to find Use the limit definition of the derivative, f'(x) = limax-0 f(x+Ax)-f(a) the derivative of f (x) = 3x2 - x +1. AZ

Answers

Answer 1

After using the limit definition of the derivative, the answer comes as 6x.

The function is f(x) = 3x² - x + 1.

We have to find the derivative of the function using the limit definition of the derivative, f'(x) = limax-0 f( x+ Ax )-f(a).

So, we know that the limit definition of the derivative, f'(x) = limax-0 f(x+ Ax)-f(a) / Ax

By substituting the given values in the above formula, we get; f'(x) = lim Ax-0 {f(x + Ax) - f(x)} / Ax

Now, let us find the derivative of the given function.

Substitute the values in the above formula; f'(x) = lim Ax-0 {f(x + Ax) - f(x)} / Axf'(x) = lim Ax-0 {[3(x + Ax)² - (x + Ax) + 1] - [3x² - x + 1]} / Axf'(x) = lim Ax-0 {[3(x² + 2xAx + A²) - x - Ax + 1] - [3x² - x + 1]} / Axf'(x) = lim Ax-0 {[3x² + 6xAx + 3A² - x - Ax + 1] - [3x² - x + 1]} / Axf'(x) = lim Ax-0 {[6xAx + 3A²] / A}f'(x) = lim Ax-0 {6x + 3Ax}f'(x) = lim Ax-0 {6x} + lim Ax-0 {3Ax}f'(x) = 6x + 0f'(x) = 6xTherefore, the derivative of f(x) = 3x² - x + 1 is f'(x) = 6x.

Answer: f'(x) = 6x.

To know more about limit definition, visit:

https://brainly.com/question/30767081#

#SPJ11


Related Questions

If 21 and 22 are vertical angles and m/1 = 3x + 17
m/2=4x-24, what is m/1?


Question 3 on picture

Answers

The measure of ∠1 is 140°.

Vertical angles are a pair of opposite angles formed by the intersection of two lines.

They have equal measures.

In this case, we have ∠1 and ∠2 as vertical angles.

Given that the measure of ∠1 is represented as 3x + 17 and the measure of ∠2 is represented as 4x - 24, we can set up an equation to find the value of x.

Since ∠1 and ∠2 are vertical angles, they have equal measures.

So we can write the equation:

3x + 17 = 4x - 24

To solve for x, we can start by isolating the variable terms on one side:

3x - 4x = -24 - 17

-x = -41

To solve for x, we can multiply both sides of the equation by -1 to get a positive x:

x = 41

Now that we know the value of x, we can substitute it back into the expression for ∠1 to find its measure:

m ∠1 = 3x + 17

m ∠1 = 3(41) + 17

m ∠1 = 123 + 17

m ∠1 = 140

Therefore, the measure of ∠1 is 140°.

Learn more about Vertical angles click;

https://brainly.com/question/24566704

#SPJ1

Among your group discuss if the following symbolic equation is true? Pv (Q ^R)=(PvQ)^R ... Is this equation an example of the associative law in mathematics? Cons

Answers

This equation is an example of the associative law in mathematics, and the given symbolic equation is true.

The given symbolic equation is: [tex]Pv (Q ^R)=(PvQ)^R[/tex].

The question is if this equation is true or not and whether this equation is an example of the associative law in mathematics. Symbolic equation is a mathematical equation with symbols instead of numbers, and associative law is one of the basic laws of mathematics. In mathematics, the associative law states that the way in which factors are grouped in a multiplication problem does not affect the answer.

The equation: [tex]Pv (Q ^R)=(PvQ)^R[/tex] is true and it is an example of the associative law in mathematics. The associative law can be applied to various mathematical operations, including addition, multiplication, and others. It is a fundamental property of mathematics that is useful in solving equations and simplifying expressions.

To learn more about associative law click here https://brainly.com/question/30981052

#SPJ11

Consider the polar equation r = 3 cos (50). a. Identify and sketch this curve. You must label the graph carefully enough that I can tell where the curve is. b.Find the formula for the area enclosed by one of the petals. You don't need to actually compute this integral, you just need to write find the integral, making sure that your bounds and integrand are correct.

Answers

The polar equation r = 3 cos(50) represents a curve with a petal-like shape. The area enclosed by one of the petals can be found by evaluating the integral with the correct bounds and integrand.

The polar equation r = 3 cos(50) represents a curve in polar coordinates. The parameter "r" represents the distance from the origin, and "cos(50)" determines the shape of the curve.

To sketch the curve, we can consider the values of r for different angles. As the angle increases from 0 to 2π, the value of cos(50) alternates between positive and negative. This results in a curve with a petal-like shape, where the distance from the origin varies based on the cosine function.

To find the formula for the area enclosed by one of the petals, we need to evaluate the integral. The area formula in polar coordinates is given by A = (1/2) ∫[θ1,θ2] r^2 dθ, where θ1 and θ2 are the angles that define the bounds of the petal.

In this case, since we want to find the area enclosed by one petal, we need to determine the appropriate bounds for θ. Since the curve completes one full rotation in 2π, the bounds for one petal can be chosen as θ1 = 0 and θ2 = π.

Therefore, the integral to find the area enclosed by one petal is A = (1/2) ∫[0,π] (3 cos(50))^2 dθ.

Learn more about the polar equation :

https://brainly.com/question/28976035

#SPJ11

I actually need help with this, not a fake answer. So please, help. I will give you more if I can but I need to answer this

Answers

Answer:

Step-by-step explanation:

the sequence is arithmetic it goes up consistently

You put 15 where n is so the problem would look like an=32(0.98)^n-1

The pants converge

His pants will be very long it is not reasonable

Evaluate the following integrals. Show enough work to justify your answers. State u-substitutions explicitly. x+1 5.7 S dx (x-2)x2

Answers

The integral [tex](x + 1)^(5.7) dx[/tex] can be evaluated by using the power rule for integration. We add 1 to the exponent and divide by the new exponent. Hence, the result is: [tex]∫(x + 1)^(5.7) dx = (1/6.7)(x + 1)^(6.7) + C[/tex]

To evaluate the **integral of (x - 2)x^2 dx**, we can use the distributive property and then apply the power rule for integration. The steps are as follows:

[tex]∫(x - 2)x^2 dx = ∫(x^3 - 2x^2) dx = (1/4)x^4 - (2/3)x^3 + C[/tex]

In the above evaluation, we used the power rule to integrate each term separately. The integral of[tex]x^3 is (1/4)x^4[/tex], and the integral of[tex]-2x^2 is -(2/3)x^3.[/tex]Adding the constant of integration (C) gives the final result.

learn more about integral here:

https://brainly.com/question/32387684

#SPJ11


17, 18, and 21 please
In Exercises 17–22, use the nth Term Divergence Test (Theorem 4) to prove that the following series diverge. n 17. 100 + 12 n 18. 8] 2eld V n + 1 3 19. 1 2 + 2 3 +... 4 20. }(-1)"n n=1 -38" - 21. co

Answers

After considering the given data we conclude that the nth Term Divergence Test, the given series diverge since the limit of the nth term as n approaches infinity is not equal to zero in each case. As seen below

17. can't reach zero as n comes to infinity.

