The longitudinal displacement of a mass element in a medium as a sound wave passes through it is given by s = sm cos (kx -wt). Consider a sound wave of frequency 440 Hz and wavelength 0.75m. If sm = 12

Answers

Answer 1

The longitudinal displacement of a mass element in a medium as a sound wave passes through it is given by s = sm cos (kx - wt).


This formula gives the displacement of a mass element (s) in a medium due to a sound wave, where sm is the amplitude of the wave, k is the wave number, x is the distance along the direction of wave propagation, w is the angular frequency, and t is time.

For the given sound wave with a frequency of 440 Hz and wavelength of 0.75m, we can find the wave number (k) using the relation k = 2π/λ, where λ is the wavelength.

So, k = 2π/0.75 = 8.3776 m^-1.

Now, the formula becomes:

s = 12 cos (8.3776x - wt)

Note that the amplitude of the wave, sm, is given as 12.

We can also find the angular frequency (w) using the relation w = 2πf, where f is the frequency.

So, w = 2π(440) = 2π * 440 rad/s.

Putting all these values in the formula, we get:

s = 12 cos (8.3776x - 2π * 440 t)

This formula gives the longitudinal displacement of a mass element in the medium due to the given sound wave.

learn more about wavelength

https://brainly.com/question/10728818

#SPJ11


Related Questions

12. sterling archer has given up lacrosse and taken up pole vaulting. at the end of his approach run during a pole-vault, he has a horizontal velocity of 8 m/s and his center of gravity is 1.0 m high. if archer has a mass of 50 kg, estimate how high he should be able to vault if his kinetic and potential energies are all converted to potential energy.

Answers

To estimate how high Sterling Archer should be able to vault, we need to use the law of conservation of energy.

At the end of his approach run, Archer has a kinetic energy of ½mv², where m is his mass and v is his horizontal velocity, which is 8 m/s.

Therefore, his kinetic energy is ½(50 kg)(8 m/s)² = 1600 J. When he plants the pole and starts to go up, this kinetic energy is converted into potential energy, which can be calculated using the formula mgh, where m is his mass, g is the acceleration due to gravity (9.8 m/s²), and h is the height he reaches.

Therefore, h = (kinetic energy)/(mg) = (1600 J)/(50 kg x 9.8 m/s²) = 3.3 m. However, we need to add his initial height of 1.0 m to this, so the final answer is 4.3 m.

Therefore, if Archer's kinetic and potential energies are all converted to potential energy, he should be able to vault to a height of approximately 4.3 meters.

To know more about gravity refer here:

https://brainly.com/question/31321801#

#SPJ11

give two positive and negative arguments involving the usage of nuclear energy

Answers

Two Positive and Negative points involving the usage of nuclear energy are:

Positive Points:

1) Large Source of Clean Power.

2) It creates jobs in various nuclear sectors.

Negative Points:

1) Fuel Usage, Large Area under Construction, and Waste Disposal.

2) Operating Nuclear industries is Costly.

Learn More about Nuclear Power,

https://brainly.com/question/4675347

when two lamps are connected in parallel to a battery, the electrical resistance the battery experiences is less than the resistance of either lamp

Answers

When two lamps are connected in parallel to a battery, the total electrical resistance experienced by the battery is less than the resistance of either lamp.

This is due to the fact that the current can flow through each lamp separately, rather than having to flow through one lamp before flowing through the other. As a result, the total resistance is decreased, which increases the total current that can flow from the battery.The decrease in resistance is due to the fact that the total resistance of two resistors connected in parallel is less than the resistance of either resistor alone. This is known as the parallel resistance formula, which states that the reciprocal of the total resistance is equal to the sum of the reciprocals of the individual resistances:[tex]1/Rt = 1/R1 + 1/R2[/tex]where Rt is the total resistance, R1 and R2 are the resistances of the individual lamps.As a result of this decreased resistance, the battery is able to deliver more current to the lamps, which in turn increases the brightness of the lamps. However, it is important to note that the voltage across each lamp remains the same in a parallel circuit, as the voltage of the battery is the same across all components.

For more such question on electrical resistance

https://brainly.com/question/30609640

#SPJ11

12. a billiard ball moving at 60 meters per second collides elastically with a billiard ball of the same mass, which is initially at rest. determine the final velocity of the first ball.

Answers

Answer:

The velocity of the incoming billiard ball would become [tex]0\; {\rm m\cdot s^{-1}}[/tex] after the collision.

Explanation:

Since the collision is elastic, both momentum and kinetic energy would be conserved.

Let [tex]m[/tex] denote the mass of each ball.

Let [tex]u_{\text{a}} = 60\; {\rm m\cdot s^{-1}}[/tex] denote the initial velocity of the incoming ball. Let [tex]v_{\text{a}}[/tex] denote the velocity of that ball after the collision.

Let [tex]u_{b} = 0\; {\rm m\cdot s^{-1}}[/tex] denote the initial velocity of the ball that was stationary before the collision. Let [tex]v_{\text{b}}[/tex] denote the velocity of that ball right after the collision.

Sum of momentum before collision: [tex]m\, u_{\text{a}} + m\, u_{\text{b}}[/tex], which simplifies to [tex]m\, u_{\text{a}}[/tex] since [tex]u_{b} = 0\; {\rm m\cdot s^{-1}}[/tex].

Sum of momentum after collision: [tex]m\, v_{\text{a}} + m\, v_{\text{b}}[/tex].

For momentum to conserve:

[tex]m\, v_{\text{a}} + m\, v_{\text{b}} = m\, u_{\text{a}} + m\, u_{\text{b}}[/tex].

[tex]m\, v_{\text{a}} + m\, v_{\text{b}} = m\, u_{\text{a}}[/tex].

[tex]v_{\text{a}} + v_{\text{b}} = u_{\text{a}}[/tex]. ([tex]m \ne 0[/tex].)

