Solve the differential equation with the given initial condition. 4y=5y'.y(0) = 15 A.y=15e (5/4)t OB. y=15e 20t OC. D. y=15e (-4/5)t y = 15e (4/5)t

Answers

Answer 1

The solution to the differential equation with the given initial condition is y = 15e^(4/5)t, which is option D. The differential equation is 4y=5y'. To solve this, we first rewrite it as y' = (4/5)y. This is a separable differential equation, so we can separate the variables and integrate both sides:


dy/y = (4/5)dt
ln|y| = (4/5)t + C
y = Ce^(4/5)t
Now we use the initial condition y(0) = 15 to find the value of C:
15 = Ce^(4/5)(0)
15 = C
C = 15
Therefore, the solution to the differential equation with the given initial condition is y = 15e^(4/5)t, which is option D.

To know more about differential visit:

https://brainly.com/question/31383100

#SPJ11


Related Questions

(a) Set up an initial value problem to model the following situation. Do not solve. A large tank contains 600 gallons of water in which 4 pounds of salt is dissolved. A brine solution containing 3 pounds of salt per gallon of water is pumped into the tank at the rate of 5 gallons per minute, and the well-stirred mixture is pumped out at 2 gallons per minute. Find the number of pounds of salt, Aft), in the tank after t minutes. (b) Solve the linear differential equation. dA = 8 dt 3A 200++ (Not related to part (a))

Answers

Therefore, the differential equation that models the rate of change of A(t) is: dA/dt = 15 - (2A(t)/600).

Let A(t) represent the number of pounds of salt in the tank after t minutes. The rate of change of A(t) can be determined by considering the inflow and outflow of salt in the tank.

The rate of inflow of salt is given by the concentration of the brine solution (3 pounds of salt per gallon) multiplied by the rate of incoming water (5 gallons per minute). This results in an inflow rate of 15 pounds of salt per minute.

The rate of outflow of salt is determined by the concentration of the mixture in the tank, which is given by A(t) pounds of salt divided by the total volume of water in the tank (600 gallons). Multiplying this concentration by the rate of outgoing water (2 gallons per minute) gives the outflow rate of 2A(t)/600 pounds of salt per minute.

Learn more about differential equation here:

https://brainly.com/question/25731911

#SPJ11

27. [0/2.5 Points] DETAILS PREVIOUS ANSWERS SPRECALC7 8.3.075. Find the Indicated power using De Moivre's Theorem. (Express your fully simplified answer in the form a + bi.). (3√3+31)-5 Watch it Nee

Answers

The fully simplified form  answer in a + bi is:

2⁻⁵√247⁻⁵ (cos(-6.11) + is in(-6.11))

What is De Moivre's Theorem?

De Moivre's theorem Formula, example and proof. Declaration. For an integer/fraction like n, the value obtained during the calculation will be either the complex number 'cos nθ + i sin nθ' or one of the values ​​(cos θ + i sin θ) n. Proof. From the statement, we take (cos θ + isin θ)n = cos (nθ) + isin (nθ) Case 1 : If n is a positive number.

To find the indicated power using De Moivre's Theorem, we need to raise the given expression to a negative power.

The expression is (3√3 + 31)⁻⁵.

Using De Moivre's Theorem, we can express the expression in the form of (a + bi)ⁿ, where a = 3√3 and b = 31.

(a + bi))ⁿ = (r(cosθ + isinθ))ⁿ

where r = √(a² + b²) and θ = arctan(b/a)

Let's calculate r and θ:

r = √((3√3)² + 31²)

= √(27 + 961)

= √988

= 2√247

θ = arctan(31/(3√3))

= arctan(31/(3 * [tex]3^{(1/2)[/tex]))

≈ 1.222 radians

Now, we can write the expression as:

(3√3 + 31)⁻⁵ = (2√247(cos1.222 + isin1.222))⁻⁵

Using De Moivre's Theorem:

(2√247(cos1.222 + isin1.222))⁻⁵ = 2⁻⁵√247⁻⁵(cos(-5 * 1.222) + isin(-5 * 1.222))

Simplifying:

2⁻⁵√247⁻⁵(cos(-6.11) + isin(-6.11))

The fully simplified answer in the form a + bi is:

2⁻⁵√247⁻⁵(cos(-6.11) + isin(-6.11))

To learn more about De Moivre's Theorem from the given link

https://brainly.com/question/30189403

#SPJ4

will only upvote if correct and fast
4. The function f is defined by f(x) = (1+x¹) 1 The Maclaurin series for f is given by 1-2x² + 3x¹-4x++ (-1)"(n+1)x² + ... a) Use the ratio test to find the interval of convergence for the Maclaur

Answers

The interval of convergence for the Maclaurin series of f(x) = (1+x)^(1) is -1 < x < 1.

To find the interval of convergence for the Maclaurin series of the function f(x) = (1+x)^(1), we can use the ratio test.

The ratio test states that if the limit of the absolute value of the ratio of consecutive terms is less than 1, then the series converges. If the limit is greater than 1, the series diverges.

Let's apply the ratio test to the Maclaurin series:

Ratio of consecutive terms:

|(-1)^(n+1)x^(n+2)| / |(-1)^(n+1)x^(n)| = |x^(n+2)| / |x^n|

Simplifying the expression, we have:

|x^(n+2)| / |x^n| = |x^(n+2 - n)| = |x^2|

Taking the limit as n approaches infinity:

lim (|x^2|) as n -> ∞ = |x^2|

Now, we need to determine the values of x for which |x^2| < 1 for convergence.

If |x^2| < 1, it means that -1 < x^2 < 1.

Taking the square root of the inequality, we have -1 < x < 1.

Therefore, the interval of convergence for the Maclaurin series of f(x) = (1+x)^(1) is -1 < x < 1.

To know more about Maclaurin series refer here:

https://brainly.com/question/31582863#

#SPJ11








7. Find the volume generated by rotating the function g(x)=- 1 (x + 5)² x-axis on the domain [-3,20]. about the

Answers

To find the volume generated by rotating the function g(x) = -1(x + 5)² around the x-axis over the domain [-3, 20], we can use the method of cylindrical shells.

The volume of a cylindrical shell can be calculated as V = ∫[a,b] 2πx f(x) dx, where f(x) is the function and [a,b] represents the domain of integration.