18. couldn't reach zero as n approaches infinity.

19. haven't gone to zero as n approaches infinity.

20. will not approach zero as n approaches infinity.

21. won't not approach zero as n approaches infinity.

22. cannot approach zero as n approaches infinity

To show prove that the given series diverges applying the nth Term Divergence Test, we have to show that the limit of the nth

term as n approaches infinity is not equal to zero.

17. The series 100 + 12n diverges cause the nth term, 12n, does not approach zero as n approaches infinity.

18. The series [tex](8 ^{(n+1)})/(3^n)[/tex] diverges cause the nth term,   does not approach zero as n approaches infinity.

19. The series [tex]1/(n^{2/3})[/tex] diverges cause the nth term,  does not approach zero as n approaches infinity.

20. The series [tex](-1)^{n-1}/n[/tex] diverges due to the nth term, , does not approach zero as n approaches infinity.

21. The series cos(n)/n diverges cause  the nth term, cos(n)/n, does not approach zero as n approaches infinity.

22. The series [tex](A^{(n+1)} - n) /(10^n)[/tex] diverges due to the nth term, does not approach zero as n approaches infinity.

In each case, the nth term does not tend to zero, indicating that the series diverges.

To Learn more about Divergence

brainly.com/question/17177764

#SPJ4

The complete question is:




9) 9) y = e4x2 + x 8xe2x + 1 A) dy = B) dy = 8xex2 +1 dx dx C) dy dx 8xe + 1 dy = 8xe4x2 D) + 1 dx

Answers

The correct option is B) dy = 8xex^2 + 1 dx. In the given question, we have a function y = e^(4x^2 + x) / (8xe^(2x) + 1). To find the derivative dy/dx, we need to apply the chain rule.

The derivative of the numerator e^(4x^2 + x) with respect to x is obtained by multiplying it by the derivative of the exponent, which is (8x^2 + 1). Similarly, the derivative of the denominator (8xe^(2x) + 1) with respect to x is (8x(2e^(2x)) + 1).

When we simplify the expression, we get dy/dx = (8x(8x^2 + 1)e^(4x^2 + x)) / (8xe^(2x) + 1)^2. This matches with option B) dy = 8xex^2 + 1 dx.

In summary, the correct option for the derivative dy/dx is B) dy = 8xex^2 + 1 dx.

To learn more about chain rule click here: brainly.com/question/29498741


#SPJ11

jill needs $50 000 for a round-the-world holiday in 3 years time. How much does Jill need to invest at 7% pa compounded yearly to achieve this goal?

Answers

Jill needs to invest approximately $40,816.33 at a 7% annual interest rate compounded yearly to achieve her goal of $50,000 for a round-the-world holiday in 3 years.

To solve this problem

We can use the formula for compound interest:

A = P(1 + r/n)^(nt)

Where

A is equal to the $50,000 future value that Jill hopes to acquire.P is the principle sum, which represents Jill's necessary initial investment.(7% or 0.07) is the annual interest rate.n is equal to how many times the interest is compounded annually (in this case, once).T equals the duration in years (3)

We can rearrange the formula to solve for P:

P = A / (1 + r/n)^(nt)

Now we can substitute the given values into the formula and calculate:

P = 50000 / (1 + 0.07/1)^(1*3)

P = 50000 / (1 + 0.07)^3

P = 50000 / (1.07)^3

P = 50000 / 1.2250431

P ≈ $40,816.33

Therefore, Jill needs to invest approximately $40,816.33 at a 7% annual interest rate compounded yearly to achieve her goal of $50,000 for a round-the-world holiday in 3 years.

Learn more about compound interest here : brainly.com/question/30364118

#SPJ1


Please Help!!
3. Evaluate each indefinite integral using change-of-variable (u-substitution) (a) dr (b) scos(la 274 (n=72) dx

Answers

The result of the indefinite integral ∫scos(la274(n=72))dx is -s(sin(la274(n=72))) / la274(n=72) + C.

The indefinite integral ∫dr can be evaluated as r + C, where C is the constant of integration.

To evaluate this integral using u-substitution, we can let u = r. Since there is no expression involving r that needs to be simplified, the integral becomes ∫du.

Integrating with respect to u gives us u + C, which is equivalent to r + C.

Therefore, the result of the indefinite integral ∫dr is r + C.

(b) The indefinite integral ∫scos(la274(n=72))dx can be evaluated by substituting u = la274(n=72).

Let's assume that the limits of integration are not provided in the question. In that case, we will focus on finding the antiderivative of the given expression.

Using the u-substitution, we have du = la274(n=72)dx. Rearranging, we find dx = du/la274(n=72).

Substituting these values into the integral, we have ∫scos(u) * (du/la274(n=72)).

Integrating with respect to u gives us -s(sin(u)) / la274(n=72) + C.

Finally, substituting back u = la274(n=72), we get -s(sin(la274(n=72))) / la274(n=72) + C.