Similarly, the sum of kinetic energy before the collision would be [tex](1/2)\, m\, {u_{\text{a}}}^{2} + (1/2)\, m\, {u_{\text{b}}}^{2}[/tex] and simplifies to [tex](1/2)\, m\, {u_{\text{a}}}^{2}[/tex].

Sum of kinetic energy after the collision: [tex](1/2)\, m\, {v_{\text{a}}}^{2} + (1/2)\, m\, {v_{\text{b}}}^{2}[/tex].

For kinetic energy to conserve:

[tex]\displaystyle \frac{1}{2}\, m\, {v_{\text{a}}}^{2} + \frac{1}{2}\, m\, {v_{\text{b}}}^{2} = \frac{1}{2}\, m\, {u_{\text{a}}}^{2} + \frac{1}{2}\, m\, {u_{\text{b}}}^{2}[/tex].

[tex]\displaystyle \frac{1}{2}\, m\, {v_{\text{a}}}^{2} + \frac{1}{2}\, m\, {v_{\text{b}}}^{2} = \frac{1}{2}\, m\, {u_{\text{a}}}^{2}[/tex].

[tex]{v_{\text{a}}}^{2} + {v_{\text{b}}}^{2} = {u_{\text{a}}}^{2}[/tex]. ([tex]m \ne 0[/tex].)

Hence:

[tex]\left\lbrace\begin{aligned}& v_{\text{a}} + v_{\text{b}} = u_{\text{a}} \\ & {v_{\text{a}}}^{2} + {v_{\text{b}}}^{2} = {u_{\text{a}}}^{2}\end{aligned}\right.[/tex].

It is given that [tex]u_{\text{a}} = 60\; {\rm m\cdot s^{-1}}[/tex]. Solve this system for [tex]v_{\text{a}}[/tex] and [tex]v_{\text{b}}[/tex].

Rearrange to obtain [tex]v_{\text{b}} = u_{\text{a}} - v_{\text{a}}[/tex]. Substitute this expression into the equation [tex]{v_{\text{a}}}^{2} + {v_{\text{b}}}^{2} = {u_{\text{a}}}^{2}[/tex]:

[tex]{v_{\text{a}}}^{2} + (u_{\text{a}} - v_{\text{a}})^{2} = {u_{\text{a}}}^{2}[/tex].

[tex]{v_{\text{a}}}^{2} + {u_{\text{a}}}^{2} - 2\, u_{\text{a}}\, v_{\text{a}} + {v_{\text{a}}}^{2} = {u_{\text{a}}}^{2}[/tex].

[tex]2\, {v_{\text{a}}}^{2} - 2\, u_{\text{a}}\, v_{\text{a}} = 0[/tex].

[tex]v_{\text{a}}\, (v_{\text{a}} - u_{\text{a}}) = 0[/tex].

By the Factor Theorem, either [tex]v_{\text{a}} = 0[/tex], or [tex](v_{\text{a}} - u_{\text{a}}) = 0[/tex] such that [tex]v_{\text{a}} = u_{\text{a}} = 60\; {\rm m\cdot s^{-1}}[/tex].

However, since there was a collision, velocity of the incoming ball cannot stay unchanged. Thus, the only possible solution is [tex]v_{\text{a}} = 0[/tex], meaning that the incoming ball would have stopped completely after the collision.

The final velocity of the first billiard ball after the collision is zero.

An elastic collision between two billiard balls of equal mass. Given that the initial velocity of the first ball is 60 m/s and the second ball is at rest, you can use the conservation of momentum and the conservation of kinetic energy to determine the final velocities.

In an elastic collision between two objects with equal mass, the final velocity of the first object (V1f) will be 0 m/s, and the final velocity of the second object (V2f) will be equal to the initial velocity of the first object (V1i).

So in this case, the final velocity of the first ball will be 0 m/s.

Learn more about elastic collision:

https://brainly.com/question/12644900

#SPJ11

suppose an earthquake shakes you with a frequency of 9.5 hz as it passes and continues on to another city 88.5 km away, which it reaches in 14 s.

Answers

The speed of the earthquake waves is 6.32 km/s.

The frequency of an earthquake wave represents the number of vibrations or cycles per second and is measured in hertz (Hz). The speed of an earthquake wave, on the other hand, depends on the properties of the material through which it travels.

The distance that the earthquake wave travels from the point of origin to another location can be calculated using the formula:

distance = speed × time

In this case, the earthquake wave travels a distance of 88.5 km in 14 s. Therefore, the speed of the wave can be calculated as:

speed = distance / time = 88.5 km / 14 s = 6.32 km/s

So, the speed of the earthquake waves is 6.32 km/s.

Knowing the frequency of the wave is important because it helps in understanding the characteristics of the earthquake.

In general, higher-frequency waves are more damaging to structures, while lower-frequency waves can travel longer distances but may cause less damage.

To know more about speed of the earthquake, refer here:
https://brainly.com/question/14536119#
#SPJ11

the following questions are some examples that define the problem. from which direction (which star) is the message coming? on what channels (or frequencies) is the message being broadcast? how wide in frequency is the channel? how strong is the signal (can our radio telescopes detect it)?

Answers

Determining the message's direction and source requires radio telescopes, interferometry, analyzing frequencies, and sensitive equipment for detection.

Determining the direction from which a message is coming requires advanced radio astronomy techniques.

By employing an array of radio telescopes, such as the Very Large Array (VLA), signals can be analyzed to determine their point of origin.

This process involves measuring the time delays between receiving the signal at different telescopes and using interferometry to triangulate the source location.

Identifying the channels or frequencies on which the message is being broadcast necessitates spectrum analysis.

The width of the channel depends on factors like the modulation scheme and bandwidth allocation.

The strength of the signal determines detectability;

radio telescopes are equipped to detect even weak signals by amplifying and analyzing them with advanced signal processing techniques.