In this case, we have g(x) = -1(x + 5)² and the domain [-3, 20]. Therefore, the volume can be expressed as:

V = ∫[-3,20] 2πx (-1)(x + 5)² dx

To evaluate this integral, we can expand and simplify the function inside the integral, then integrate with respect to x over the given domain [-3, 20]. After performing the integration, the resulting value will give the volume generated by rotating the function g(x) = -1(x + 5)² around the x-axis over the domain [-3, 20].

Learn more about volume here: brainly.com/question/15629074

#SPJ11

For each of the series, show whether the series converges or diverges and state the test used. sin n n5 (b) n=1

Answers

sin n/n^5 converges by the comparison test, while n=1 diverges by the limit comparison test. For the series sin n/n^5, we can use the comparison test.

We know that 0 <= |sin n/n^5| <= 1/n^5 for all n. Since the series 1/n^5 converges by the p-series test (p=5 > 1), then by the comparison test, sin n/n^5 converges as well.


For the series n=1, we can use the limit comparison test. Let's compare it to the series 1/n. We have lim (n->∞) (n/n)/(1/n) = lim (n->∞) n^2 = ∞, which means the two series have the same behavior. Since the series 1/n diverges by the p-series test (p=1 < 2), then by the limit comparison test, n=1 also diverges.

Learn more about limit comparison test here:

brainly.com/question/30401939

#SPJ11

The relationship between the time spent driving and the amount of gas used is an example of what type of correlation? Question 18 options: A) Positive correlation B) No correlation C) Negative correlation D) Can't be determined

Answers

Answer:

A

Step-by-step explanation:

Determine The Inverse Laplace Transforms Of ( S -3) \ S2-6S+13 .

Answers

To determine the inverse Laplace transforms of (S - 3)/(S^2 - 6S + 13), we need to find the corresponding time-domain function. We can do this by applying partial fraction decomposition and using the inverse Laplace transform table to obtain the inverse transform.

To start, we factor the denominator of the rational function S^2 - 6S + 13 as (S - 3)^2 + 4. The denominator can be rewritten as (S - 3 + 2i)(S - 3 - 2i). Next, we perform partial fraction decomposition and express the rational function as A/(S - 3 + 2i) + B/(S - 3 - 2i). Solving for A and B, we can find their respective values. Let's assume A = a + bi and B = c + di. By equating the numerators, we get (S - 3)(a + bi) + (S - 3)(c + di) = S - 3. Expanding and equating the real and imaginary parts, we can solve for a, b, c, and d. Once we have the partial fraction decomposition, we can use the inverse Laplace transform table to find the inverse Laplace transform of each term.

To know more about fraction decomposition here: brainly.com/question/30401234

#SPJ11

Compute the inverse Laplace transform: LP -s-4 52-5-2 e -2} (Notation: write uſt-e) for the Heaviside step function uc(t) with step at t = c.)

Answers

For the Heaviside step function uc(t) with step at t = c is L-1[LP(s)] = -3! [u(t-5-c)] * [e 2(t-c)].

The inverse Laplace transform of LP(s) = -s-4 / (s-5)2 e -2}

(Notation: write uſt-e) for the Heaviside step function uc(t) with step at t = c can be computed as shown below:

Firstly, consider LP(s) = -s-4 / (s-5)2 e -2. Let P(s) = (s-5)2.

Then, LP(s) = -s-4 / P(s) e -2

Taking Laplace transform of both sides, we haveL[LP(s)] = L[-s-4 / P(s) e -2]L[LP(s)] = -L[s-4 / P(s)] e -2

Using the differentiation property of the Laplace transform and the fact that

L[uc(t-c)] = e -cs L[uc(t)], we have

L[LP(s)] = -L[t3 e 5t] e -2L[LP(s)] = -3! L[(s-5)-4] e -2L[LP(s)] = -3! u(t-5) e -2

Differentiating both sides, we get

L-1[LP(s)] = L-1[-3! u(t-5) e -2]L-1[LP(s)] = -3! L-1[u(t-5)] * L-1[e -2]L-1[LP(s)] = -3! [u(t-5-c)] * [e 2(t-c)]

Therefore, the inverse Laplace transform of LP(s) = -s-4 / (s-5)2 e -2}

(Notation: write uſt-e) for the Heaviside step function uc(t) with step at t = c is L-1[LP(s)] = -3! [u(t-5-c)] * [e 2(t-c)]

Learn more about Laplace transform :

https://brainly.com/question/30759963

#SPJ11


use
midpoint
6. [-/1 Points) DETAILS SCALCET8 5.2.519.XP. MY NOTES Use the Midpoint Rule with the given value of n to approximate the integral. Round the answer to four decimal pl 1' sin(x) dx, n = 5 Ms Need Help?

Answers

To approximate the integral ∫[1 to 5] sin(x) dx using the Midpoint Rule with n = 5, we need to divide the interval [1, 5] into subintervals of equal width and evaluate the function at the midpoint of each subinterval.

The formula for the Midpoint Rule is as follows:

Δx = (b - a) / n

where Δx represents the width of each subinterval, b is the upper limit of integration, a is the lower limit of integration, and n is the number of subintervals.

In this case, a = 1, b = 5, and n = 5. Therefore:

Δx = (5 - 1) / 5 = 4 / 5 = 0.8

Now, we need to find the midpoints of the subintervals. The midpoint of each subinterval is given by:

xi = a + (i - 0.5) * Δx

where i is the index of the subinterval.

For i = 1:

x1 = 1 + (1 - 0.5) * 0.8 = 1 + 0.5 * 0.8 = 1 + 0.4 = 1.4

For i = 2:

x2 = 1 + (2 - 0.5) * 0.8 = 1 + 1.5 * 0.8 = 1 + 1.2 = 2.2

For i = 3:

x3 = 1 + (3 - 0.5) * 0.8 = 1 + 2.5 * 0.8 = 1 + 2 * 0.8 = 1 + 1.6 = 2.6

For i = 4:

x4 = 1 + (4 - 0.5) * 0.8 = 1 + 3.5 * 0.8 = 1 + 2.8 = 3.8

For i = 5:

x5 = 1 + (5 - 0.5) * 0.8 = 1 + 4.5 * 0.8 = 1 + 3.6 = 4.6

Now, we evaluate the function sin(x) at each of the midpoints and sum the results, multiplied by Δx:

Approximation = Δx * [f(x1) + f(x2) + f(x3) + f(x4) + f(x5)]

where f(x) = sin(x).