To learn more about integration click here

brainly.com/question/31744185

#SPJ11

2. Describe the set of points in 3 dimensions which satisfy the following equations given in either rectangular, cylindrical or spherical coordinates. a) x = 3 b) r = 3 c) () = = π/4 d) p = π/6 e) 0

Answers

The set of points in three dimensions that satisfy the given equations can be described as follows:

a) In rectangular coordinates, the points lie on the plane x = 3.

b) In cylindrical coordinates, the points lie on the cylinder with radius 3, extending infinitely in the z-direction.

c) In spherical coordinates, the points lie on the cone with an angle of π/4 and apex at the origin.

d) In cylindrical coordinates, the points lie on the plane z = π/6.

e) In spherical coordinates, the points lie on the origin (0, 0, 0).

a) The equation x = 3 represents a vertical plane parallel to the yz-plane, where all points have an x-coordinate of 3 and can have any y and z coordinates. This can be visualized as a flat plane extending infinitely in the y and z directions.

b) The equation r = 3 represents a cylinder with radius 3 in the cylindrical coordinate system. The cylinder extends infinitely in the positive and negative z-directions and has no restriction on the angle θ. This cylinder can be visualized as a solid tube with circular cross-sections centered on the z-axis.

c) In spherical coordinates, the equation θ = π/4 represents a cone with an apex at the origin. The cone has an angle of π/4, measured from the positive z-axis, and extends infinitely in the radial direction. The azimuthal angle φ can have any value.

d) In cylindrical coordinates, the equation z = π/6 represents a horizontal plane parallel to the xy-plane. All points on this plane have a z-coordinate of π/6 and can have any r and θ coordinates. This plane extends infinitely in the radial and angular directions.

e) The equation ρ = 0 represents the origin in spherical coordinates. All points with ρ = 0 lie at the origin (0, 0, 0) and have no restrictions on the angles θ and φ.

To learn more about rectangular coordinates visit:

brainly.com/question/29092472

#SPJ11

the percentage of all possible values of the variable that lie between 3 and 10

Answers

the percentage of all possible values of the variable that lie between 3 and 10 is 100%.

To find the percentage, we first need to determine the total range of possible values for the variable. Let's assume the variable has a minimum value of a and a maximum value of b. The range of values is then given by b - a.

In this case, we are interested in the values between 3 and 10. Therefore, the range of values is 10 - 3 = 7.

Next, we need to determine the range of values between 3 and 10 within this total range. The range between 3 and 10 is 10 - 3 = 7.

To calculate the proportion, we divide the range of values between 3 and 10 by the total range: (10 - 3) / (b - a).

In this case, the proportion is 7 / 7 = 1.

To convert the proportion to a percentage, we multiply it by 100: 1 * 100 = 100%.

Therefore, the percentage of all possible values of the variable that lie between 3 and 10 is 100%. This means that every possible value of the variable falls within the specified range.

Learn more about percentage here:

https://brainly.com/question/16797504

#SPJ11

Show That Cos 2x + Sin X = 1 May Be Written In The Form K Sin² X - Sin X = 0, Stating The Value Of K. Hence Solve, For 0 < X &Lt; 360, The Equation Cos 2x + Sin X = 1

Answers

the solutions to the equation Cos 2x + Sin X = 1 for 0 < X < 360 are x = 0°, x = 180°, x = 210°, and x = 330°.

Starting with the equation "Cos 2x + Sin X = 1," we can use the double-angle identity for cosine, which states that "Cos 2x = 1 - 2 Sin² x." Substituting this into the equation gives "1 - 2 Sin² x + Sin x = 1," which simplifies to "- 2 Sin² x + Sin x = 0." Now, we have the equation in the form "K Sin² x - Sin x = 0," where K = -2.

To solve the equation "K Sin² x - Sin x = 0" for 0 < X < 360, we factor out the common term of Sin x: Sin x (K Sin x - 1) = 0. This equation is satisfied when either Sin x = 0 or K Sin x - 1 = 0.

For Sin x = 0, the solutions are x = 0° and x = 180°.

For K Sin x - 1 = 0 (where K = -2), we have -2 Sin x - 1 = 0, which gives Sin x = -1/2. The solutions for this equation are x = 210° and x = 330°.

Therefore, the solutions to the equation Cos 2x + Sin X = 1 for 0 < X < 360 are x = 0°, x = 180°, x = 210°, and x = 330°.

Learn more about Substitution here:

https://brainly.com/question/22340165

#SPJ11

(5 points) Find the vector equation for the line of intersection of the planes 5x - 3y - 2z = –2 and 5x + z = 5 r= ,0) + (-3, >

Answers

The line of intersection can be re-written in the form of the vector equation as; r=(1,1,1) + t(-1,-5,0)

The vector equation for the line of intersection of the planes 5x - 3y - 2z = –2 and 5x + z = 5 r= ,0) + (-3, > is given as;

r=(1,1,1) + t(-1,-5,0)

In order to derive the equation above, we need to solve the system of equations by using the elimination method, which involves eliminating one of the variables to obtain an equation in two variables.

Therefore, we solve the planes as follows;

5x - 3y - 2z = –2... [1]

5x + z = 5 ...[2]

From equation [2], we can solve for z as follows; z = 5 - 5x

Substitute this into equation [1]; 5x - 3y - 2(5 - 5x) = –2

5x - 3y - 10 + 10x = –2

15x - 3y = 8

5x - y = \frac{8}{3}

Therefore, we can write the equation of the line of intersection as;

x = 1-t

y = 1 -5t

z = 1

To learn more about planes click here https://brainly.com/question/2400767

#SPJ11


please solve with steps.
(5) Consider the hallowed-out ball a? < 2? + y2 + x2 < 62, where 0 < a < b are con- stants. Let S be the union of the two surfaces of this ball, where the outer surface is given an outward orientation

Answers

the surfaces S1 and S2 have the correct orientations for their respective roles in defining the hallowed-out ball.

What is Vector?

For other uses, see Vector (disambiguation). In mathematics, physics, and engineering, a Euclidean vector or simply a vector (sometimes called a geometric vector or space vector) is a geometric object that has a magnitude (or length) and a direction. Vectors can be added to other vectors according to vector algebra.

The given problem describes a hallowed-out ball defined by the inequality a^2 < x^2 + y^2 + z^2 < b^2, where 0 < a < b. Let's analyze the surfaces of this ball and determine the orientation of the outer surface.

Outer Surface (S1):

The outer surface of the hallowed-out ball is defined by the equation x^2 + y^2 + z^2 = b^2. This surface represents the boundary of the ball. We will consider this surface with an outward orientation, meaning that the normal vectors point outward from the ball.

Inner Surface (S2):

The inner surface of the hallowed-out ball is defined by the equation x^2 + y^2 + z^2 = a^2. This surface represents the boundary of the hollowed-out region inside the ball. We will consider this surface with an inward orientation, meaning that the normal vectors point inward towards the hollowed-out region.

Now, let S be the union of these two surfaces, S = S1 ∪ S2.

To evaluate the orientation of S, we need to determine the orientation of the normal vectors on each surface.

Outer Surface (S1):

The normal vector of the outer surface S1 points outward from the ball. For any point (x, y, z) on the surface S1 with coordinates (x_0, y_0, z_0), the normal vector is given by:

N1 = (2x_0, 2y_0, 2z_0).