For more such questions on frequencies , click on:

https://brainly.com/question/254161

#SPJ11

0.7 megOhms =
A) 700,000 Ohms
B) 7,000 Ohms
C) 700 Ohms
D) 7,000,000 Ohms

Answers

0.7 megohms is equal to  700,000 Ohms.So the correct option is A) 700,000 Ohms.

The prefix "mega-" means one million, so 1 megohm (MΩ) is equal to 1,000,000 ohms. Therefore, to convert from megohms to ohms, we need to multiply by 1,000,000.

0.7 megohms x 1,000,000 = 700,000 ohms

So, 0.7 megohms is equivalent to 700,000 ohms.

Alternatively, we can also use the following conversion factors:

1 MΩ = 1,000,000 Ω

To convert from megohms to ohms, we can multiply by 1,000,000:

0.7 MΩ x 1,000,000 = 700,000 Ω

Either way, we get the same answer of 700,000 ohms.

Learn more about  megohm here:

https://brainly.com/question/24184752

#SPJ11

modern railway tracks consist of continuous welded-steel rails of 1.0 km lengths. if the coefficient of linear expansion for steel is 11 x 10-6 k-1, by how much would such rail change in length between the highest summer temperature (40oc) and the lowest winter temperature (-40oc)?group of answer choices44 cm4.4 cm0.88 mm88 cmnone of the other answers is correct

Answers

Rail length changes by 88 mm (option d) between extreme temperatures.

To calculate the change in length of the rail between the highest summer temperature and the lowest winter temperature, we can use the formula:

ΔL = L * α * ΔT

where:

ΔL is the change in length,

L is the original length of the rail (1.0 km = 1000 m),

α is the coefficient of linear expansion for steel (11 x 10^(-6) K^(-1)),

ΔT is the temperature difference (40°C - (-40°C) = 80°C).

Plugging in the values:

ΔL = 1000 * (11 x 10^(-6)) * 80

ΔL = 0.088 m = 88 mm

Therefore, the rail would change in length by 88 mm between the highest summer temperature and the lowest winter temperature. So the correct answer is 88 cm.

For more such questions on temperatures, click on:

https://brainly.com/question/26866637

#SPJ11

A student produces a wave in a long spring by vibrating its end. As the frequency of the vibration is doubled, the wavelength in the spring is
A: quartered
B: halved
C: unchanged
D: doubled

Answers

The wavelength of a wave is directly proportional to its frequency and inversely proportional to its speed. Mathematically, we can express this relationship as: wavelength = speed/frequency

In the case of a wave traveling along a long spring, the speed of the wave is determined by the properties of the spring, such as its tension and mass per unit length. Since the spring is assumed to be uniform in this question, we can assume that its speed is constant.

Therefore, if the frequency of the wave is doubled, its wavelength must be halved in order to keep the above equation balanced. This can be seen from the fact that the numerator (speed) stays the same while the denominator (frequency) is multiplied by 2.

To know more about wavelength   visit:-

https://brainly.com/question/28466888

#SPJ11

a commercial refrigerator with r-134a as the working fluid is used to keep the refrigerated space at -29 0c by rejecting its waste heat to cooling water that enters the condenser at 16 0c at a rate of 0.22 kg/s and leaves at 28 0c. the refrigerant enters the condenser at 1.2 mpa and 65 0c and leaves at 42 0c. the inlet state of the compressor is 60 kpa and -34 0c and the compressor is estimated to gain a net heat of 450 w from the surroundings. take the enthalpy at state 3 as the hf at operating temperature. determine the following; (1) the quality of the refrigerant at evaporator inlet. (2) the mass flow rate of the refrigerant. kg/s (3) net compressor power input. kw (4) the refrigeration load. kw (5) the cop of the refrigerator. (6) the theoretical maximum refrigeration load for the same power input to the compressor. kw hint: to find the theoretical maximum refrigeration load first find the maximum cop of the refrigerator for the same temperature limits based on reversed carnot cycle.

Answers

To solve this refrigerated problem, we can use the thermodynamic properties of R-134a from the data. Let's denote the states as follows:

State 1: Inlet to the compressor

State 2: Outlet of the compressor, inlet to the condenser

State 3: Outlet of the condenser, inlet to the evaporator

State 4: Outlet of the evaporator, inlet to the compressor.

We are given the following information:

T1 = -34°C

p1 = 60 kPa

T2 = 42°C

p2 = 1.2 MPa

T3 = -29°C

T4 = -34°C

m_dot = 0.22 kg/s

Tcw1 = 16°C

Tcw2 = 28°C

Q_net,in = 450 W

To find the quality of the refrigerant at evaporator inlet (state 3), we can use the following formula:

h4 = hf4 + x4 * (hfg4)

where h4 is the enthalpy at state 4 (inlet to compressor), hf4 and hfg4 are the enthalpy of saturated liquid and vapor at the same temperature as state 4, respectively, and x4 is the quality of the refrigerant at state 4. Since state 4 is at -34°C, we can find the values of hf4 and hfg4 from the R-134a tables:

hf4 = 83.97 kJ/kg

hfg4 = 248.32 kJ/kg

Substituting the given values, we get:

h4 = 83.97 + x4 * 248.32

At state 3, the refrigerant is a saturated vapor, so we have:

h3 = hg3 = 285.62 kJ/kg

Next, we can use the energy balance for the evaporator to relate the enthalpies at states 3 and 4:

m_dot * (h3 - h4) = QL

where QL is the refrigeration load. Substituting the values we know, we get:

0.22 * (285.62 - (83.97 + x4 * 248.32)) = QL

Solving for x4, we get:

x4 = 0.792

Therefore, the quality of the refrigerant at evaporator inlet is 0.792.

The mass flow rate of the refrigerant is given as m_dot = 0.22 kg/s.