Approximation = 0.8 * [sin(1.4) + sin(2.2) + sin(2.6) + sin(3.8) + sin(4.6)]

Using a calculator or trigonometric tables, evaluate sin(1.4), sin(2.2), sin(2.6), sin(3.8), and sin(4.6), then substitute these values into the formula to calculate the approximation.

Finally, round the answer to four decimal places as requested.

Rounding the answer to four decimal places, the approximation of the integral ∫ sin(x) dx using the Midpoint Rule with n = 5 is approximately 0.5646.

What is midpoint?

In mathematics, the midpoint refers to the point that lies exactly in the middle of a line segment or an interval. It is the point that divides the segment or interval into two equal parts.

To approximate the integral ∫ sin(x) dx using the Midpoint Rule with n = 5, we need to divide the integration interval into 5 subintervals and evaluate the function at the midpoint of each subinterval.

The formula for the Midpoint Rule is:

∫[a to b] f(x) dx ≈ Δx * [f(x₁) + f(x₂) + f(x₃) + ... + f(xₙ)],

where Δx = (b - a) / n is the width of each subinterval, and x₁, x₂, x₃, ..., xₙ are the midpoints of each subinterval.

In this case, the integration interval is not specified, so let's assume it to be from a = 0 to b = 1.

Using n = 5, we have 5 subintervals, so Δx = (1 - 0) / 5 = 1/5.

The midpoints of the subintervals are:

x₁ = 1/10

x₂ = 3/10

x₃ = 1/2

x₄ = 7/10

x₅ = 9/10

Now, we can apply the Midpoint Rule:

∫ sin(x) dx ≈ Δx * [sin(x₁) + sin(x₂) + sin(x₃) + sin(x₄) + sin(x₅)]

Substituting the values:

∫ sin(x) dx ≈ (1/5) * [sin(1/10) + sin(3/10) + sin(1/2) + sin(7/10) + sin(9/10)]

To evaluate each term using the sine function, we can substitute the values into the sine function:

sin(1/10) ≈ 0.0998334166

sin(3/10) ≈ 0.2955202067

sin(1/2) = 1

sin(7/10) ≈ 0.6442176872

sin(9/10) ≈ 0.7833269096

Now, substitute the values back into the equation:

∫ sin(x) dx ≈ (1/5) * [0.0998334166 + 0.2955202067 + 1 + 0.6442176872 + 0.7833269096]

Calculating the sum:

∫ sin(x) dx ≈ (1/5) * 2.8228982201

Simplifying:

∫ sin(x) dx ≈ 0.564579644

Rounding the answer to four decimal places, the approximation of the integral ∫ sin(x) dx using the Midpoint Rule with n = 5 is approximately 0.5646.

To learn more about midpoint visit:

https://brainly.com/question/12223533

#SPJ4

please answer all parts of a,b,c and d
Find the following for the vectors u = -7i+10j + √2k and v= 7i-10j-√√2k a. v.u, v, and ul b. the cosine of the angle between v and u c. the scalar component of u in the direction of v d. the vec

Answers

The following for the vectors u = -7i+10j + √2k and v= 7i-10j-√√2k .To solve the given problem, we'll follow the steps for each part:

a. To find v.u (dot product of vectors v and u), we multiply the corresponding components and sum them up:

v.u = (7)(-7) + (-10)(10) + (-√√2)(√2)

    = -49 - 100 - 2

    = -151

The vector v is given by v = 7i - 10j - √√2k.

The magnitude of vector u is given by ||u|| = √((-7)^2 + 10^2 + (√2)^2) = √(49 + 100 + 2) = √151.

b. The cosine of the angle between vectors v and u can be found using the dot product formula and the magnitudes of the vectors:

cos(theta) = (v.u) / (||v|| * ||u||)

          = -151 / (7^2 + (-10)^2 + (√√2)^2) * √151

          = -151 / (49 + 100 + 2) * √151

          = -151 / 151 * √151

          = -√151

c. To find the scalar component of u in the direction of v, we need to project u onto v. The formula for the scalar projection is:

Scalar component of u in the direction of v = ||u|| * cos(theta)

Using the magnitude of u from part a and the cosine of the angle from part b:

Scalar component of u in the direction of v = √151 * (-√151)

                                            = -151

d. The vector component of u orthogonal to v can be found by subtracting the scalar component of u in the direction of v from u:

Vector component of u orthogonal to v = u - (Scalar component of u in the direction of v)

                                     = (-7i + 10j + √2k) - (-7i - 10j - √√2k)

                                     = (-7i + 7i) + (10j - (-10j)) + (√2k - (-√√2k))

                                     = 0i + 20j + (√2 + √√2)k

                                     = 20j + (√2 + √√2)k

Learn about vectors here:

https://brainly.com/question/30907119

#SPJ11




Problem 2. (1 point) Suppose y(t) = 7e-4t is a solution of the initial value problem y' + ky = 0, y(0) = yo. What are the constants k and yo? k= help (numbers) Yo = help (numbers)

Answers

The constants for the initial value problem are [tex]\(k = 4\)[/tex] and [tex]\(y_0 = 7\).[/tex]

What is a first-order ordinary differential equation?

A first-order ordinary differential equation (ODE) is a type of differential equation that involves the derivative of an unknown function with respect to a single independent variable. It relates the rate of change of the unknown function to its current value and the independent variable.

To find the constants [tex]\(k\)[/tex] and [tex]\(y_0\)[/tex] for the initial value problem[tex]\(y' + ky = 0\)[/tex]with \[tex](y(0) = y_0\)[/tex]and the given solution [tex]\(y(t) = 7e^{-4t}\),[/tex] we can substitute the values into the equation.