Inner Surface (S2):

The normal vector of the inner surface S2 points inward towards the hollowed-out region. For any point (x, y, z) on the surface S2 with coordinates (x_0, y_0, z_0), the normal vector is given by:

N2 = (-2x_0, -2y_0, -2z_0).

Therefore, the orientation of the union S = S1 ∪ S2 is as follows:

For any point (x, y, z) on S1, the normal vector N1 points outward, representing the outer surface of the hallowed-out ball.

For any point (x, y, z) on S2, the normal vector N2 points inward, representing the inner surface of the hallowed-out region.

Hence, the surfaces S1 and S2 have the correct orientations for their respective roles in defining the hallowed-out ball.

Note: The orientation of the surfaces is crucial in various mathematical and physical applications, such as surface integrals and Gauss's law. The proper orientation ensures the correct direction of flux and other calculations related to the surfaces.

To learn more about vector from the given link

https://brainly.com/question/17157624

#SPJ4

A science project studying catapults sent a projectile into the air with an initial velocity of 45 m/s. The formula for height (s) in meters with respect to time in seconds is s(t) = -4.9t^2 + 45t. ) = i Calculate the average rate of change (average velocity) of the height over the intervals listed. a. from t=1 to t=3 b. from t=2 to t=3 c. from t=2.5 to t=3 d. from t=2.9 to t=3 e. What do you think might be happening close to t=3? Why? ii/ Calculate the instantaneous rate of change (velocity) at t = 4 seconds.

Answers

The average velocities over the given intervals are: a. 15.85 m/s, b. 20.6 m/s, c. 20.85 m/s, d. 24.97 m/s.

What are the average velocities during the specified intervals?

Determine the change in height and time interval for each interval.

Given the formula for height as s(t) = -4.9t^2 + 45t, we need to calculate the change in height and the time interval for each specified interval.

Calculate the average velocity for each interval.

To find the average velocity, we divide the change in height by the corresponding time interval. This gives us the average rate of change of height over that interval.

Then, calculate the average velocities for each interval.

a. From t=1 to t=3:

The change in height is s(3) - s(1) = (-4.9(3)^2 + 45(3)) - (-4.9(1)^2 + 45(1)) = 64.8 - 33.1 = 31.7 m.

The time interval is 3 - 1 = 2 seconds. Average velocity = 31.7 m / 2 s = 15.85 m/s.

b. From t=2 to t=3:

The change in height is s(3) - s(2) = (-4.9(3)^2 + 45(3)) - (-4.9(2)^2 + 45(2)) = 64.8 - 44.2 = 20.6 m.

The time interval is 3 - 2 = 1 second. Average velocity = 20.6 m / 1 s = 20.6 m/s.

c. From t=2.5 to t=3:

The change in height is s(3) - s(2.5) = (-4.9(3)^2 + 45(3)) - (-4.9(2.5)^2 + 45(2.5)) = 64.8 - 54.375 = 10.425 m.

The time interval is 3 - 2.5 = 0.5 seconds. Average velocity = 10.425 m / 0.5 s = 20.85 m/s.

d. From t=2.9 to t=3:

The change in height is s(3) - s(2.9) = (-4.9(3)^2 + 45(3)) - (-4.9(2.9)^2 + 45(2.9)) = 64.8 - 62.303 = 2.497 m.

The time interval is 3 - 2.9 = 0.1 seconds. Average velocity = 2.497 m / 0.1 s = 24.97 m/s.

Now, close to t=3, the average velocities are decreasing. This suggests that the projectile is slowing down as it approaches its highest point.

This is expected because the height function is a quadratic equation, and the vertex of the parabolic path represents the maximum height reached by the projectile.

As the time approaches t=3, the projectile is nearing its peak and experiencing a decrease in velocity.

ii. To calculate the instantaneous rate of change (velocity) at t=4

Learn more about Average velocity

https://brainly.com/question/2851207

#SPJ11

Question Let R be the region in the first quadrant bounded above by the parabola y = 4-x²and below by the line y = 1. Then the area of R is: √√3 units squared None of these This option 2√3 unit

Answers

The area of region R, bounded by the parabola [tex]y=4-x^{2}[/tex] and the line [tex]y = 1[/tex] in the first quadrant, is [tex]2\sqrt{3}[/tex] square units. The correct answer is the third option.

To find the area of region R, we need to determine the points where the parabola and the line intersect. Setting y equal to each other, we get [tex]4 - x^{2} = 1[/tex]. Rearranging the equation gives [tex]x^{2} =3[/tex], which implies [tex]x=\pm\sqrt{3}[/tex]. Since we are only considering the first quadrant, the value of [tex]x[/tex] is [tex]\sqrt{3}[/tex].

To calculate the area, we integrate the difference between the two functions, with x ranging from [tex]0[/tex] to [tex]\sqrt{3}[/tex]. The equation becomes [tex]\int\ {(4-x^{2}-1 ) dx[/tex] from [tex]0[/tex] to [tex]\sqrt{3}[/tex]. Simplifying, we have [tex]\int\ {(3-x^{2} ) dx[/tex] from [tex]0[/tex] to [tex]\sqrt{3}[/tex]. Integrating this expression gives [tex][3(x) - (x^{3} /3)][/tex] evaluated from [tex]0[/tex] to [tex]\sqrt{3}[/tex].

Plugging in the values, we get [tex][3\sqrt{3} - (\sqrt{3}^{3} /3)]-[3(0) - (0^{3} /3)][/tex]. This simplifies to [tex][3\sqrt{3} - (\sqrt{3}^{3} /3)][/tex]. Evaluating further, we have [tex][3\sqrt{3} - (\sqrt{3}^{3} /3)] = [3\sqrt{3} - (\sqrt{27}/3)] = [3\sqrt{3} - \sqrt{9}] = [3\sqrt{3} - 3] = 3(\sqrt{3} - 1)[/tex].

Therefore, the area of region R is [tex]3(\sqrt{3} - 1)[/tex]square units, which is equivalent to [tex]2\sqrt{3}[/tex] square units.

Learn more about parabola here:

https://brainly.com/question/11911877

#SPJ11

Consider the glide reflection determined by the slide arrow OA, where O is the origin and A(2, 0), and the line
of reflection is the x-axis. Answer the following. a. Find the image of any point (x, y) under this glide
reflection in terms of * and y. b. If (3, 5) is the image of a point P under the glide reflec-
tion, find the coordinates of P.