The net compressor power input can be found from the energy balance for the compressor:

W_net,in = m_dot * (h2 - h1)

Learn more about refrigerated Visit: brainly.com/question/29510163

#SPJ4

Approximately how many days does it take for a massive star supernova to decline to 1% of its peak brightness?

Answers

A massive star supernova is a spectacular event that can shine as bright as an entire galaxy. However, after the initial explosion, the supernova's brightness will gradually decline over time.

This process is known as the supernova's light curve, and it can be used to determine how long it takes for the supernova to decline to a certain percentage of its peak brightness. In the case of a massive star supernova, it typically takes around 100 days for the supernova to decline to 1% of its peak brightness. However, this can vary depending on several factors, including the size and mass of the star, the distance from Earth, and the viewing angle. Understanding the light curve of a supernova is important for astronomers, as it can provide valuable information about the supernova's physical properties and the nature of the explosion. By analyzing the changes in brightness over time, astronomers can also learn more about the processes that occur during the supernova, such as the formation of a neutron star or black hole. In conclusion, it takes approximately 100 days for a massive star supernova to decline to 1% of its peak brightness, although this can vary depending on various factors.

Learn more about supernova here

https://brainly.com/question/1276261

#SPJ11

depicted below is a short cylinder whose diameter 2r is equal to its length, which it's radius only being r. a point charge q is placed on the central axis of the cylinder and at the center of the cylinder. what is the total flux through the curved sides of the cylinder? hint: first calculate the flux through the ends.

Answers

The total flux through the curved sides of the cylinder is:

Φ_curved = Φ_total - Φ_ends = qL / (8πε0r)

Since the point charge q is placed at the center of the cylinder and on its central axis, the cylinder has a high degree of symmetry. By applying Gauss's law, we can easily find the total flux through the curved sides of the cylinder.

First, we can consider the flux through the ends of the cylinder. By symmetry, the electric field lines will be perpendicular to the ends of the cylinder, and the electric flux will be uniform over each end. By Gauss's law, the flux through each end of the cylinder is:

Φ = E * A

where E is the electric field strength, and A is the area of each end of the cylinder. Since the cylinder has a circular cross-section, the area of each end is A = πr².

The electric field strength E can be found by applying Gauss's law to a spherical Gaussian surface centered on the point charge q, with radius greater than the radius of the cylinder. By symmetry, the electric field will be uniform over the surface of the Gaussian sphere. The flux through the Gaussian sphere is given by:

Φ = q / ε0

where ε0 is the electric constant.

The area of the Gaussian sphere is A = 4πr². Therefore, the electric field strength E is:

E = Φ / A = q / (4πε0r²)

Now we can calculate the flux through each end of the cylinder:

Φ_end = E * A = (q / (4πε0r²)) * πr^2 = q / (4ε0)

The total flux through the ends of the cylinder is twice this amount, since there are two ends:

Φ_ends = 2Φ_end = q / (2ε0)

Next, we can consider the flux through the curved sides of the cylinder. By symmetry, the electric field lines will be parallel to the axis of the cylinder, and the electric flux will be uniform over the curved surface of the cylinder. Therefore, the flux through the curved sides of the cylinder is:

Φ_curved = E * L * w

where L is the length of the cylinder, and w is the width of the curved surface. The width of the curved surface is equal to the circumference of the cylinder, which is 2πr. Therefore, the flux through the curved sides of the cylinder is:

Φ_curved = E * L * 2πr = qL / (8πε0r)

The total flux through the cylinder is the sum of the flux through the ends and the flux through the curved sides:

Φ_total = Φ_ends + Φ_curved = q / (2ε0) + qL / (8πε0r)

Therefore, we can say that the total flux through the curved sides of the cylinder is:

Φ_curved = Φ_total - Φ_ends = qL / (8πε0r)

To know more about the total flux refer here :

https://brainly.com/question/29665619#

#SPJ11

The group of constellations through which the Sun passes as it moves along the ecliptic is called the

Answers

The group of constellations through which the Sun passes as it moves along the ecliptic is called the Zodiac.

These constellations are significant in astrology and serve as a reference system in astronomy for mapping the sky. The Zodiac is divided into twelve equal sections, each about 30° in width, known as the signs of the zodiac or zodiac signs. These twelve signs are Aries, Taurus, Gemini, Cancer, Leo, Virgo, Libra, Scorpio, Sagittarius, Capricorn, Aquarius, and Pisces. As the Sun moves through each sign, it influences the character and fate of those born under its influence. Astrology is based on the belief that the position of the planets and stars at the time of one's birth will determine one's character and fate.

To learn more about Zodiac click here https://brainly.com/question/28178562

#SPJ11

a fisherman is dozing when a fish takes the line and pulls it with a tension F the spool of the reel is at rest intialy, and rotates without friction as the fish pulls from for a total time t. if the radius of the spool is R, and the moment of inertia is I, find the angular acceleration of the reel using the variabls given and gravitional acceleration g. and find the corresponding angular displacement of the spool and the length of the line pulled from the spoll ?

Answers

Using conservation of angular momentum, the angular acceleration of the reel is found to be (g R / I) m. The corresponding angular displacement of the spool and the length of the line pulled from the spool are 1/2 (g R / I) m t² and 1/2 g t², respectively.

In this scenario, we can use the principle of conservation of angular momentum to find the angular acceleration of the reel. Since the spool is initially at rest, its initial angular momentum is zero. However, when the fish pulls the line with tension F, the spool starts to rotate, which means its final angular momentum is not zero.

