1}{2 \pi}) \omega[/tex]
where;
[tex]\omega = \sqrt{\dfrac{k}{m} }[/tex]
Then;
[tex]f = \Bigg ( \dfrac{1}{2 \pi} \Bigg ) \Bigg( \sqrt{\dfrac{k}{m} } \Bigg )[/tex]
However;
[tex]k = \dfrac{F}{x}[/tex] and;
mass [tex]m = m_{car } + m_{person}[/tex]
[tex]f = \Bigg ( \dfrac{1}{2 \pi} \Bigg ) \Bigg( \sqrt{\dfrac{\dfrac{F}{x}}{m_{car}+m_{person}} } \Bigg )[/tex]
[tex]f = \Bigg ( \dfrac{1}{2 \pi} \Bigg ) \Bigg( \sqrt{\dfrac{{F}}{x(m_{car}+m_{person})} } \Bigg )[/tex]
where;
[tex]F = m_{person}g[/tex]
Then;
[tex]f = \Bigg ( \dfrac{1}{2 \pi} \Bigg ) \Bigg( \sqrt{\dfrac{ {m_{person}g }}{x(m_{car}+m_{person})} } \Bigg )[/tex]
replacing the values;
[tex]f = \Bigg ( \dfrac{1}{2 \pi} \Bigg ) \Bigg( \sqrt{\dfrac{ {(88 \ kg)* (9.81 \ m/s^2) }}{(5.36 \times 10^{-2} \ m) (2002 \ kg +88 \ kg)} } \Bigg )[/tex]
[tex]\mathbf{f = 0.442 \ Hz}[/tex]
Can someone help me out please I got it wrong
Answer:
3 maybe since protons=atomic
Explain how momentum is determined and conserved.
ASAP!!
Explanation:
Momentum is conserved in the collision. Momentum is conserved for any interaction between two objects occurring in an isolated system.
A 12-kg object is moving rightward with a constant velocity of 4 m/s. How much net force is required to keep the object moving with
the same speed and in the same direction?
28. Which of the following correctly shows the order of highest amount of friction to the lowest amount of
friction?
a. Static, Rolling, Sliding
b. Sliding, Rolling, Static
c. Rolling, Static, Sliding
d. Static, Sliding, Rolling
Answer:
[tex]\mathrm{d.\:Static,\: Sliding,\:Rolling}[/tex]
Explanation:
Static friction occurs when an object initially starts at rest. When the surfaces of the materials touch, the microscopic unevenness interlock greatest with each other, causing the most friction out of the three.
During sliding friction, an object is already moving or in motion. The microscopic surfaces still interlock, but because the object is in motion, it has a momentum. Therefore, the magnitude of sliding friction is less than that of static friction.
Rolling friction occurs when an object rolls across some surface. Rather than surfaces interlocking, rolling friction is caused by the constant distortion of surfaces. As it rolls, the surfaces of the object are constantly wrapping and changing. This distortion causes the rolling friction. However, it is much less in magnitude when compared to static or sliding friction.
2) Given R = 3 ohms and R, = 1 ohm and V = 12 volts
I
a) Find the total resistance.
b) Find the current in the circuit:
c) Find the voltage drop in each resistor:
Answer:
a) because this is in series, we have:
the total resistance is 3 + 1 = 4 (ohm)
b) the curren in the circuit is 12/4 = 3 (A)
c) the voltage in R = 3 ohm is 3.3 = 9 (V)
the voltage in R = 1 ohm is 12 - 9 = 3 (V)
what are ribosomes?
I'm tired. But I have insomnia. Big ugh moment. <.<.
Answer:
Ribosomes are organelles the make protein for the cell.
In the equation for the gravitational force between two objects, which quantity must be squared?
•mi
•m2
•G
•d
Answer:
d
Explanation:
The quantity that must be squared in the equation of gravitational force is distance d.
According to the universal gravitational law, the square of the distance between two objects is inversely proportional to the force of gravity.
Therefore, the quantity to be squared is dThe formula is given as:
Fg = [tex]\frac{G m_{1} m_{2} }{d^{2} }[/tex]
So d is the quantity that must be squared
help me help me help me
Artificial satellites in space can help you find locations on
Earth. True or false?
A small rock is thrown vertically upward with a speed of 17.0m/s from the edge of the roof of a 26.0m tall building. The rock doesn't hit the building on its way back down and lands in the street below. Air resistance can be neglected.
Part A
What is the speed of the rock just before it hits the street?
Express your answer with the appropriate units.
Part B
How much time elapses from when the rock is thrown until it hits the street?
Express your answer with the appropriate units.