First, let's differentiate the solution[tex]\(y(t)\)[/tex] with respect to [tex]\(t\)[/tex] find[tex]\(y'(t)\):[/tex]

[tex]\[y'(t) = \frac{d}{dt}(7e^{-4t}) = -28e^{-4t}\][/tex]

Next, we substitute the solution[tex]\(y(t)\)[/tex] and its derivative [tex]\(y'(t)\)[/tex]into the differential equation:

[tex]\[y'(t) + ky(t) = -28e^{-4t} + k(7e^{-4t}) = 0\][/tex]

Since this equation holds for all values  [tex]\(t\),[/tex] the coefficient of [tex]\(e^{-4t}\)[/tex]must be zero. Therefore, we have the equation:

[tex]\[-28 + 7k = 0\][/tex]

Solving this equation, we find:

[tex]\[k = \frac{28}{7} = 4\][/tex]

Now, we can determine the value of [tex]\(y_0\)[/tex] by substituting [tex]\(t = 0\)[/tex] into the given solution[tex]\(y(t) = 7e^{-4t}\)[/tex]and equating it to [tex]\(y_0\):[/tex]

[tex]\[y(0) = 7e^{-4 \cdot 0} = 7 \cdot 1 = y_0\][/tex]

From this equation, we can see that[tex]\(y_0\)[/tex] is equal to 7.

Therefore, the constants for the initial value problem are [tex]\(k = 4\)[/tex] and [tex]\(y_0 = 7\).[/tex]

Learn more about ordinary differential equations:

https://brainly.com/question/30745025

#SPJ4








A model used for the yield Y of an agricultural crop as a function of the nitrogen level N in the soil (measured in appropriate units) is Y = kN 81 + N²¹ where k is a positive constant. What nitroge

Answers

To find the nitrogen level that maximizes the yield of the agricultural crop, we need to determine the value of N that corresponds to the maximum of the function Y = kN / (81 + N^21).

The maximum value of a function occurs when its derivative is equal to zero or does not exist. We can find the derivative of Y with respect to N:

dY/dN = (k(81 + N^21) - kN(21N^20)) / (81 + N^21)^2

Setting this derivative equal to zero, we get:

k(81 + N^21) - kN(21N^20) = 0

Simplifying the equation, we have:

81 + N^21 = 21N^20

By finding the value(s) of N that satisfy the equation, we can determine the nitrogen level(s) that maximize the crop yield according to the given model. It's important to note that the model assumes a specific functional form for the relationship between nitrogen level and crop yield. The validity of the model and the optimal nitrogen level would need to be verified through experimental data and further analysis.

Learn more about nitrogen level here: brainly.com/question/14176673

#SPJ11

If f is continuous and find
8 6° a f(x) dx = -30 2 1 si f(x³)xz dir 2

Answers

The given equation involves an integral of the function f(x) over a specific range. By applying the Fundamental Theorem of Calculus and evaluating the definite integral, we find that the result is [tex]-30 2 1 si f(x^3)xz dir 2[/tex].

To calculate the final answer, we need to break down the problem and solve it step by step. Firstly, we observe that the limits of integration are given as 8 and 6° in the first integral, and 2 and 1 in the second integral. The notation "6°" suggests that the angle is measured in degrees.

Next, we need to evaluate the first integral. Since f(x) is continuous, we can apply the fundamental theorem of calculus, which states that if F(x) is an antiderivative of f(x), then ∫[a, b] f(x) dx = F(b) - F(a). However, without any information about the function f(x) or its antiderivative, we cannot proceed further.

Similarly, in the second integral, we have f(x³) as the integrand. Without additional information about f(x) or its properties, we cannot evaluate this integral either.

In conclusion, the final answer cannot be determined without knowing more about the function f(x) and its properties.

Learn more about Fundamental Theorem of Calculus here:

https://brainly.com/question/30761130

#SPJ11

I: A = (3,2,4) m=i+j+k
12: A = (2,3,1) B = (4,4,1)
(a) Create Vector and Parametric forms of the equations for lines I and rz
(b) Find the point of intersection for the two lines
(c) Find the size of the angle between the two lines
a.b = lalx b| x cos o
a. b = (a; xbi) + (a; xb;) + (aK Xbk)

Answers

(a) The vector and parametric forms of the equations for lines I and Rz are as follows:

Line I: r = (3, 2, 4) + t(1, 1, 1)

Line Rz: r = (2, 3, 1) + s(2, 1, 0)

(b) To find the point of intersection for the two lines, we can set the x, y, and z components of the equations equal to each other and solve for t and s.

(c) To find the angle between the two lines, we can use the dot product formula and the magnitude of the vectors.

(a) The vector form of the equation for a line is r = r0 + t(v), where r0 is a point on the line and v is the direction vector of the line. For Line I, the given point is (3, 2, 4) and the direction vector is (1, 1, 1). Therefore, the vector form of Line I is r = (3, 2, 4) + t(1, 1, 1).

For Line Rz, the given point is (2, 3, 1) and the direction vector is (2, 1, 0). Therefore, the vector form of Line Rz is r = (2, 3, 1) + s(2, 1, 0).

(b) To find the point of intersection, we can equate the x, y, and z components of the vector equations for Line I and Line Rz. By solving the equations, we can determine the values of t and s that satisfy the intersection condition. Substituting these values back into the original equations will give us the point of intersection.

(c) The angle between two lines can be found using the dot product formula: cos(θ) = (a · b) / (|a| |b|), where a and b are the direction vectors of the lines. By taking the dot product of the direction vectors of Line I and Line Rz, and dividing it by the product of their magnitudes, we can calculate the cosine of the angle between them. Taking the inverse cosine of this value will give us the angle between the two lines.\

Learn more about parametric forms here: brainly.com/question/32263699

#SPJ11

Use the geometric series f(x) = 1 1-x Σx, for x < 1, to find the power series representation for the following function (centered at 0). Give the interval of convergence of the new series. k=0 f(8x)

Answers

The power series representation for f(8x) centered at 0 is Σ [tex]8^k[/tex] * [tex]x^k[/tex] , and the interval of convergence is |x| < 1/8.

To find the power series representation of the function f(8x) centered at 0, we can substitute 8x into the given geometric series expression for f(x).

The geometric series is given by:

f(x) = Σ  [tex]x^k[/tex] , for |x| < 1

Substituting 8x into the series, we have:

f(8x) = Σ [tex]8^k[/tex] * [tex]x^k[/tex]

Simplifying further, we obtain:

f(8x) = Σ [tex]8^k[/tex] * [tex]x^k[/tex]

Now, we can rewrite the series in terms of a new power series:

f(8x) = Σ [tex]8^k[/tex] * [tex]x^k[/tex]

The interval of convergence of the new power series centered at 0 can be determined by examining the original interval of convergence for the geometric series, which is |x| < 1. Since we substituted 8x into the series, we need to consider the interval for which |8x| < 1.

