A safety plug is designed to melt when the pressure inside a metal tank becomes too high. A gas
at 51.0 atm and a temperature of 23.0°C is contained in the tank, but the plug melts when the
pressure reaches 75.0 atm. What temperature did the gas reach?
WHat does that mean?
A receiver catches a football on the 50.0 yard line and is tackled 5.42 seconds later on the 12 yard line. What
was the runner's average speed?
Answer:
7.01yard/sec
Explanation:
Given parameters:
Initial position = 50yard
Final position = 12yard
Time = 5.42s
Unknown:
Average speed of runner = ?
Solution:
To solve this problem;
Speed = [tex]\frac{distance}{time}[/tex]
Distance covered = Initial position - final position = 50 - 12 = 38yards
So;
Speed = [tex]\frac{38}{5.42}[/tex] = 7.01yard/sec
1.How much work does it take to get a 2Kg ball moving 15m/s if it starts from rest?
2. If a force of 235N was added to the ball, through what distance would this force have to act to give the ball a velocity of 15m/s
An Egyptian pyramid contains approximately 1.95 million stone blocks. The average weight of each block is 2.55 tons. What is the weight of the pyramid in pounds?
Answer:
More than 2,300,000 limestone and granite blocks were pushed, pulled, and dragged into place on the Great Pyramid. The average weight of a block is about 2.3 metric tons (2.5 tons).
How do pulleys help move objects?
Pulleys are powerful simple machines. They can change the direction of a force, which can make it much easier for us to move something. If we want to lift an object that weighs 10 kilograms one meter high, we can lift it straight up or we can use a pulley, so we can pull down on one end to lift the object up.
Answer:
Pulleys are powerful simple machines. They can change the direction of power, which can make it much easier for us to move something. If we want to lift an object that weighs 10 kilograms one meter high, we can lift it straight up or use a pulley, so we can pull one end down and lift the object.
Explanation:
Assuming no friction, how does the initial gravitational potential energy of
the marble on a downward slope compare to the final kinetic energy?
a) they are the same
b) the initial gravitational potential energy is greater than the final kinetic energy
c) the initial gravitational potential energy is less then the final kinetic energy
Answer:
a) They are the same.
Explanation:
Assuming no friction, there should be no energy transfer and thus the Law of Conservation of Energy says:
[tex]PE=KE,\\mgh=\frac{1}{2}mv^2[/tex]
These types of problems also disregard any air resistance the surface of the object may cause. Therefore, no energy is transferred and from the Law of Conservation of Energy, [tex]100\%[/tex] of energy is preserved.
In the laboratory, a ball is dropped onto a force-sensing platform several times, each time hitting a different surface (foam, feathers, clay, etc.). The momentum of the ball changes by the same amount in each trial; in each trial, the average scale reading is F, and the time of collision t are measured. What quantities would need to be graphed to exhibit a straight-line relationship
Answer:
Graphing the momentum against the change in moment yields a linear relationship.
Explanation:
This is an impulse experiment,
I = ∫ F .dt
where the force and time of the collision are measured, therefore if we assume an average force the integral reduces to
I = F t
Furthermore, the momentum is equal to the change in moment of the ball, this change in moment can be found using the energy relations measuring the height of the ball and calculating its speed, in the two intervals for the descent and for the exit, possibly the heights are different so the moment change is different from zero.
Starting point. Higher
Em₀ = U = mgh
Lower end point, just before hitting the scale
[tex]Em_{f}[/tex] = K = ½ m v²
in the path in the air there is no friction
Em₀ = Em_{f}
m g h = ½ m v²
v = [tex]\sqrt{2gh}[/tex]
this height is different for the descent and ascent of the ball, so we have two moments
Δp = [tex]p_{f}[/tex] - p₀
Δp = m (v_{f} -v₀)
therefore we have the relationship
I = Δp
Graphing the momentum against the change in moment yields a linear relationship.
John runs 3 km north then walks 2 km south. What is his total distance traveled and displacement?
Answer:
the total distance is 5km and the displacement is 1km
Explanation:
The total distance would be the addition of John running both ways so 3 km, 2 km.
