Answer:
chemical symbol: Th
atomic number:90
protrons :90
neutrons:142
group#:4
period#: 9
Explanation:
you take the atomic weight (232.038)and subtract the atomic number to get (90) which is your neutrons
An element or compound used to enhance a semiconductor is called a(n) ____.
The element named boron can be used to enhance the properties of semiconductors.
What is a semiconductor?A semiconductor is a material that has electronic properties and has the value that falls in between a conductor. It can be a metallic copper or an insulator.
The rise in temperatures leads to a fall in resistivity. The element named boron can improve the electrical properties of the semiconductor as they form the impurities.
Find out more information about the element.
brainly.com/question/12389810
Which objects cannot be observed in detail without a microscope?
Answer:
partecls
Explanation:
because they are to small to see with plain eyes
convert 100 Newton into dyne
Answer:10000000
Explanation:
A mover slides a refrigerator weighing 650 N at a constant velocity across the floor a distance of 8.1 m. The force of friction between the refrigerator and the floor is 230 N. How much work has been performed by the mover on the refrigerator?
Given :
A mover slides a refrigerator weighing 650 N at a constant velocity across the floor a distance of 8.1 m.
The force of friction between the refrigerator and the floor is 230 N.
To Find :
How much work has been performed by the mover on the refrigerator.
Solution :
Since, refrigerator is moving with constant velocity.
So, force applied by the mover is also 230 N ( equal to force of friction ).
Now, work done in order to move the refrigerator is :
[tex]W = Force\times distance\\\\W = 230 \times 8.1\ N\ m\\\\W = 1863\ N\ m[/tex]
Hence, this is the required solution.
Galaxy B moves away from galaxy A at 0.577 times the speed of light. Galaxy C moves away from galaxy B in the same direction at 0.731 times the speed of light. How fast does galaxy C recede from galaxy A?
Answer:
The value is [tex]p = 0.7556 c[/tex]
Explanation:
From the question we are told that
The speed at which galaxy B moves away from galaxy A is [tex]v = 0.577c[/tex]
Here c is the speed of light with value [tex]c = 3.0 *10^{8} \ m/s[/tex]
The speed at which galaxy C moves away from galaxy B is [tex]u = 0.731 c[/tex]
Generally from the equation of relative speed we have that
[tex]u = \frac{p - v}{ 1 - \frac{ p * v}{c^2} }[/tex]
Here p is the velocity at which galaxy C recede from galaxy A so
[tex]0.731c = \frac{p - 0.577c }{ 1 - \frac{ p * 0.577c}{c^2} }[/tex]
=> [tex]0.731c [1 - \frac{ p * 0.577}{c}] = p - 0.577c[/tex]
=> [tex]0.731c - 0.4218 p = p - 0.577c[/tex]
=> [tex]0.731c + 0.577c = p + 0.4218 p[/tex]
=> [tex]1.308 c = 1.731 p[/tex]
=> [tex]p = 0.7556 c[/tex]
A projectile is fired horizontally from a height of 10 m above level ground. The projectile lands a horizontal distance of 15 m from where it was launched.
-Find the hang time for the projectile.
-Find the initial speed of a projectile.
-What are the x and y components of the projectile’s velocity the moment before it strikes the ground?
-At what speed will the projectile strike the ground?
Answer:
a)t = 1,43 s
b) V = 10,49 m/s
c) V₀ₓ = 10,49 m/s ; V₀y = 14,01 m/s
d) Vf = 17,5 m/s
Explanation:
According to the problem statement
V₀ = V₀ₓ and V₀y = 0
And at the end of the movement t = ? the distance y = 10 m
Therefore as
h = V₀y - (1/2)*g*t²
Vertical distance y = h = 10 = V₀y*t - 0,5 (-9,8)*t²
10 = 4,9*t²
t² = 10/4,9 ⇒ t² = 2,04 s
t = 1,43 s
a) 1,43 s is the time of movement
b) V₀ = V₀ₓ V₀y = 0 and V₀ₓ = Vₓ ( constant )
Just before touching the ground, the horizontal distance is
hd = 15 = Vₓ * t
Then 15 /1,43 = Vₓ = V₀ₓ
Vₓ = 10,49 m/s
Then initial speed is V = 10,49 m/s since V₀y = 0
Vf² = Vₓ² + Vy²
Vyf = V₀y - g*t
Vyf = 0 - 9,8 *1,43
Vyf = - 14,01 m/s
And finally the speed when the projectile strike the ground is:
Vf² = Vₓ² + Vy²
Vf = √ (10,49)² + (14,01)²
Vf = 17,50 m/s
What is the acceleration of the the object during the first 4 seconds?
Answer:
Velocity (m/s) over time (s) graph
Velocity (m/s) over time (s) graph
We could write out our average acceleration as:
a = Δv/ Δta=Δv/Δta, equals, Δ, v, slash, Δ, t
a = (15 m/s - 0 m/s) / 0.2 seconds
a = 15 m/s / 0.2 seconds
a = 75 m/s / second
Explanation:
What this formula is telling us is that if we know the acceleration of an object, and the ... we can plug in our acceleration of 12.5 m/s2 for a, and 4 seconds for t.
Velocity (m/s) over time (s) graph
Velocity (m/s) over time (s) graph
We could write out our average acceleration as:
a = Δv/ Δta=Δv/Δta, equals, Δ, v, slash, Δ, t
a = (15 m/s - 0 m/s) / 0.2 seconds
a = 15 m/s / 0.2 seconds
a = 75 m/s / second
The fact that our preconceived ideas contribute to our ability to process new information best illustrates the importance of: the serial position effect. O repression iconic memory . semantic encoding . retroactive interference .
Answer:
It’s a
Explanation:
Don’t actually put that i needed the points mb