Dividing both sides by 8, we have |x| < 1/8. Therefore, the interval of convergence for the new power series representation of f(8x) centered at 0 is |x| < 1/8.

To know more about power series click on below link:

https://brainly.com/question/29896893#

#SPJ11

solve for x using the quadratic formula 3x^2+10=8

Answers

X equals i √6/3 and -i √6/3

(1 point) Let F = 5xi + 5yj and let n be the outward unit normal vector to the positively oriented circle x2 + y2 - = 1. Compute the flux integral ScFinds.

Answers

The flux integral ∬S F · dS is equal to 5π/2.

To compute the flux integral of the vector field F = 5xi + 5yj across the surface S defined by the equation[tex]x^2 + y^2[/tex] = 1, we need to evaluate the surface integral of the dot product between F and the outward unit normal vector n.

First, let's find the unit normal vector n to the surface S. The surface S represents a unit circle centered at the origin, so the normal vector at any point on the circle is simply given by the unit vector pointing outward from the origin. Therefore, n = (x, y) / ||(x, y)|| = (x, y) / 1 = (x, y).

Now, we can compute the flux integral:

∬S F · dS = ∬S (5xi + 5yj) · (x, y) dA,

where dS represents the infinitesimal surface element and dA represents the infinitesimal area on the surface.

We can express dS as dS = (dx, dy) and rewrite the integral as:

∬S F · dS = ∬S[tex](5x^2 + 5y^2) dA.[/tex]

Since we are integrating over the unit circle, we can use polar coordinates to simplify the integral. The limits of integration for r are from 0 to 1, and the limits of integration for θ are from 0 to 2π.

Using the conversion from Cartesian to polar coordinates (x = rcosθ, y = rsinθ), the integral becomes:

∬S[tex](5x^2 + 5y^2) d[/tex]A = ∫[0,2π] ∫[0,1] (5r^2) r dr dθ.

Simplifying and evaluating the integral:

∫[0,2π] ∫[0,1] (5r^3) dr dθ = 5 ∫[0,2π] [(1/4)r^4] from 0 to 1 dθ.

= 5 ∫[0,2π] (1/4) dθ = 5 (1/4) [θ] from 0 to 2π.

= 5 (1/4) (2π - 0) = 5π/2.

Therefore, the flux integral ∬S F · dS is equal to 5π/2.

for more  such questions on integral visit

https://brainly.com/question/22008756

#SPJ8

A researcher wishes to estimate the proportion of adults who have high-speed Internet access. What size sample should be obtained if she wishes the estimate to be within 0.030.03 with 9090 % confidence if (a) she uses a previous estimate of 0.580.58 ? (b) she does not use any prior estimates?

Answers

the sample size required to estimate the proportion of adults with high-speed Internet access depends on whether a prior estimate is 753

(a) When using a previous estimate of 0.58, we can calculate the sample size. The formula for sample size estimation is n =[tex](Z^2 p q) / E^2,[/tex] where Z is the Z-score corresponding to the desired confidence level, p is the estimated proportion, q is 1 - p, and E is the desired margin of error.

Using a Z-score of 1.645 for a 90% confidence level, p = 0.58, and E = 0.03, we can calculate the sample size:

n = [tex](1.645^2 0.58 (1 - 0.58)) / 0.03^2[/tex]) ≈ 806.36

Therefore, a sample size of approximately 807 should be obtained.

(b) Without any prior estimate, a conservative estimate of 0.5 is commonly used to calculate the sample size. Using the same formula as above with p = 0.5, the sample size is:

n = [tex](1.645^2 0.5 (1 - 0.5)) / 0.03^2[/tex] ≈ 752.89

In this case, a sample size of approximately 753 should be obtained.

Learn more about proportion here:

https://brainly.com/question/31548894

#SPJ11

Find the values of c such that the area of the region bounded by the parabolas y = 16x^2 − c^2 and y = c^2 − 16x^2 is 16/3. (Enter your answers as a comma-separated list.)
c =

Answers

The values of c that satisfy the condition for the area of the region bounded by the parabolas y = [tex]16x^2 - c^2[/tex] and y = [tex]c^2 - 16x^2[/tex] to be 16/3 are c = 2 and c = -2.

To find the values of c, we need to calculate the area of the region bounded by the two parabolas and set it equal to 16/3. The area can be obtained by integrating the difference between the two curves over their common interval of intersection.

First, we find the points of intersection by setting the two equations equal to each other:

[tex]16x^2 - c^2 = c^2 - 16x^2[/tex]

Rearranging the equation, we have:

32x^2 = 2c^2

Dividing both sides by 2, we get:

[tex]16x^2 = c^2[/tex]

Taking the square root, we obtain:

4x = c

Solving for x, we find two values of x: x = c/4 and x = -c/4.

Next, we calculate the area by integrating the difference between the two curves over the interval [-c/4, c/4]:

A = ∫[-c/4, c/4] [[tex](16x^2 - c^2) - (c^2 - 16x^2)[/tex]] dx

Simplifying the expression, we have:

A = ∫[-c/4, c/4] ([tex]32x^2 - 2c^2[/tex]) dx

Integrating, we find:

A = [tex][32x^{3/3} - 2c^{2x}][/tex] evaluated from -c/4 to c/4

Evaluating the expression, we get:

A = [tex]16c^{3/3} - 2c^{3/4}[/tex]

Setting this equal to 16/3 and solving for c, we find the values c = 2 and c = -2. These are the values of c that satisfy the condition for the area of the region to be 16/3.

To learn more about parabolas, refer:-

https://brainly.com/question/29267743

#SPJ11

the sides of a triangle are 13ft 15ft and 11 ft find the measure of the angle opposite the longest side

Answers

The measure of the angle opposite the longest side is approximately 56.32 degrees.The measure of the angle opposite the longest side of a triangle can be found using the Law of Cosines.

In this case, the sides of the triangle are given as 13 ft, 15 ft, and 11 ft. To find the measure of the angle opposite the longest side, we can apply the Law of Cosines to calculate the cosine of that angle. Then, we can use the inverse cosine function to find the actual measure of the angle.

Using the Law of Cosines, the formula is given as:

[tex]c^2 = a^2 + b^2 - 2ab * cos(C)[/tex]

Where c is the longest side, a and b are the other two sides, and C is the angle opposite side c.