The formula for conservation of angular momentum is:
Initial Angular Momentum = Final Angular Momentum

Since the initial angular momentum is zero, we only need to find the final angular momentum. The final angular momentum is the product of the moment of inertia I and the angular velocity ω of the spool. However, since we're looking for the angular acceleration α, we need to differentiate this formula with respect to time:

L = Iω
dL/dt = I(dω/dt)

The left-hand side of this equation is simply the tension F times the radius R of the spool, because the fisherman is pulling the line with tension F and the spool is rotating around the center of the spool, which has a radius R. Therefore, we can write:

F R = I(dω/dt)

We can solve for dω/dt to find the angular acceleration α:
dω/dt = (F R) / I = (F / I) R

Now we need to find the angular displacement of the spool and the length of the line pulled from the spool. We can use the equations of rotational kinematics:
ω = α t
θ = 1/2 α t²

where θ is the angular displacement of the spool. Substituting the expression for α that we just found, we get:
ω = (F / I) R t
θ = 1/2 (F / I) R t²

The length of the line pulled from the spool is simply the distance that the fish pulls the line. We can use the formula for linear acceleration:
a = F / m

where m is the mass of the fish. Assuming that the fish is pulling the line with a constant force, we can use the formula for constant acceleration:
s = 1/2 a t²

where s is the distance that the fish pulls the line. Since the gravitational acceleration is g, we have:
m g = F

Substituting this into the above formulas, we get:
ω = (g R / I) m t
θ = 1/2 (g R / I) m t²
s = 1/2 (g / m) m t² = 1/2 g t²
So the angular acceleration of the reel is (g R / I) m, the angular displacement of the spool is 1/2 (g R / I) m t², and the length of the line pulled from the spool is 1/2 g t².

To know more about the conservation of angular momentum refer here :

https://brainly.com/question/30825497#

#SPJ11

Being struck by a bullet is likely more traumatic than being stabbed by a knife blade due to:Being struck by a bullet is likely more traumatic than being stabbed by a knife blade due​ to:
A. velocity
B. trajectory
C. inertia
D. mass
E. velocity

Answers

Being struck by a bullet is likely more traumatic than being stabbed by a knife blade due to velocity.

Velocity refers to the speed at which an object is moving in a particular direction. Bullets travel at a much higher velocity than knife blades, which means they can cause significantly more damage to the human body upon impact.

When a bullet enters the body, it can create shockwaves that disrupt vital organs, bones, and tissues. In contrast, a knife blade typically moves at a slower speed and is more likely to create a puncture wound that may not necessarily cause as much internal damage.
The high velocity of a bullet is the primary reason why it is more traumatic than a knife blade. The bullet moves much faster than the knife blade and generates a considerable amount of kinetic energy upon impact.

Additionally, the trajectory of a bullet can also affect the extent of damage it causes. Depending on where the bullet strikes, it may hit vital organs or arteries, leading to potentially life-threatening injuries. Inertia and mass may also play a role, but velocity is the most significant factor in determining the level of trauma caused by a bullet or knife blade.

Learn more about velocity here:

https://brainly.com/question/17127206

#SPJ11


A model-train transformer plugs into 120-V ac and draws 0. 28 A while supplying 79 A to the train Part A What voltage is present across the tracks? Assume 100% efficiency Express your answer to two significant figures and include the appropriate units. Value Units Submit Request Answer Part 8 Is the transformer step-up or step-down? step up step-down Sum Request AnswerPrevious question

Answers

The voltage across the tracks is 0.43 V (rounded to two significant figures).

input power = output power (assuming 100% efficiency)

The input power is the product of the input voltage and current:

input power = 120 V x 0.28 A = 33.6 W

The output power is the product of the voltage across the tracks and the current supplied to the train:

output power = V x 79 A

Setting the input power equal to the output power, we get:

33.6 W = V x 79 A

Solving for V, we get:

V = 0.426 V

Voltage, also known as electric potential difference, is a physical quantity used to measure the electric potential energy per unit charge in an electrical circuit. It is a measure of the work required to move an electric charge from one point to another in an electric field. The unit of voltage is the volt, which is defined as one joule per coulomb.

In practical terms, voltage is the force that drives an electric current through a circuit. When a voltage is applied across a conductor, it causes a flow of electric charge, which is the electric current. The voltage can be thought of as the pressure that pushes the charge through the circuit. Voltage is an essential concept in many fields of physics, including electronics, electromagnetism, and electrochemistry.

To learn more about Voltage visit here:

brainly.com/question/29445057

#SPJ4

1. If you have a 500 watt lightbulb and the wall socket provides 120 Volts, what is the current?​

Answers

Answer:

4.27

Explanation:

Scarlett and Hunter Johansson are working
together to push a block of mass 27 kg across
the floor. Each provides a force of magnitude
277 N but the directions of the forces differ as
indicated in the diagram. The coefficient of
friction is 0.24.
The acceleration of gravity is 9.81.
What is the magnitude of the resulting acceleration?

Answers

Scarlett and Hunter Johansson are working together to push a block of mass 27 kg across the floor, then the magnitude of the resulting acceleration is 15.6 m/s².

Force is responsible for the motion of an object. it produces acceleration in the body. According to newton's second law force is mass times acceleration i.e. F =ma. Its SI unit is N which is equivalent to kg.m/s². There are two types of forces, balanced force and unbalanced force.

In this problem the diagram is not given, Consider the diagram in which two forces are equal but there is 60° of angle between them.

The resultant force between them is

F² = F₁² + F₂² + 2F₁F₂cosθ

F² = 277² + 277² + 2×277²cos60

F(r) = 479.7 N

This resultant force,

frictional force F(f) = μmg

F(f) = 0.24 × 24kg × 9.8

F(f) = 56.4 N

The actual force acting on the block is

F = F(r) - F(f)

F = 479.7 N - 56.4 N

F = 423.3 N

the acceleration of the block is,

a = F/m = 423.3 N/27 kg

a = 15.6 m/s²

TO know more about acceleration :

https://brainly.com/question/12550364

#SPJ1.

in part a of this experiment you will collaborate with a partner to collect cell potentials for several metals, then exchange data. how many voltaic cells will each partner investigate on their own? hint: it may be helpful to refer to your lab manual and chapter 20 of your text book on voltaic cells and what they comprise of.