However since he only walked back from a distance of 3 km to 2 km, he would be displaced 1 km because displacement is more like the position from the original point.
Think about 2 km as a positive value for the first part of the question and a negative value for the second part.
A protein molecule in an electrophoresis gel has a negative charge. The exact charge depends on the pHpH of the solution, but 30 excess electrons is typical. What is the magnitude of the electric forceon a protein with this charge in a 1500 N/C electric field?
Answer:
The magnitude of the force = 7.2 × 10⁻¹⁵ C
Explanation:
The total quantization of charge q on an electron = n × e
where;
n = 30
e = 1.6 × 10⁻¹⁸ C
q = 30 × 1.6 × 10⁻¹⁸ C
q = 4.8 × 10⁻¹⁸ C
Now, the magnitude of the force is determined by using the formula:
F = qE
F = ( 4.8 × 10⁻¹⁸ C) ( 1500 N/C)
F = 7.2 × 10⁻¹⁵ C
at what speed does the kg ball move ?
Answer: Choice A) 2 meters per second
=======================================================
Explanation:
The smaller ball has momentum of
p = m*v
p = (1 kg)*(4 m/s)
p = 4 kg*m/s
All of this momentum transfers into the larger ball because the smaller ball comes to a complete stop.
For the larger ball, we have p = 4 and m = 2. Let's find v.
p = m*v
4 = 2*v
4/2 = v
2 = v
v = 2 m/s which is why the answer is choice A
The larger ball moves at a speed of 2 meters per second. The speed is cut in half compared to the smaller ball because the larger ball has more inertia (aka more mass), and therefore it takes more energy to move it. If you apply the same energy to each, then the smaller object moves faster.
Which action will leave the dump trucks inertia unchanged?? PLEASE ANSWER FAST!!!
A. add gas
B. increase force applied to engine
Answer:
B.
Explanation:
An 88 kg person steps into a car of mass 2002 kg, causing it to sink 5.36 cm on itssprings. Assuming no damping, with what fre-quency will the car and passenger vibrate onthe springs? Answer in units of Hz. The acceleration of gravity is 9.81 m/s^2.
Answer:
The required frequency = 0.442 Hz
Explanation:
Frequency [tex]f = ( \dfrac{1}{2 \pi}) \omega[/tex]
where;
[tex]\omega = \sqrt{\dfrac{k}{m} }[/tex]
Then;
[tex]f = \Bigg ( \dfrac{1}{2 \pi} \Bigg ) \Bigg( \sqrt{\dfrac{k}{m} } \Bigg )[/tex]
However;
[tex]k = \dfrac{F}{x}[/tex] and;
mass [tex]m = m_{car } + m_{person}[/tex]
[tex]f = \Bigg ( \dfrac{1}{2 \pi} \Bigg ) \Bigg( \sqrt{\dfrac{\dfrac{F}{x}}{m_{car}+m_{person}} } \Bigg )[/tex]
[tex]f = \Bigg ( \dfrac{1}{2 \pi} \Bigg ) \Bigg( \sqrt{\dfrac{{F}}{x(m_{car}+m_{person})} } \Bigg )[/tex]
where;
[tex]F = m_{person}g[/tex]
Then;
[tex]f = \Bigg ( \dfrac{1}{2 \pi} \Bigg ) \Bigg( \sqrt{\dfrac{ {m_{person}g }}{x(m_{car}+m_{person})} } \Bigg )[/tex]
replacing the values;
[tex]f = \Bigg ( \dfrac{1}{2 \pi} \Bigg ) \Bigg( \sqrt{\dfrac{ {(88 \ kg)* (9.81 \ m/s^2) }}{(5.36 \times 10^{-2} \ m) (2002 \ kg +88 \ kg)} } \Bigg )[/tex]
[tex]\mathbf{f = 0.442 \ Hz}[/tex]
Which ray diagram demonstrates the phenomenon of absorption?
An illustration with a vector pointed right going through an opening in a boundary and splitting into 3 vectors. One up and to the right, one straight and one down to the right.
An illustration with a vector pointed right going through an opening in a boundary and turning into a transverse wave on the other side.