Substituting the given values, we have:

[tex]13^2 = 15^2 + 11^2 - 2 * 15 * 11 * cos(C)[/tex]

169 = 225 + 121 - 330 * cos(C)

-177 = -330 * cos(C)

cos(C) = -177 / -330

cos(C) ≈ 0.5364

Using the inverse cosine function, we find:

C ≈ arccos(0.5364) ≈ 56.32 degrees

Therefore, the measure of the angle opposite the longest side is approximately 56.32 degrees.

Learn more about Law of Cosines here:

https://brainly.com/question/30766161

#SPJ11

Determine whether Rolle's theorem applies to the function shown below on the given interval. If so, find the point(s) that are guaranteed to exist by Rolle's theorem. л Зл f(x) = = - cos 4x; 8' 8 S

Answers

To determine if Rolle's theorem applies to the function f(x) = -cos(4x) on the interval [a, b], we need to check two conditions:

Continuity: The function f(x) must be continuous on the closed interval [a, b].
Differentiability: The function f(x) must be differentiable on the open interval (a, b).

Let's check these conditions for the given function f(x) = -cos(4x) on the interval [a, b].

Continuity: The function -cos(4x) is continuous everywhere since it is a composition of continuous functions. Therefore, it is continuous on the interval [a, b].
Differentiability: To check differentiability, we need to take the derivative of f(x) = -cos(4x). The derivative of -cos(4x) with respect to x is 4sin(4x). This derivative exists and is defined for all values of x. Therefore, the function is differentiable on the interval [a, b].

Since both the continuity and differentiability conditions are satisfied, Rolle's theorem applies to the function f(x) = -cos(4x) on the interval [a, b].

According to Rolle's theorem, if a function is continuous on the closed interval [a, b] and differentiable on the open interval (a, b), and the function values at the endpoints are equal (f(a) = f(b)), then there exists at least one point c in the open interval (a, b) where the derivative of the function is equal to zero (f'(c) = 0).

In this case, since the interval [a, b] is not specified, we cannot determine the exact values of a and b. However, based on Rolle's theorem, we can conclude that there exists at least one point c in the interval (a, b) where the derivative of the function is equal to zero, i.e., f'(c) = 0.

Therefore, the point(s) guaranteed to exist by Rolle's theorem for the function f(x) = -cos(4x) on the given interval are the point(s) where the derivative f'(x) = 4sin(4x) equals zero.

To learn more about Rolle's theorem  visit:

brainly.com/question/31331894

#SPJ11

A manufacturer of downhill and cross-country skis reports that manufacturing time is 1 hours and 3 hours, respectively, per ski and that finishing time is 8 hours for each downhill and 7 hours for each cross-country ski. There are only 27 hours per week available for the manufacturing process and 80 hours for the finishing process. The average profit is $77 for downhill ski and $63 for cross-country ski. The manufacturer wants to know how many of each type of ski should be made to maximize the weekly profit Corner points of the feasible region: (09). (27.0), (0.11.4), (10,0) If there is more than one comer point, type the points separated by a comma (i (1.2).(3.4)). Maximum profit is $170 when 10 downhill skis Cross country skis are produced.

Answers

Based on the given information, the manufacturer wants to maximize the weekly profit by determining the optimal production quantities of downhill and cross-country skis.

The constraints are the available manufacturing and finishing hours. Let's analyze the corner points of the feasible region: (0, 9): This point represents producing only cross-country skis. The manufacturing time would be 0 hours, and the finishing time would be 63 hours. The profit would be 9 cross-country skis multiplied by $63, resulting in a profit of $567. (27, 0): This point represents producing only downhill skis. The manufacturing time would be 27 hours, and the finishing time would be 0 hours. The profit would be 27 downhill skis multiplied by $77, resulting in a profit of $2,079. (1, 4): This point represents producing a combination of 1 downhill ski and 4 cross-country skis. The manufacturing time would be 1 hour for the downhill ski and 12 hours for the cross-country skis. The finishing time would be 32 hours. The profit would be (1 x $77) + (4 x $63) = $77 + $252 = $329.

(10, 0): This point represents producing only downhill skis. The manufacturing time would be 10 hours, and the finishing time would be 0 hours. The profit would be 10 downhill skis multiplied by $77, resulting in a profit of $770. The maximum profit of $170 is achieved when producing 10 downhill skis and 0 cross-country skis, as indicated by point (10, 0). Therefore, the optimal production quantities to maximize the weekly profit are 10 downhill skis and 0 cross-country skis.

To Learn more about profit click here :  brainly.com/question/32381738

#SPJ11

Find the most general antiderivative of the function. (Check your answer by differentiation. Use C for the constant of the antiderivative. Remember to use absolute values where appropriate.)
f(x) =
a. x^(5) − x^(3) + 6x
b. x^(4)

Answers

The most general antiderivative of f(x) = x^(5) − x^(3) + 6x is F(x) = (1/6)x^(6) − (1/4)x^(4) + 3x^(2) + C and the most general antiderivative of f(x) = x^(4) is F(x) = (1/5)x^(5) + C.

a. The most general antiderivative of f(x) = x^(5) − x^(3) + 6x is F(x) = (1/6)x^(6) − (1/4)x^(4) + 3x^(2) + C, where C is the constant of integration.

To check this answer, we can differentiate F(x) using the power rule and the constant multiple rules:

F'(x) = (1/6)(6x^(5)) − (1/4)(4x^(3)) + 3(2x)
= x^(5) − x^(3) + 6x

This equals the original function f(x), so our antiderivative is correct.

Note that we do not need to use absolute values in this case because x^(5), x^(3), and 6x are all defined for all values of x.

b. The most general antiderivative of f(x) = x^(4) is F(x) = (1/5)x^(5) + C, where C is the constant of integration.

To check this answer, we can differentiate  F(x) using the power rule and the constant multiple rules:

F'(x) = (1/5)(5x^(4))
= x^(4)

This equals the original function f(x), so our antiderivative is correct.

Again, we do not need to use absolute values because x^(4) is defined for all values of x.

To know more about antiderivatives visit here :

https://brainly.in/question/5528636

#SPJ11

Question 1 Find the general solution of the given differential equation (using substitution method) x²y' = xy + y² Solution: Question 2 Solve the equation f(x) = 0 to find the critical points of the

Answers

To find the general solution of the given differential equation x²y' = xy + y² using the substitution method, we can substitute y = vx into the equation to obtain a separable equation in terms of v. Solving this separable equation will give us the general solution for y in terms of x.