Answers

The number of voltaic cells each partner will investigate on their own depends on the experimental setup and the specific instructions given. If the experimental setup involves investigating the cell potential between two different metals, each partner will need to investigate one cell potential.

For example, if one partner investigates the cell potential between copper and zinc, the other partner will investigate the cell potential between zinc and copper.

However, if the experimental setup involves investigating the cell potential between different combinations of metals, each partner may investigate multiple voltaic cells.

For instance, if the experimental setup involves investigating the cell potential between copper and zinc, copper and iron, and zinc and iron, each partner will need to investigate three cell potentials.

Overall, the number of voltaic cells each partner will investigate on their own will depend on the specific instructions and setup of the experiment.

To know more about "Cell potential " refer here:

https://brainly.com/question/29653954#

#SPJ11

. if is the impulse of a particular force, what is (a) the momentum (b) the change in momentum (c) the force (d) the change in the force

Answers

If the impulse of a particular force is represented by the symbol J, then:
(a) the momentum is equal to J.
(b) the change in momentum is also equal to J.
(c) J is equal to the product of F and Δt.

(d) The force is equal to the change in momentum divided by the time interval over which the force acts.


(a) Momentum: Impulse (J) is equal to the change in momentum (Δp). So, if you know the impulse, you can find the momentum before and after the application of force.

(b) Change in momentum: As mentioned above, the change in momentum (Δp) is equal to the impulse (J).

(c) Force: Impulse (J) is also equal to the product of force (F) and the time interval (Δt) during which the force is applied. To find the force, you can use the equation J = F × Δt, and you'll need to know the time interval.

(d) Change in force: The change in force would require additional information, such as the initial and final force acting on the object, or the relationship between force and time. The impulse is equal to the change in momentum, and the force is equal to the change in momentum divided by the time interval over which the force acts.

For more such questions on Impulse.

https://brainly.com/question/16980676#

#SPJ11

a uniform thin disk radius 1.7 meters and mass 2.58 kilograms is rotating around an axis perpendicular to the disk's flat face (ie parallel to the disk's central axis) but passing through the outer edge of the disk. what, is the moment of rotational inertia of the disk around this axis in kg/m2 (but do not write the units)? give your answer to one decimal place.

Answers

Moment of inertia of disk: 2.6 kg/m² (approximately).

The moment of rotational inertia, also known as the moment of inertia or simply inertia, is a measure of an object's resistance to changes in its rotational motion.

For a uniform thin disk rotating around an axis perpendicular to its flat face, the moment of inertia can be calculated using the formula:

I = (1/2) * m *[tex]r^2[/tex]

where I represents the moment of inertia, m is the mass of the disk, and r is the radius of the disk.

In this case, the mass of the disk is given as 2.58 kilograms and the radius is 1.7 meters. Plugging these values into the formula, we get:

I = (1/2) * 2.58 * [tex](1.7)^2[/tex]

Simplifying the equation, we find:

I = 2.61 kg/[tex]m^2[/tex]

Therefore, the moment of rotational inertia of the disk around the specified axis is approximately 2.6 kg/[tex]m^2[/tex].

For more such questions on Moment, click on:

https://brainly.com/question/26117248

#SPJ11

The electromagnetic field in a one-dimensional cavity is in thermal equilibrium, and the longest wavelength mode contains 4500 photons. (a) Calculate the number of photons in the second-longest wavelength mode. (b) Calculate the number of photons in the third-longest wavelength mode. (c) Calculate jmax, the largest mode number

Answers

The number of photons in the second-longest wavelength mode is1 / [exp(hc/3λ1kT) - 1]. The number of photons in the third-longest wavelength mode is  1 / [exp(hf3/kT) - 1].  jmax, the largest mode number is L / λ1

A). f = c / λ

f2 = c / (3λ1)

The number of photons in this mode is:

N2 =[tex]1 / [exp(hf2/kT) - 1][/tex]

We know that N1, the number of photons in the longest wavelength mode, is 4500. So we can use this to find T:

[tex]4500 = 1 / [exp(hf1/kT) - 1][/tex]

[tex]exp(hf1/kT) - 1 = 1/4500\\exp(hf1/kT) = 1 + 1/4500\\exp(hf1/kT) = 1.00022222\\hf1/kT = ln(1.00022222)\\T = hf1 / k ln(1.00022222)[/tex]

Now we can substitute this value of T into the expression for N2:

[tex]N2= 1 / [exp(hf2/kT) - 1]\\\\N2 = 1 / [exp(hc/3λ1kT) - 1][/tex]

(b) To find the number of photons in the third-longest wavelength mode, we use the same approach. The third-longest wavelength mode has a wavelength of 5λ1, so its frequency is:

f3 = c / (5λ1)

The number of photons in this mode is:

[tex]N3 = 1 / [exp(hf3/kT) - 1][/tex]

(c) To find jmax, we can use the fact that the number of modes is proportional to the length of the cavity, which is one-dimensional in this case. So:

jmax = L / λ1

In physics, wavelength refers to the distance between two consecutive points of a wave that are in phase, or the same point on consecutive cycles of the wave. It is commonly denoted by the symbol λ (lambda) and is measured in units of length, such as meters or nanometers. Wavelength plays a crucial role in many areas of physics, such as optics, spectroscopy, and quantum mechanics.

Wavelength is an important characteristic of all types of waves, including electromagnetic waves, sound waves, and even matter waves. In the case of electromagnetic waves, which include visible light, ultraviolet radiation, and radio waves, wavelength determines the color or frequency of the wave. The longer the wavelength, the lower the frequency and the less energy the wave carries, and vice versa.