An illustration with a vector striking a boundary at an angle and a second vector coming off the boundary at the exact same angle.
Answer:
B
Explanation:
on edge
The illustration with a vector pointed right going through an opening in a boundary and turning into a transverse wave on the other side demonstrates the phenomenon of absorption, so, option B is correct.
What is absorption?Absorption, in wave motion, is the process by which a wave's energy is transferred to matter when the wave travels through it. The energy of an electromagnetic, acoustic, or other wave is related to the square of its amplitude, which is the maximum displacement or movement of a point on the wave.
The amplitude of a wave continuously diminishes as it travels through a substance. The medium is described as being transparent to a specific type of radiation if just a tiny portion of the energy is absorbed, whereas it is described as opaque if all the energy is lost.
To know more about absorption:
https://brainly.com/question/19053744
#SPJ2
In the equation for the gravitational force between two objects, which quantity must be squared?
•mi
•m2
•G
•d
Answer:
d
Explanation:
The quantity that must be squared in the equation of gravitational force is distance d.
According to the universal gravitational law, the square of the distance between two objects is inversely proportional to the force of gravity.
Therefore, the quantity to be squared is dThe formula is given as:
Fg = [tex]\frac{G m_{1} m_{2} }{d^{2} }[/tex]
So d is the quantity that must be squared
Do it in order.
from smallest to largest
Answer:
The earth, The sun, the solar system and the milky way.
A student asks the following question:
"If all things with mass have a gravitational field, why doesn't this glue bottle and
stapler, sitting on the counter, stick together because of gravitational forces?"
Which classmate answers correctly?
Ashton says that the gravitational fields between the bottle and the stapler
cancel out because of Newton's 3rd Law.
O Natalie says that all things with mass have a gravitational field, but the force is
very weak and cannot be perceived around small objects.
Xavier says the bottle and the stapler are way too small to have a gravitational
field.
Katherine says the bottle and the stapler have a strong gravitational field, and
would move towards each other quickly if there were no friction on the counter.
Answer:
Natalie says that all things with mass have a gravitational field, but the force is very weak and cannot be perceived around small objects.
Explanation:
The force due to gravity is proportional to the mass of the object and inversely proportional to the square of the distance between objects. The Earth is so massive that the force due to its gravity is much greater than the force between objects on the counter.
If there were no friction, the objects might move toward each other, depending on what other masses were near them tending to cause them to move in other directions.
Natalie's explanation is about the best.
__
Additional comment
The universal gravitational constant was determined by Henry Cavendish in the late 18th century using lead balls weighing 1.6 pounds and 348 pounds. His experiment was enclosed in a large wooden box to minimize outside effects. While these masses are somewhat greater than those of a glue bottle and stapler, the experiment shows the force of gravity between "small" objects can be measured.
There are two different isotopes; X and Y, both contain the same number of radioactive substances. If sample X
has a longer half-life than Y, compare their rate of radioactive decay.
O A. Rate does not depend on half-life
B. Both of their rates are equal
O C. X has a smaller rate than Y
O D. X has a greater rate than Y
Answer:
Half life refers to the time for 1/2 of the radioactive atoms to decay.
Suppose that X has a half life of 10 days and Y has a half life of 20 days
If both start out with 1000 radioactive atoms then after 20 days
X would have 250 radioactive atoms and Y would have 500 atoms
The rate of decay is greater for the shorter half life:
In the example given X must have the smaller rate of decay because it has a longer half life.
A racecar makes 24 revolutions around a circular track of radius 2 meters in
162 seconds. Find the racecar's frequency
Answer:
[tex]0.15\: \mathrm{Hz}[/tex]
Explanation:
The frequency is of an object is given by [tex]f=\frac{1}{T}[/tex], where [tex]T[/tex] is the orbital period of the object.
Since the racecar makes 24 revolutions around a circular track in 162 seconds, it will take the racecar [tex]\frac{162}{24}=6.75\:\mathrm{s}[/tex] per revolution.
Therefore, the frequency of the racecar is [tex]\frac{1}{6.75}=\fbox{$0.15\:\mathrm{Hz}$}[/tex] (two significant figures).