Answer:
A) v = 28.3 m/s
B) t = 4.64 s
Explanation:
A)
Assuming no other forces acting on the rock, since the accelerarion due to gravity close to the surface to the Earth can be taken as constant, we can use one of the kinematic equations in order to get first the maximum height (over the roof level) that the ball reaches:[tex]v_{f}^{2} - v_{o}^{2} = 2* g* \Delta h (1)[/tex]
Taking into account that at this point, the speed of the rock is just zero, this means vf=0 in (1), so replacing by the givens and solving for Δh, we get:[tex]\Delta h = \frac{-v_{o} ^{2}}{2*g} = \frac{-(17.0m/s)^{2} }{2*(-9.8m/s2)} = 14.8 m (2)[/tex]
So, we can use now the same equation, taking into account that the initial speed is zero (when it starts falling from the maximum height) and that the total vertical displacement is the distance between the roof level and the ground (26.0 m) plus the maximum height that we have just found in (2) , 14.8m:Δh = 26.0 m + 14. 8 m = 40.8 m (3)Replacing now in (1), we can solve for vf, as follows:[tex]v_{f} =\sqrt{2*g*\Delta h} = \sqrt{2*9.8m/s2*40.8m} = 28.3 m/s (4)[/tex]
B)
In order to find the total elapsed from when the rock is thrown until it hits the street, we can divide this time in two parts:1) Time elapsed from the the rock is thrown, until it reaches to its maximum height, when vf =02) Time elapsed from this point until it hits the street, with vo=0.For the first part, we can simply use the definition of acceleration (g in this case), making vf =0, as follows:[tex]v_{f} = v_{o} + a*\Delta t = v_{o} - g*\Delta t = 0 (5)[/tex]
Replacing by the givens in (5) and solving for Δt, we get:[tex]\Delta t = \frac{v_{o}}{g} = \frac{17.0m/s}{9.8m/s2} = 1.74 s (6)[/tex]
For the second part, since we know the total vertical displacement from (3), and that vo = 0 since it starts to fall, we can use the kinematic equation for displacement, as follows:[tex]\Delta h = \frac{1}{2} * g * t^{2} (7)[/tex]
Replacing by the givens and solving for t in (7), we get:[tex]t_{fall} =\sqrt{\frac{2*\Delta h}{g}} = \sqrt{\frac{2*40.8m}{9.8m/s2} } = 2.9 s (8)[/tex]
So, total time is just the sum of (6) and (8):t = 2.9 s + 1.74 s = 4.64 sexplain resolution of Force
Answer:
it is defined as splitting up the given force into a number of components, without changing its effects on the body is called resolution of forces. A force is generally resolved along with two mutually perpendicular directions.
Explanation:
An Egyptian pyramid contains approximately 1.95 million stone blocks. The average weight of each block is 2.55 tons. What is the weight of the pyramid in pounds?
Answer:
More than 2,300,000 limestone and granite blocks were pushed, pulled, and dragged into place on the Great Pyramid. The average weight of a block is about 2.3 metric tons (2.5 tons).
Some giant ocean waves have a wavelength of 25 m and travel at 6.5 m/s with a frequency of 0.26 HZ. What is the period of such a wave ?
Answer:
3.85s
Explanation:
Given parameters:
Wavelength = 25m
Velocity = 6.5m/s
Frequency = 0.26Hz
Unknown:
Period of the wave = ?
Solution:
The period of a wave is the inverse of the frequency of the wave.
Period = [tex]\frac{1}{frequency}[/tex]
Period = [tex]\frac{1}{0.26}[/tex] = 3.85s
What relationship must exist between an applied force and the velocity of a moving object if uniform circular motion is to result?
Answer:
See explanation
Explanation:
Centripetal force is defined as the inward force required to keep an object moving with a constant speed in a circular path.
The magnitude of this force depends on the mass of the object, radius of the object and the velocity of the body.
So we can write;
F = mv^2/r
What is the strength of an electric field that will put a force of
1.28 x 10-15 N on a proton?
Answer: E = 7,490.6 N/C
Explanation:
If we have a field E, and a particle with a charge q, the force that the particle experiences is:
F = E*q
In this case, we know that the force is:
F = 1.2*10^(-15) N
And we know that the particle is a proton, where the charge of a proton is:
q = 1.602*10^(-19) C
Then we can replace these two values in the equation to get:
1.2*10^(-15) N = E*1.602*10^(-19) C
We just need to isolate E.
(1.2*10^(-15) N)/(1.602*10^(-19) C) = E
7,490.6 N/C = E
That is the strength of the electric field.
You perform nine (identical) measurements of the acceleration of gravity (units of m/s2): 10.1,9.87, 9.76, 9.91, 9.75, 9.88, 9.69, 9.83, and 9.90. The true value is 9.81. Calculate the standard error of your results to ONE significant digit.
Answer:
0.01
Explanation:
Given the data:
10.1,9.87, 9.76, 9.91, 9.75, 9.88, 9.69, 9.83, 9.90
True value = 9.81
Mean value :
Σx / n
Sample size, n = 9
(10.1 + 9.87 + 9.76 + 9.91 + 9.75 + 9.88 + 9.69 + 9.83 + 9.90) / 9
= 88.69 / 9
= 9.854
Standard deviation (σ) :
Sqrt (Σ(X - m)² / n)
[(10.1 - 9.854)^2 + (9.87 - 9.854)^2 + (9.76 - 9.854)^2 + (9.91 - 9.854)^2 + (9.75 - 9.854)^2 + (9.88 - 9.854)^2 + (9.69 - 9.854)^2 + (9.83 - 9.854)^2 + (9.90 - 9.854)^2] / 9
Sqrt(0.113824 / 9)
Sqrt(0.0126471)
σ = 0.1124593
Standard Error = σ / sqrt(n)
Standard Error = 0.1124593 / 9
Standard Error = 0.0124954
Standard Error = 0.01 ( 1 significant digit)
There are two different isotopes; X and Y, both contain the same number of radioactive substances. If sample X
has a longer half-life than Y, compare their rate of radioactive decay.
O A. Rate does not depend on half-life
B. Both of their rates are equal
O C. X has a smaller rate than Y
O D. X has a greater rate than Y
Answer:
Half life refers to the time for 1/2 of the radioactive atoms to decay.
Suppose that X has a half life of 10 days and Y has a half life of 20 days
If both start out with 1000 radioactive atoms then after 20 days
X would have 250 radioactive atoms and Y would have 500 atoms
The rate of decay is greater for the shorter half life:
In the example given X must have the smaller rate of decay because it has a longer half life.
describe measurement in our daily life