Answers

a. The image of any point (x, y) under the glide reflection determined by the slide arrow OA, with O as the origin and A(2, 0), and the line of reflection as the x-axis can be expressed as (-x + 4, y).

b. If (3, 5) is the image of a point P under the glide reflection, the coordinates of P would be (-3 + 4, 5), which simplifies to (1, 5).

a. In a glide reflection, the reflection is performed first, followed by the translation. Since the line of reflection is the x-axis, the reflection in terms of coordinates can be represented as (x, y) → (x, -y). The translation along the x-axis by a distance of 2 units can be represented as (x, -y) → (x + 2, -y). Combining these two transformations, we get the image of any point (x, y) as (-x + 4, y).

b. If (3, 5) is the image of a point P under the glide reflection, we can equate the coordinates to determine the original point. From the image coordinates, we have -x + 4 = 3 and y = 5. Solving these equations, we find x = -3 and y = 5. Therefore, the coordinates of point P would be (-3 + 4, 5), which simplifies to (1, 5).

Learn more about coordinates here:

https://brainly.com/question/22261383

#SPJ11

a bundle of stacked and tied into blocks that are 1,2 metres high.how many bundles are used to make one block of card?

Answers

The number of bundles to be used to make one block of cardboard is 8 bundles.

How to calculate the number of bundles used to make one block of cardboard?

We shall convert the measurements to a consistent unit in order to estimate the number of bundles used to make one block of cardboard.

Now, we convert the height of the bundles and the block into the same unit like centimeters.

Given:

Height of each bundle = 150 mm = 15 cm

Height of one block = 1.2 meters = 120 cm

Next, we divide the height of the block by the height of each bundle to find the number of bundles:

Number of bundles = Height of block / Height of each bundle

Number of bundles = 120 cm / 15 cm = 8 bundles

Therefore, it takes 8 bundles to make one block of cardboard.

Learn more about measurements at brainly.com/question/26160352

#SPJ1

Question completion:

Your question is incomplete, but most probably your full question was:

The 150mm bundles are stacked and tied into blocks that are 1.2 meters high. how many bundles are used to make one block of cardboard​


How
do you integrate this equation?
32 rx-x-5 dx = +2 o (A) 条 10 - +30m: 及 25 21 (B)

Answers

The integration of the equation [tex]32 rx - x - 5 dx = +2 o ([/tex]A) 条 10 - +30m: 及 25 21 (B) can be done as follows:

[tex]∫(32rx - x - 5)dx = 2(A)条10- + 30m: 及 25 21(B)[/tex]

To integrate the equation, we use the power rule of integration, which states that ∫x^n dx = (x^(n+1))/(n+1), where n is any real number except -1.

Applying the power rule, we integrate each term of the equation separately:

[tex]∫32rx dx = 16r(x^2)/2 = 16rx^2[/tex]

∫x dx = (x^2)/2

∫5 dx = 5x

Now we substitute the integrated terms back into the original equation:

[tex]16rx^2 - (x^2)/2 - 5x = 2(A)条10- + 30m: 及 25 21(B)[/tex]

The resulting equation is the integration of the given equation.

Learn more about integration  here:

https://brainly.com/question/31744185

#SPJ11

Find the global extrema of f(x, y, z) = 5x + 4y + 3z subject to the constraint x² + y2 + z2 = 100. Maximum: Minimum:

Answers

The Lagrange multiplier approach can be used to determine the global extrema of the function (f(x, y, z) = 5x + 4y + 3z) subject to the b(x2 + y2 + z2 = 100).

The Lagrangian function is first built up as follows: [L(x, y, z, lambda) = f(x, y, z) - lambda(g(x, y, z) - c)]. Here, g(x, y, z) = x2 + y2 + z2 is the constraint function, while c = 100 is the constant.

The partial derivatives of (L) with respect to (x), (y), (z), and (lambda) are then determined and set to zero:

Fractal partial L partial x = 5 - 2 lambda partial x = 0

Fractal partial L partial y = 4 - 2 lambda partial y = 0

Fractal partial L partial z = 3 - 2 lambda partial z = 0

Fractal L-partial lambda = g(x, y, z) - c = 0

We can determine from the first three equations

learn more about multiplier here :

https://brainly.com/question/620034

#SPJ11

To produce x units of a religious medal costs C(x) = 12x + 80. The revenue is R(x)=28x. Both cost and revenue are in dollars. a. Find the break-even quantity. b. Find the profit from 490 units. c. Find the number of units that must be produced for a profit of $160. GOD a. units is the break-even quantity. (Type an integer) b. The profit for 490 units is $ units make a profit of $160. (Type an integer.) C

Answers

A. the break-even quantity is 5 units. B. the profit from 490 units is $7,760. C. the number of units that must be produced for a profit of $160 is 15 units.

Answers to the aforementioned questions

a. To find the break-even quantity, we need to set the cost equal to the revenue and solve for x:

C(x) = R(x)

12x + 80 = 28x

80 = 16x

x = 5

Therefore, the break-even quantity is 5 units.

b. To find the profit from 490 units, we need to calculate the revenue and subtract the cost:

R(490) = 28 * 490 = $13,720

C(490) = 12 * 490 + 80 = $5,960

Profit = Revenue - Cost = $13,720 - $5,960 = $7,760

Therefore, the profit from 490 units is $7,760.

c. To find the number of units that must be produced for a profit of $160, we can set the profit equation equal to $160 and solve for x:

Profit = Revenue - Cost

160 = 28x - (12x + 80)

160 = 16x - 80

240 = 16x

x = 15

Therefore, the number of units that must be produced for a profit of $160 is 15 units.

Learn more about break-even quantity at https://brainly.com/question/15281855

#SPJ1

255 TVE DEFINITION OF DERIVATIVE TO fino 50 WHE Su= 4x2 -7% Fino y': 6 x 3 e 5* & Y = TEN- (375) Y ) c) y = 5104 (x2 ;D - es y R+2 x² + 5x 3 Eine V' wsing 206 DIFFERENTIATION 2 (3) ***-¥3) Yo (sin x))* EDO E OVATION OF TANGER ZINE TO CURVE. SI)= X3 -5x+2 AT (-2,4)

Answers

To find the derivative of the given functions, we apply the rules of differentiation. For y = 4x^2 - 7x, the derivative is y' = 8x - 7. For y = e^5x, the derivative is y' = 5e^5x. For y = 10ln(x^2 + 5x + 3), the derivative is y' = (20x + 5)/(x^2 + 5x + 3). For y = x^3 - 5x + 2, the derivative is y' = 3x^2 - 5.