To learn more about Wavelength  visit here:

brainly.com/question/4112024

#SPJ4

suppose an x-ray tube produces x-rays with a range of wavelengths, the shortest of which is 0.925 nm.

Answers

The shortest wavelength, in this case, 0.925 nm, represents the highest energy x-ray produced by the tube.



X-ray tubes generate x-rays by accelerating electrons and causing them to collide with a target, typically made of a heavy metal like tungsten.

When the electrons interact with the target, they produce x-rays with a range of wavelengths.

The shortest wavelength, in this case, 0.925 nm, represents the highest energy x-ray produced by the tube. The range of wavelengths produced depends on the voltage applied to the tube and the target material used.

Learn more about "wavelength": https://brainly.com/question/10728818

#SPJ11

PART OF WRITTEN EXAMINATION:
When current enters the meter on the negative terminal
A) a negative sign is displayed
B) a positive sign is displayed
C) depends

Answers

The A) negative sign is displayed. This is because when current flows into the meter on the negative terminal, the current is flowing in the opposite direction to the flow of electrons within the meter. This results in a decrease in the flow of electrons, which causes a deflection of the needle towards the negative side of the meter scale.


The meter is an instrument used to measure electrical quantities, such as current, voltage, and resistance. It typically consists of a coil of wire that is free to move around a permanent magnet. When a current flows through the coil, it interacts with the magnetic field, causing the coil to move and deflect the needle on the meter scale. The negative terminal is the terminal on a battery or other electrical device that is connected to the negative electrode or pole. This is usually indicated by a negative sign (-) or a black wire. When a current flows into the meter on the negative terminal, it means that the current is entering the meter from the negative electrode of the circuit. In summary, when current enters the meter on the negative terminal, a negative sign is displayed because the flow of electrons within the meter is decreased, causing the needle to deflect towards the negative side of the meter scale.

learn more about negative terminal here.

https://brainly.com/question/14236970

#SPJ11

A 110-kg block of ice at-9°C is placed in an oven set to a temperature of 115°C. The ice eventually vaporizes and the system reaches equilibrium ?? Part (a) How much energy, in joules, is required to heat the ice from-92C to 0°C? Part (b) How much energy, in joules, is needed to completely melt the ice at 0°C? ? 17% Part (c) How much energy, in joules, is required to heat the melted ice from 0°C to 100°C? ? 17% Part (d) How much energy, in joules, is needed to vaporize all the water at 100°C? ? 17% Part (e) How much energy, in joules, is required to heat the resulting steam from 100°C to 115°C? ? 17% Part (f) What is the total energy, in joules, that is needed to heat the block of ice from its initial temperature to water vapor at its final temperature?

Answers

The necessary energy is approximately 3.1 x 108 joules.

It takes a 110 kilogramme block of -9°C ice placed in a 115°C oven until it vaporises and finds equilibrium. calculating the 1.1 x 107 J of energy required to warm the ice from -92°C to 0°C.

Then, we must calculate the amount of energy—roughly 3.3 x 106 J—needed to totally melt the ice at 0°C. About 4.6 x 107 J of energy is needed to heat the melted ice from 0°C to 100°C. At 100 degrees Celsius, it takes approximately 2.6 × 108 J of energy to vaporise all the water.

Finally, it takes around 5.5 x 106 J of energy to heat the resultant steam from 100°C to 115°C. The necessary energy is approximately 3.1 x 108.

Learn more about energy:

https://brainly.com/question/30672691

#SPJ4

List all the energy changes in these processes. List the energy as either useful or wasted.

a Using electricity in a lamp.
b Using petrol (gasoline) in a car engine.
c Using electricity in a motor. ​

Answers

1. Using electricity in a lamp is Useful when electrical energy is converted to light energy and wasteful when electrical energy is converted to thermal (heat) energy.

2. Using petrol (gasoline) in a car engine is useful when Chemical energy is converted to mechanical energy and kinetic energy. And wasteful when chemical energy is converted to thermal energy.

3.  Using electricity in a motor is useful when electrical energy is converted to mechanical energy. And wasteful when thermal and sound energy.

What happens when Using petrol (gasoline) in a car engine?

Using gasoline in a car engine is all about the convertion of chemical energy that is in the hydrocarbons in gasoline into kinetic energy, so that a car can move.

This process, is not really efficient, because some energy is wasted as heat and noise as a result of friction and other processes.

This is why many automobiles have an energy efficiency rating, that can calculate the amount of gasoline necessary to go a specific distance.

Find more exercises on energy change when Using petrol (gasoline);

https://brainly.com/question/29502803

#SPJ1

If an object has a smaller redshift, that typically means

Answers

Answer:

Redshift is related to the velocity of an object moving away from the observer

Redshift is due to the longer wavelength reported by the observer

If an object has a smaller redshift, it is moving more slowly away from the observer.

a compound microscope has the objective and eyepiece mounted in a tube that is 18.0 cm long. the focal length of the eyepiece is 2.62 cm, and the near-point distance of the person using the microscope is 25.0 cm. if the person can view the image produced by the microscope with a completely relaxed eye, and the magnification is -4525, what is the focal length of the objective?

Answers

The focal length of the objective lens is approximately -11856.5 cm, based on the given information.

To determine the focal length of the objective lens, we can use the formula for the total magnification of a compound microscope, given by:

Magnification = -(focal length of the objective lens / focal length of the eyepiece)

Given that the magnification is -4525 and the focal length of the eyepiece is 2.62 cm, we can substitute these values into the formula to solve for the focal length of the objective lens.

-4525 = -(focal length of the objective lens / 2.62)

By cross-multiplying and solving for the focal length of the objective lens, we get:

focal length of the objective lens = (-4525 * 2.62) cm

Finally, to find the numerical value, we calculate:

focal length of the objective lens ≈ -11856.5 cm

Therefore, the focal length of the objective lens is approximately -11856.5 cm.