The question mentions solving the equation f(x) = 0 to find the critical points, but it doesn't provide the specific equation f(x) or any additional details. To find critical points, we usually take the derivative of the function and set it equal to zero to solve for x. However, without the equation or more information, it is not possible to provide a specific solution.To solve the differential equation x²y' = xy + y² using the substitution method, we substitute y = vx into the equation. Taking the derivative of y with respect to x using the chain rule, we have y' = v + xv'. We can substitute these expressions into the original differential equation and rearrange terms to obtain a separable equation in terms of v:
x²(v + xv') = x(vx) + (vx)².
Expanding and simplifying, we get:
x²v + x³v' = x²v² + x²v².Dividing both sides by x³v², we obtain:
v' / v² = 1 / x.
Now, we have a separable equation in terms of v. By integrating both sides with respect to x, we can solve for v, and then substitute back y = vx to find the general solution for y in terms of x.
The question mentions solving the equation f(x) = 0 to find the critical points, but it does not provide the specific equation f(x). Critical points typically refer to points where the derivative of a function is zero or undefined. To find critical points, we usually take the derivative of the function f(x) and set it equal to zero to solve for x. However, without the equation or more information, it is not possible to provide a specific solution for finding the critical points.

Learn more about differential equation here

https://brainly.com/question/25664524



 #SPJ11

x4 – 1 Determine lim or show that it does not exist. x=1 x2 – 1!

Answers

The limit of (x^4 - 1) / (x^2 - 1) as x approaches 1 is 1. To find the limit of the expression (x^4 - 1) / (x^2 - 1) as x approaches 1, we can simplify the expression and then evaluate the limit. The limit exists and is equal to 2.

To find the limit of (x^4 - 1) / (x^2 - 1) as x approaches 1, we can first simplify the expression. Notice that both the numerator and the denominator are differences of squares.

(x^4 - 1) = (x^2 + 1)(x^2 - 1)

(x^2 - 1) = (x + 1)(x - 1)

We can now rewrite the expression as:

[(x^2 + 1)(x^2 - 1)] / [(x + 1)(x - 1)]

We can then cancel out the common factors:

(x^2 + 1)/(x + 1)

Now we can evaluate the limit as x approaches 1 by substituting x = 1 into the simplified expression:

lim(x→1) [(x^2 + 1)/(x + 1)]

= (1^2 + 1)/(1 + 1)

= (1 + 1)/(1 + 1)

= 2/2

= 1

Learn more about numerator here:

https://brainly.com/question/7067665

#SPJ11

(1 point) Find the limits. Enter "DNE" if the limit does not exist. x² - y² = lim (z,y) (2,2) xy x+y y-5 lim = (z,y)+(7,5) 10x42x4y - 10x + 2xy y/5, 1/1¹

Answers

The first limit is 0, and the second limit is DNE.

The limits given in the statement are as follows: lim (z,y) (2,2) xy x+y y-5

We must calculate the limits now. We'll start with the first one: lim (z,y) (2,2) xy x+y y-5

For this limit, we have to make sure the two paths leading to (2, 2) are equivalent in order for the limit to exist. Let's use the paths y = x and y = -x to see if they're equal: y = xx² - y² = x² - x² = 0, so xy = 0y = -xx² - y² = x² - x² = 0, so xy = 0.

Since the two paths both lead to 0, and 0 is the limit of xy at (2, 2), the limit exists and is equal to 0.

Next, let's compute the second limit: lim (z,y)+(7,5) 10x42x4y - 10x + 2xy y/5, 1/1¹

Multiplying and dividing by 5:2y + 50x^2y - 5y + y/5 / (x + 7)² + (y - 5)² - 1

Simplifying,2y(1 + 50x²) / (x + 7)² + (y - 5)² - 1

As y approaches 5, the numerator approaches zero, but the denominator approaches zero as well. As a result, the limit is undefined, which we represent by DNE.

Learn more about limits: https://brainly.com/question/30339394

#SPJ11

A city commission has proposed two tax bills. The first bill reguires that a homeowner dav S2300 plus 3% of the assessed home value in taxes. The second bill requires taxes of S500 plus 9% of the assessed home
value. What price range of home assessment would make the first oil a better deal for the homeowner

Answers

The first tax bill is a better deal for homeowners if the assessed home value is less than S13,333.33. For home assessments above this value, the second tax bill becomes more favorable.

Let's denote the assessed home value as x. According to the first tax bill, the homeowner pays S2300 plus 3% of the assessed home value, which can be expressed as 0.03x. Therefore, the total tax under the first bill is given by T1 = S2300 + 0.03x.

Under the second tax bill, the homeowner pays S500 plus 9% of the assessed home value, which can be expressed as 0.09x. The total tax under the second bill is given by T2 = S500 + 0.09x.

To determine the price range of home assessments where the first bill is a better deal, we need to find when T1 < T2. Setting up the inequality:

S2300 + 0.03x < S500 + 0.09x

Simplifying:

0.06x < S1800

Dividing both sides by 0.06:

x < S30,000

Therefore, for home assessments below S30,000, the first tax bill is more favorable. However, since the assessed home value cannot be negative, the practical price range where the first bill is a better deal is when the assessed home value is less than S13,333.33. For assessments above this value, the second tax bill becomes a better option for the homeowner.

Learn more about tax bill here:

https://brainly.com/question/202103

#SPJ11

Use the information below to find the EXACT value of the
following
tantheta= 3/4 a. sin(theta/2)
b. cos(theta/2)

Answers

The exact value of a. sin(theta/2) is (3√7 - √7)/8, and the exact value of b. cos(theta/2) is (√7 + √7)/8.

To find a. sin(theta/2), we can use the half-angle identity for the sine function.

According to the half-angle identity, sin(theta/2) = ±√((1 - cos(theta))/2).

Since we know the value of tan(theta) = 3/4, we can calculate cos(theta) using the Pythagorean identity cos(theta) = 1/√(1 + tan^2(theta)).

Plugging in the given value, we have cos(theta) = 1/√(1 + (3/4)^2) = 4/5.

Substituting this value into the half-angle identity, we get

sin(theta/2) = ±√((1 - 4/5)/2) = ±√(1/10) = ±√10/10 = ±√10/10.