1. To find the derivative of a function, we use the power rule for polynomial functions (multiply the exponent by the coefficient and decrease the exponent by 1) and the derivative of exponential and logarithmic functions.

2. For y = 4x^2 - 7x, applying the power rule gives y' = 2 * 4x^(2-1) - 7 = 8x - 7.

3. For y = e^5x, the derivative of e^(kx) is ke^(kx), so y' = 5e^(5x).

4. For y = 10ln(x^2 + 5x + 3), we use the derivative of the natural logarithm function, which is 1/x. Applying the chain rule, the derivative is y' = (10 * 1)/(x^2 + 5x + 3) * (2x + 5) = (20x + 5)/(x^2 + 5x + 3).

5. For y = x^3 - 5x + 2, applying the power rule gives y' = 3 * x^(3-1) - 0 - 5 = 3x^2 - 5.

For the second part of the question, evaluating the derivative y' at the point (-2, 4) involves substituting x = -2 into the derivative equation obtained for y = x^3 - 5x + 2, which gives y'(-2) = 3(-2)^2 - 5 = 12 - 5 = 7.

Learn more about derivative:

https://brainly.com/question/29020856

#SPJ11

Questions Evaluate the following integrals: cos dx Vxsin (2) a) 65 Ladx

Answers

The integral of cos(x) dx from 0 to 65 is 0. This is because the integral of cos(x) over a full period (2π) is 0, and since 65 is a multiple of 2π, the integral evaluates to 0.

The function cos(x) has a periodicity of 2π, meaning that it repeats itself every 2π units. The integral of cos(x) over a full period (from 0 to 2π) is 0. Therefore, if the interval of integration is a multiple of 2π, like in this case where it is 65, the integral will also evaluate to 0. This is because the function completes several cycles within that interval, canceling out the positive and negative areas and resulting in a net value of 0.

Learn more about evaluates here:

https://brainly.com/question/14677373

#SPJ11

Let R be the region in the first quadrant bounded below by the parabola y = x² and above by the line y = 2. Then the value of [yx dd is: None of these This option This option 6 3

Answers

None of the provided options matches the calculated value. To find the value of the expression [yxd2], we need to evaluate the double integral over the region R.

The expression [yxd2]suggests integration with respect to both x and y.

The region R is bounded below by the parabola y = x² and above by the line y = 2. We need to find the points of intersection between these curves to determine the limits of integration.

Setting y = x² and y = 2 equal to each other, we have:

x² = 2

Solving this equation, we find two solutions: x = ±√2. However, we are only interested in the region in the first quadrant, so we take x = √2 as the upper limit.

Thus, the limits of integration for x are from 0 to √2, and the limits of integration for y are from x² to 2.

Now, let's set up the double integral:

[yxd2]=∫∫RyxdA

Since the integrand is yx, we reverse the order of integration:

[yxd2]=∫₀²∫ₓ²²yxdydx

Integrating with respect to y first, we have:

[yxd2]=∫₀²[∫ₓ²²yxdy]dx

The inner integral becomes:

∫ₓ²²yxdy=[1/2y²x]ₓ²²=(1/2)(22x²−x⁶)

Substituting this back into the outer integral, we have:

[yxd2]=∫₀²(1/2)(22x²−x⁶)dx

Evaluating this integral:

[yxd2]=(1/2)[22/3x³−1/7x⁷]ₓ₀²

= (1/2) [22/3(2³) - 1/7(2⁷) - 0]

= (1/2) [352/3 - 128/7]

= (1/2) [(11776 - 2432)/21]

= (1/2) [9344/21]

= 4672/21

Therefore, the value of [yx d^2] is 4672/21.

None of the provided options matches the calculated value.

Learn more about parabola here:

https://brainly.com/question/11911877

#SPJ11

The marginal cost (in dollars per square foot) of installing x square feet of kitchen countertop is given by C'(x) = x a) Find the cost of installing 40 ft of countertop. b) Find the cost of installing an extra 12 # of countertop after 40 f2 have already been installed. a) Set up the integral for the cost of installing 40 ft of countertop. C(40) = J dx ) The cost of installing 40 ft2 of countertop is $ (Round to the nearest cent as needed.) b) Set up the integral for the cost of installing an extra 12 ft2 after 40 ft has already been installed. C(40 + 12) - C(40) = Sdx - Joan 40 The cost of installing an extra 12 12 of countertop after 40 ft has already been installed is $ (Round to the nearest cent as needed.)

Answers

a. The cost of installing 40 ft² of countertop is $800.

b. The cost of installing an extra 12 ft² after 40 ft² has already been installed is $552.

a) To find the cost of installing 40 ft² of countertop, we can evaluate the integral of C'(x) over the interval [0, 40]:

C(40) = ∫[0, 40] C'(x) dx

Since C'(x) = x, we can substitute this into the integral:

C(40) = ∫[0, 40] x dx

Evaluating the integral, we get:

C(40) = [x²/2] evaluated from 0 to 40

= (40²/2) - (0²/2)

= 800 - 0

= 800 dollars

Therefore, the cost of installing 40 ft² of countertop is $800.

b) To find the cost of installing an extra 12 ft² after 40 ft² has already been installed, we can subtract the cost of installing 40 ft² from the cost of installing 52 ft²:

C(40 + 12) - C(40) = ∫[40, 52] C'(x) dx

Since C'(x) = x, we can substitute this into the integral:

C(40 + 12) - C(40) = ∫[40, 52] x dx

Evaluating the integral, we get:

C(40 + 12) - C(40) = [x²/2] evaluated from 40 to 52

= (52²/2) - (40²/2)

= 1352 - 800

= 552 dollars

Therefore, the cost of installing an extra 12 ft² after 40 ft² has already been installed is $552.

To know more about integrate check the below link:

brainly.com/question/27419605

#SPJ11

Change the integral to cylindrical coordinates. Do not evaluate the integral. (Hint: Draw a picture of this solid to help you see how to change the limits.) -x²-y² +5 (2x) dzdxdy

Answers

the integral to cylindrical coordinates, we need to express the given function and the limits in terms of cylindrical coordinates (ρ, θ, z). The cylindrical coordinates conversion is as follows:

x = ρcosθ,y = ρsinθ,

z = z.

The integral becomes ∫∫∫ (ρ²cos²θ + ρ²sin²θ - ρ² + 10ρ²cosθ) ρ dz dρ dθ.

:To convert the integral to cylindrical coordinates, we substitute the given Cartesian coordinates (x, y, z) with their corresponding cylindrical coordinates (ρ, θ, z). This conversion is achieved by using the relationships between Cartesian and cylindrical coordinates: x = ρcosθ, y = ρsinθ, and z = z.