The radius of the track is irrelevant in this problem.
calculate the average speed of talias car during the trip
Answer:
We're no strangers to love
You know the rules and so do I
A full commitment's what I'm thinking of
You wouldn't get this from any other guy
I just wanna tell you how I'm feeling
Gotta make you understand
Never gonna give you up
Never gonna let you down
Never gonna run around and desert you
Never gonna make you cry
Never gonna say goodbye
Never gonna tell a lie and hurt you
We've known each other for so long
Your heart's been aching but you're too shy to say it
Inside we both know what's been going on
We know the game and we're gonna play it
And if you ask me how I'm feeling
Don't tell me you're too blind to see
Never gonna give you up
Never gonna let you down
Never gonna run around and desert you
Never gonna make you cry
Never gonna say goodbye
Never gonna tell a lie and hurt you
No, I'm never gonna give you up
No, I'm never gonna let you down
No, I'll never run around and hurt you
Never, ever desert you
We've known each other for so long
Your heart's been aching but
Never gonna give you up
Never gonna let you down
Never gonna run around and desert you
Never gonna make you cry
Never gonna say goodbye
Never gonna tell a lie and hurt you
No, I'm never gonna give you up
No, I'm never gonna let you down
No, I'll never run around and hurt you
I'll never, ever desert you
Explanation:
RICK ROLLED
Two spherical objects have masses of 100 kg and 200 kg. Their centers are
separated by a distance of 40 cm. Find the gravitational attraction between
them.
Answer:
8.34 x 10⁻⁶N
Explanation:
Given parameters:
Mass 1 = 100kg
Mass 2 = 200kg
Distance of separation = 40cm = 0.4m
Unknown:
Gravitational force of attraction between them = ?
Solution:
To solve this problem, we use the expression below which is derived from the Newton's law of universal gravitation:
Fg = [tex]\frac{G x mass 1 x mass 2}{d^{2} }[/tex]
G is the universal gravitation constant = 6.67 x 10⁻¹¹
d is the separation
Now;
Fg = [tex]\frac{6.67 x 10^{-11} x 100 x 200}{0.4^{2} }[/tex] = 8.34 x 10⁻⁶N
Artificial satellites in space can help you find locations on
Earth. True or false?
what are ribosomes?
I'm tired. But I have insomnia. Big ugh moment. <.<.
Answer:
Ribosomes are organelles the make protein for the cell.
describe measurement in our daily life
Plz help this is so confusing
Answer:
5 Km/h
Explanation:
From the question given above, the following data were obtained:
Distance travelled = 10 Km
Time = 2 hours
Speed =?
Speed is simply defined as the distance travelled per unit time. Mathematically, it can be represented as:
Speed = distance travelled /time.
With the above formula, we can obtain the speed at which the duck is travelling as follow:
Distance travelled = 10 Km
Time = 2 hours
Speed =?
Speed = distance travelled /time.
Speed = 10 / 2
Speed = 5 Km/h
Thus, the duck is travelling at a speed of 5 Km/h
A small rock is thrown vertically upward with a speed of 17.0m/s from the edge of the roof of a 26.0m tall building. The rock doesn't hit the building on its way back down and lands in the street below. Air resistance can be neglected.
Part A
What is the speed of the rock just before it hits the street?
Express your answer with the appropriate units.
Part B
How much time elapses from when the rock is thrown until it hits the street?
Express your answer with the appropriate units.