For more such questions on length, click on:

https://brainly.com/question/29813582

#SPJ11

if the water level is decreasing at a rate of 3 in/min when the depth of the water is 8 ft, determine the rate at which water is leaking out of the cone.____g

Answers

The rate at which water is leaking out of the cone is approximately 16.76 cubic feet per minute (ft^3/min).

To determine the rate at which water is leaking out of the cone, we need to use the formula for the volume of a cone:

V = (1/3)πr^2h

where V is the volume of the cone, r is the radius of the base, and h is the height of the cone.

We also need to use the formula for related rates:

dV/dt = (∂V/∂h)(dh/dt)

where dV/dt is the rate at which the volume of the cone is changing, (∂V/∂h) is the partial derivative of the volume with respect to the height, and dh/dt is the rate at which the height of the water level is changing.

First, we need to find the radius of the cone. We can do this by using the fact that the depth of the water is 8 ft:

h = 8 ft

The cone is similar to the larger cone, so the ratio of the corresponding dimensions is the same:

r/h = 2/3

r = (2/3)h = (2/3)(8 ft) = 16/3 ft

Now we can find the volume of the cone at any time:

V = (1/3)πr^2h

V = (1/3)π[(16/3 ft)^2](h)

Next, we need to find the rate at which the height of the water level is changing:

dh/dt = -3 in/min

We need to convert this to feet per minute, since the other measurements are in feet:

dh/dt = -0.25 ft/min

Now we can find the rate at which water is leaking out of the cone:

dV/dt = (∂V/∂h)(dh/dt)

dV/dt = (2/3)πr^2(dh/dt)

dV/dt = (2/3)π[(16/3 ft)^2](-0.25 ft/min)

dV/dt ≈ -16.76 ft^3/min

Learn more about depth here:

https://brainly.com/question/13804949

#SPJ11

Can the co-efficient of friction ever have a value such that a skier would be able to slide uphill at a constant velocity?

Answers

No, the co-efficient of friction cannot have a value such that a skier would be able to slide uphill at a constant velocity.

The co-efficient of friction represents the amount of resistance to motion between two surfaces in contact. When moving uphill, the force of gravity is acting against the skier's motion, which increases the frictional force. In order to maintain a constant velocity, the force of the skier pushing forward would have to match the force of friction, but with an increased frictional force, it would require a greater force from the skier to maintain that velocity. Therefore, it is not possible for a skier to slide uphill at a constant velocity due to the increased co-efficient of friction.
The answer is no, the coefficient of friction cannot have a value that would allow a skier to slide uphill at a constant velocity. The coefficient of friction is a measure of the resistance between two surfaces, in this case, the skis and the snow. When sliding uphill, the skier must overcome both friction and the gravitational force pulling them downhill. To slide uphill at a constant velocity, an external force would need to be applied, such as pushing or propelling themselves uphill. The coefficient of friction cannot be adjusted to overcome the force of gravity without an external force being applied.

Visit here to learn more about gravitational force:

brainly.com/question/12528243

#SPJ11

Other Questions
Solve the following for , in radians, where 0 A firm's stock has a beta of 1.23, its required return is 11.75%, and the risk-free rate is 4.30% What is the required rate of return on the market? of Select one: O A 10.36% OB 10.62% OC 10.88% OD. 11.15% O E 11.43% Assuming a tax rate of 25%, $125,000 of depreciation expense will. The fissionable fuel in all US nuclear reactors is?a. Plutoniumb. Thoriumc. Uraniumd. tritium Water Temperature if the variance of the water temperature in a lake is 27% how many days should the researcher select to measure the temperature to estimate the true mean within 4 with 90% confidence?The researcher needs a sample of at least_____ days. Various temperature measurements are recorded at different times for a particular city. The mean of 20 degree C a for 60 temperatures on 60 different days. Assuming that sigma = 1. 5 degree C, test the claim that the population mean is 22 degree C. Use a 0. 05 significance level What did President Washington do early in his first term to consolidate political support in the country for his new government language course decreases exponentially over time. This data can be modelled by the functionN(t) = axb-t + 450,where a and b are positive constants, and t is the time in years since a student completed the Frenchlanguage course.Immediately after completion, a student remembers 4200 French words.a) Find the value of a.After 4 years a student remembers only 1600 French words.b) Find the value of b, rounded to 2 decimal places.The number of French words a student remembers never decreases below a certain number of words, n.c) Write down the value of n. which of the following are benefits of remaining single in emerging adulthood? multiple select question. zappos uses social media primarily as a way to communicate with customers and it does this by reaching consumers wherever they are. this is an example of . The "Triple Nickels" activity is designed to: T/Fwithdrawal to the point of psychosis is considered a medical emergency Write the first three terms of the sequence.a_n = 2n-1/n^2+5 which of the following outer electron configurations would you expect to belong to a reactive metal? check all that apply. which of the following outer electron configurations would you expect to belong to a reactive metal?check all that apply. ns2np6 ns2np5 ns2np4 ns1 nsa has identified what they call the first principles of cybersecurity. the following list three of these: A ________ is an open-ended script in which students use their imaginations and creative writing in a playful manner.A) buddy journalB) story mapC) plot scaffold what is the initial rotational angular momentum of the satellite, around location d (its center of mass)? (be sure your signs are correct). Allied victories which broke the German offensive of 1918 in France included all of the following locations except _____.a. Chateau-Thierryb. Cantignyc. Berlind. Belleau Woode. Argonne Forest When should an MCI plan be put into effect? When measuring a nation's standard of living, of the following, the best measure is:A.nominal GDP.B.market GDP.C.real GDP.D.nominal GDP per capita.E.real GDP per capita. Which of the following communication channels can be used to for personalized messages that are neither complex nor emotional?emailprinted brochureviral videoposter Steam Workshop Downloader