The original integral is ∫∫∫ (-x² - y² + 5(2x)) dz dxdy. Substituting x and y with ρcosθ and ρsinθ, respectively, gives us ∫∫∫ (ρ²cos²θ + ρ²sin²θ - ρ² + 10ρ²cosθ) ρ dz dρ dθ.

Please note that the explanation provided above is for the conversion to cylindrical coordinates. Evaluating the integral requires additional information about the limits of integration, which are not provided in the given question.

Learn more about function here:

https://brainly.com/question/30721594

#SPJ11

echam wanks to errs Rids no0 is in ish the course. How much shall he save in a bank every month for the next 6 years at an interest rate of 8% compounded every
two months to accumulate the stated amount?

Answers

To calculate the amount that Echam needs to save in a bank every month for the next 6 years, we need to know the desired accumulated amount. Since the desired amount is not provided, we cannot provide a specific savings amount.

To determine the savings amount, we need to use the formula for future value of a series of deposits, given by:

FV = P * [(1 + r)^n - 1] / r

Where:

FV is the desired future value (accumulated amount)

P is the monthly deposit amount

r is the interest rate per compounding period

n is the number of compounding periods

In this case, the interest is compounded every two months, so the number of compounding periods (n) would be 6 years * 6 compounding periods per year = 36 compounding periods.

To find the monthly deposit amount (P), we need to rearrange the formula and solve for P:

P = FV * (r / [(1 + r)^n - 1])

By plugging in the desired accumulated amount, interest rate, and number of compounding periods, we can calculate the monthly savings amount needed to reach the goal over the given time period.

Learn more about amount here : brainly.com/question/32202714

#SPJ11

seventeen individuals are scheduled to take a driving test at a particular dmv office on a certain day, eight of whom will be taking the test for the first time. suppose that six of these individuals are randomly assigned to a particular examiner, and let x be the number among the six who are taking the test for the first time.
(a) What kind of a distribution does X have (name and values of all parameters)? nb(x; 6, nb(x; 6, 7, 16) b(x; 6, 7, 16) h(x; 6, 7, 16) 16 16 16 (b) Compute P(X = 4), P(X 4), and P(X 4). (Round your answers to four decimal places.) 4) 4) P(X = P(X = (c) Calculate the mean value and standard deviation of X. (Round your answers to three decimal places.) mean standard deviation individuals individuals

Answers

The mean value of X is approximately 12.375 and the standard deviation is approximately 2.255.

X follows a negative binomial distribution with parameters r = 6 and p = 8/17. This distribution models the number of trials needed to obtain the eighth success in a sequence of Bernoulli trials, where each trial has a success probability of 8/17.

To compute P(X = 4), we can use the probability mass function of the negative binomial distribution:

P(X = 4) = (6-1)C(4-1) * (8/17)^4 * (9/17)^(6-4) ≈ 0.1747.

P(X < 4) is the cumulative distribution function evaluated at x = 3:

P(X < 4) = Σ(i=0 to 3) [(6-1)C(i) * (8/17)^i * (9/17)^(6-i)] ≈ 0.2933.

P(X > 4) can be calculated as 1 - P(X ≤ 4):

P(X > 4) = 1 - P(X ≤ 4) = 1 - Σ(i=0 to 4) [(6-1)C(i) * (8/17)^i * (9/17)^(6-i)] ≈ 0.5320.

To compute the mean value of X, we can use the formula for the mean of a negative binomial distribution:

mean = r/p ≈ 6/(8/17) ≈ 12.375.

The standard deviation of X can be calculated using the formula for the standard deviation of a negative binomial distribution:

standard deviation = sqrt(r * (1-p)/p^2) ≈ sqrt(6 * (1-(8/17))/(8/17)^2) ≈ 2.255.

Therefore, the mean value of X is approximately 12.375 and the standard deviation is approximately 2.255.

know more about binomial distribution click here:

https://brainly.com/question/29137961

#SPJ11

Find all values of m so that the function ye is a solution of the given differential equation. (Enter your answers as a comma-separated list.) y+ 5y = 0 m= Need Help? Read It

Answers

The values of m for which ye is a solution of the given differential equation y + 5y = 0 are m = -5.

To determine the values of m that make ye a solution of the differential equation y + 5y = 0, we substitute ye into the equation and solve for m.

Substituting ye into the differential equation gives us e^m + 5e^m = 0. To solve this equation, we can factor out e^m from both terms: e^m(1 + 5) = 0. Simplifying further, we have e^m(6) = 0.

For the equation e^m(6) = 0 to hold true, either e^m must equal 0 or the coefficient 6 must equal 0. However, e^m is always positive and never equal to zero for any real value of m. Therefore, the only way for the equation to be satisfied is if the coefficient 6 is equal to zero.

Since 6 is not equal to zero, there are no values of m that satisfy the equation e^m(6) = 0. Therefore, there are no values of m for which ye is a solution of the given differential equation y + 5y = 0.

Learn more about differential equation here:

https://brainly.com/question/25731911

#SPJ11

1. Find the sum of the vectors [-1,4] and [6, -21 and illustrate geometrically on the x-y plane.

Answers

The sum of vectors is <5,2>.

What is the vector?

A vector is a number or phenomena with two distinct properties: magnitude and direction. The term can also refer to a quantity's mathematical or geometrical representation. In nature, vectors include velocity, momentum, force, electromagnetic fields, and weight.

The given vectors are <-1,4> and <6,-2>.

We need to find the sum of the given vectors and illustrate them geometrically.

Plot the point (-1,4) on a coordinate plane and draw a vector <a> from (0,0) to (-1,4).

Plot the point (6,-2) on a coordinate plane and draw a vector <b> from (0,0) to (6,-2).

Now complete the parallelogram and the diagonal represents the sum of both vectors.

<-1,4> +  <6,-2> = < -1+6, 4-2>

= <5,2>

The endpoint of the diagonal is (5,2).

Hence,  the sum of vectors is <5,2>.