Answer:
A) v = 28.3 m/s
B) t = 4.64 s
Explanation:
A)
Assuming no other forces acting on the rock, since the accelerarion due to gravity close to the surface to the Earth can be taken as constant, we can use one of the kinematic equations in order to get first the maximum height (over the roof level) that the ball reaches:[tex]v_{f}^{2} - v_{o}^{2} = 2* g* \Delta h (1)[/tex]
Taking into account that at this point, the speed of the rock is just zero, this means vf=0 in (1), so replacing by the givens and solving for Δh, we get:[tex]\Delta h = \frac{-v_{o} ^{2}}{2*g} = \frac{-(17.0m/s)^{2} }{2*(-9.8m/s2)} = 14.8 m (2)[/tex]
So, we can use now the same equation, taking into account that the initial speed is zero (when it starts falling from the maximum height) and that the total vertical displacement is the distance between the roof level and the ground (26.0 m) plus the maximum height that we have just found in (2) , 14.8m:Δh = 26.0 m + 14. 8 m = 40.8 m (3)Replacing now in (1), we can solve for vf, as follows:[tex]v_{f} =\sqrt{2*g*\Delta h} = \sqrt{2*9.8m/s2*40.8m} = 28.3 m/s (4)[/tex]
B)
In order to find the total elapsed from when the rock is thrown until it hits the street, we can divide this time in two parts:1) Time elapsed from the the rock is thrown, until it reaches to its maximum height, when vf =02) Time elapsed from this point until it hits the street, with vo=0.For the first part, we can simply use the definition of acceleration (g in this case), making vf =0, as follows:[tex]v_{f} = v_{o} + a*\Delta t = v_{o} - g*\Delta t = 0 (5)[/tex]
Replacing by the givens in (5) and solving for Δt, we get:[tex]\Delta t = \frac{v_{o}}{g} = \frac{17.0m/s}{9.8m/s2} = 1.74 s (6)[/tex]
For the second part, since we know the total vertical displacement from (3), and that vo = 0 since it starts to fall, we can use the kinematic equation for displacement, as follows:[tex]\Delta h = \frac{1}{2} * g * t^{2} (7)[/tex]
Replacing by the givens and solving for t in (7), we get:[tex]t_{fall} =\sqrt{\frac{2*\Delta h}{g}} = \sqrt{\frac{2*40.8m}{9.8m/s2} } = 2.9 s (8)[/tex]
So, total time is just the sum of (6) and (8):t = 2.9 s + 1.74 s = 4.64 sPrecisely 1.00 s after the speeder passes, the police officer steps on the accelerator; if the police car's acceleration is 2.70 m/s2 , how much time passes after the police car is passed by a speeder and before the police car overtakes the speeder (assumed moving at constant speed)
Answer:
t= 16.75 s
Explanation:
We will solve this exercise using the kinematic expressions
corridor that goes at constant speed, suppose that its speed is v₁ = 20 m/s, it does not appear in the statement, we start counting the time when it passes the policeman.
x₁ = v₁ t
The policeman starts from rest, so his initial velocity is zero and he has an acceleration a = 2.70 m /s², to use the same time counter we take into account that the policeman left at = 1.00 s after passing the corridor
x₂ = v₀ (t-t₀) + ½ a (t-t₀)²
x₂ = ½ a (t-1)²
at the point where the two meet, the position must be the same
x₁ = x₂
v₁ t = ½ a (t-1)²
(t-1)² = [tex]\frac{2 v_1 t}{a}[/tex]
t² - 2t + 1 - \frac{2 v_1 t}{a} +1 = 0
t² - 2(1 + [tex]\frac{v_1}{a}[/tex]) t +1
let's we solve the second degree equation
t² - 2 ( 1 + [tex]\frac{20}{2.7}[/tex]) t + 1=0
t² - 16.81 t +1=0
t = [ 16.81 ± [tex]\sqrt{ 16.81^2 - 4 )}[/tex] ] /2
t = [16.81 ± 16.695]/2
t₁= 16.75 s
t2= 0.06 s
Time t₂ is less than the reaction time of humans, so the correct answer is the first time
t= 16.75 s
Explain how momentum is determined and conserved.
ASAP!!
Explanation:
Momentum is conserved in the collision. Momentum is conserved for any interaction between two objects occurring in an isolated system.
A 12-kg object is moving rightward with a constant velocity of 4 m/s. How much net force is required to keep the object moving with
the same speed and in the same direction?
What is the correct organization of living things, from smallest to largest?
Cells - Tissues - Organs - Organ Systems - Organism
Organs - Tissues - Cells - Organ Systems - Organism
Cells - Organs - Tissues - Organism - Organ Systems
Cells - Organism - Tissues - Organ Systems - Organs