To learn more about the vector from the given link

https://brainly.com/question/30854499

#SPJ4

Other Questions
A group of students studied how water can weather rocks. They soaked a small sample of sandstone in water. Then, they frozethe sample overnight. They warmed and resoaked the sample the next day. They continued this process each day for threemonths.Water26 C/80 FRock sample0 C/32 FRock sampleWaterRepeat for 3 monthsWhat change to the rock sample would students observe at the end of the experiment?O A. The rock dissolved because it repeatedly melted andevaporated.O B. The rock gained mass because new rock formed aroundthe edge.26 C /80 FRock sampleOC. The rock broke into smaller pieces because cracks formedin the rock.O D. The rock became a different rock type because itschemical structure changed. Find all discontinuities of the following function ifs-1 $() 3x + 5 if - 15:54 - Br+ 33 34 (a) han discontinuities at and At= -2./(x) has ain) A-1. (:) has alr discontinuity and is discontinuity and i Which of the following activities happens within the stroma?A. The Calvin cycle produces sugars.B. ATP synthase produces ATP.C. Photosystem I absorbs light.D. Electrons move through the electron transport chain. which type of transfer best characterizes learning to swim to learning to drive a car? group of answer choices a. positive b. negative c. neutral d. none of the choices describe banking procedures as related to the ambulatory care setting The current price of a non-dividend paying stock is $107.97 and the annual standard deviation of the rate of return on the stock is 50%. A European put option on the stock has a strike price of $100 and expires in 0.25 years. The risk-free rate is 3% (continuously compounded). Part 1 Attempt 1/2 for 10 pts. What is the value of the term d, in the Black-Scholes formula? 3+ decimals Submit Attempt 1/2 for 10 pts. Part 2 What is the value of N(d)? 2+ decimals Subrnit Attempt 1/2 for 10 pts. Part 3 What should be the price (premium) of the put option? OBrien Corporation is a midsize, privately owned, industrial instrument manufacturer supplying precision equipment to manufacturers in the Midwest. The corporation is 10 years old and uses an integrated ERP system. The administrative offices are located in a downtown building and the production, shipping, and receiving departments are housed in a renovated warehouse a few blocks away. Customers place orders on the companys website, by fax, or by telephone. All sales are on credit, FOB destination. During the past year sales have increased dramatically, but 15% of credit sales have had to written off as uncollectible, including several large online orders to first-time customers who denied ordering or receiving the merchandise. Customer orders are picked and sent to the warehouse, where they are placed near the loading dock in alphabetical sequence by customer name. The loading dock is used both for outgoing shipments to customers and to receive incoming deliveries. There are ten to twenty incoming deliveries every day, from a variety of sources. The increased volume of sales has resulted in a number of errors in which customers were sent the wrong items. There have also been some delays in shipping because items that supposedly were in stock could not be found in the warehouse. Although a perpetual inventory is maintained, there has not been a physical count of inventory for two years. When an item is missing, the warehouse staff writes the information down in log book. Once a week, the warehouse staff uses the log book to update the inventory records. The system is configured to prepare the sales invoice only after shipping employees enter the actual quantities sent to a customer, thereby ensuring that customers are billed only for items actually sent and not for anything on back order.a. Identify at least three weaknesses in OBrien Corporations revenue cycle activities.b. Describe the problem resulting from each weakness.c. Recommend control procedures that should be added to the system to correct the weakness. 11. Use the geometric series and differentiation to find a power series representation for the function () xin(1 + x) 12. Find a Taylor series for f(x) = 3* centered at a=1 and find its radius of convergence 13. Use the Maclaurin series cos x to evaluate the following integral as a power series. [cos Viax why does river damming sometimes contribute to coastal erosion Are length of polar curves Find the length of the following polar curves. 63. The complete circle r = a sin 0, where a > 0 64. The complete cardioid r = 2 - 2 sin e 65. The spiral r = 62, for 0 s o 27 66. The spiral r = r, for 0 S 0 = 2mn, where n is a positive integer 67. The complete cardioid r = 4 + 4 si Why might the Standard & Poor's 500 Index be a better measure of stock market performance than the Dow Jones Industrial Average? Why is the DJIA more popular than the S&P 500?The Dow Jones Industrial Average (DJIA) is the oldest and one of the best known index used to measure market conditions. It was established in 1895 and is a price-weighted average of 30 significant stocks traded on the NYSE and the NASDAQ. The 30 significant stocks are blue chip stocks (well established companies recognized within the stock market) and are selected by the editors of The Wall Street Journal. The stocks in the index are from all major sectors except utilities and transportation.The Standard & Poor's 500 Index (S&P 500) is an index of 500 large companies with market capitalizations of at least $6.1 billion. S&P is also one of the most well known index and benchmarks of the U.S. market. It is seen as a leading indicator of U.S. equities and a reflection of the performance of large companies.Both indices are very useful in measuring market conditions and performance, and both are very well known. S&P 500 can be perceived as more representative of the market because it is made up of significantly more companies than the DJIAs 30. The large sample should theoretically give a better indication of true market conditions because it is more inclusive. Besides the larger sample size, there is also a major difference in how companies are measured in each index. S&P 500 uses a market cap methodology, giving a higher weighting to larger companies, whereas the DJIA uses a price weighting methodology which gives more expensive stocks a higher weighting. Many investors believe a market cap methodology is a more accurate indication of true market conditions.DJIA is the oldest index and very well established, because of this many investors viewed it highly and it is well trusted. This is one of the main reasons why it is more popular than S&P 500. (a) if c is the line segment connecting the point (x1, y1) to the point (x2, y2), find the following. x dy y dx c Find the arc length when y = 2 ln(sin) and /3 x . 2 ln(2+1) O 2ln(2-1) 2 ln(2-3) 2 ln(2+3) Find the Taylor polynomial of degree 3 near x = 9 for the following function y = 2sin(3x) Answer 2 Points 2sin(3x) P3(x) = The rectangular coordinates of a point are given. Find polar coordinates (r.0) of this polnt with 0 expressed in radians. Let r30 and - 22 0 < 2.(10. - 10) John Proctor comes very close to admitting guilt so that he may live, and its at this moment that Reverend Parris tells him that his refusal to confess is vanity. John could lie, and confess, and stay alive for his wife and children. Do you agree with John Proctor decision? Why or Why not 1A To analyze the sources of specific risk, IBM uses sensitivity analysis to determine the impact of different market risk exposures on the fair value of the company's assets. What kind of financial instruments are included in this sensitivity analysis? FILL IN THE BLANKS : the functional layer of the endometrium is sloughed off during the______________phase of the uterine cycle. Solve the initial value problem dy dac = -8x", y(0) = 0. - (Use syn bolic notation and fractions where needed.) y= help (decimals) Example/s of techniques used to describe data (descriptive statistics) is/are:A.Median B.Standard deviation C.Correlation coefficient D.All of the above Steam Workshop Downloader