Simplifying further, we have

a. sin(theta/2) = (3√10 - √10)/10 = (3 - 1)√10/10 = (3√10 - √10)/10 = (3√10 - √10)/8.

Similarly, to find b. cos(theta/2), we can use the half-angle identity for the cosine function.

According to the half-angle identity, cos(theta/2) = ±√((1 + cos(theta))/2).

Using the value of cos(theta) = 4/5, we have cos(theta/2) = ±√((1 + 4/5)/2) = ±√(9/10) = ±√9/√10 = ±3/√10 = ±3√10/10.

Simplifying further, we have

b. cos(theta/2) = (√10 + √10)/10 = (1 + 1)√10/10 = (√10 + √10)/8 = (√10 + √10)/8.

Therefore, the exact value of a. sin(theta/2) is (3√10 - √10)/10, and the exact value of b. cos(theta/2) is (√10 + √10)/10.

To learn more about  half-angle identity click here: brainly.com/question/31279291

#SPJ11

4. (6 points) In still air, the parachute with a payload falls vertically at a terminal speed of 60 m/s. Find the direction and magnitude of its terminal velocity relative to the ground if it falls in a steady wind blowing horizontally from west to east at 10 m/sec. Specify the units for the direction (in radians or degrees).

Answers

The magnitude of the terminal velocity relative to the ground is approximately 60.83 m/s, and the direction is approximately -1.405 radians or -80.36 degrees.

To find the direction and magnitude of the terminal velocity of the parachute relative to the ground, we can consider the vector addition of the wind velocity and the terminal velocity of the parachute.

Let's denote the velocity of the wind as Vw = 10 m/s in the eastward direction (positive x-direction) since the wind is blowing from west to east.

The terminal velocity of the parachute relative to the ground is Vp = 60 m/s in the downward direction (negative y-direction) as it falls vertically.

To find the resultant velocity, we can add these two vectors using vector addition. Since the wind velocity is in the x-direction and the terminal velocity is in the y-direction, the resultant velocity will have both x and y components.

The magnitude of the resultant velocity can be found using the Pythagorean theorem:

|Vr| = √(Vx² + Vy²)

Vx = Vw = 10 m/s (eastward)

Vy = -Vp = -60 m/s (downward)

∴ |Vr| = √((10 m/s)² + (-60 m/s)²)

|Vr| = √(100 + 3600) m/s

|Vr| = √3700 m/s ≈ 60.83 m/s

The direction of the resultant velocity can be found using the arctangent function:

θ = atan(Vy / Vx)

θ = atan((-60 m/s) / (10 m/s))

θ ≈ atan(-6)

Therefore, the direction of the terminal velocity of the parachute relative to the ground is approximately -1.405 radians or -80.36 degrees (measured counterclockwise from the positive x-axis).

To know more about terminal velocity refer here:

https://brainly.com/question/28449904#

#SPJ11

Determine if the following statements are true or false. Justify your choice. a. If f(x,y) is continuous over the region R = [a, b] [c, d), then So (x,y)dydx = sa f(x,y)dxdy -22 b. Les dydx = 13S

Answers

a. The given statement of double integration "If f(x, y) is continuous over the region R = [a, b] [c, d), then ∬R f(x, y) dydx = ∬R f(x, y) dxdy - 22" is false.  

The equation implies that the double integral of f(x, y) over the region R in the order dy dx is equal to the double integral in the order dx dy minus 22. However, the constant term -22 seems arbitrary and unrelated to the integration process.

There is no mathematical justification for subtracting 22 from one side of the equation. Without any additional information or context, this statement is not valid.

           

b. The statement "∬R dy dx = 13S" is incomplete and cannot be determined as true or false without further clarification.

The expression "13S" is ambiguous and lacks context. It is unclear what "S" represents, and the meaning of the equation is unknown.

To evaluate the truth value of this statement, we need additional information or a precise definition of "S" and its relationship to the double integral over the region R. Without that clarification, it is impossible to determine whether the statement is true or false.

Learn more about double integral here:

https://brainly.com/question/2289273

#SPJ11

Other Questions
A custom home builder has the following ratings, in number of stars, from reviewers:Number of Stars Frequency1 82 63 184 75 11What is the mean of this distribution?3.223.1411.882.57 Find the first five non-zero terms of the Taylor series for f(x) = = + + + Written compactly, this series is [infinity] n=0 + - 5e centered at x = 4. + \frac{3m}{2m-5}-\frac{7}{3m+1}=\frac{3}{2} (5) The marginal profit function for a hot dog restaurant is given in thousands of dollars is P'(x)=x+1 is the sales volume in thousands of hot dogs. The "profit" is - $1,000 when no hot dogs are s T/F Cash registers, time clocks, and personal identification scanners are examples of technologies that can improve internal control. The difference between general intent and specific intent is: general intent requires only a desire to act; specific intent requires the desire for a specific result Only specific intent needs to be proven There is no difference One results in a felony, the other in a misdemeanor Mention at least 3 differences between T-bills and T-Bondsand T-Notes Given the surface S: z = f(x,y) = x + y 1. Describe and sketch the: (a) xz - trace (b) yz-trace 2. Describe and sketch the surface. AZ 4. Answer the following: a. A cylindrical tank with radius 10 cm is being filled with water at a rate of 3 cm/min. How fast is the height of the water increasing? (Hint, for a cylinder V = rh) b government sometimes supports protectionist tariffs because: Use Laplace Transform to find the solution of the IVP 2y' + y = 0, y(0)=-3a) f(t)=3e^-2tb) f(t)=6e^2tc) f(t)=3e^t/2d) f(t)=3e^-t/2e) None of the above find all solutions of the equation in the interval [0, 2). write your answers in radians in terms of . cos^2 theta A solution of household bleach contains 5.25% sodium hypochlorite, NaOCl, by mass. Assuming that the density of bleach is the same as water, calculate the volume of household bleach that should be diluted with water to make 500.0 mL of a pH = 10.00 solution. Use the Ka of hypochlorous acid found in the chempendix. (4.0e-8) Which NFPA standard deals with personal alert safety systems? a. 1785 b. 1982 c. 1440 d. 1460. systems analysis and design is a six-phase problem-solving procedure for examining and improving an information . systems life cycle phase that studies the present system in depth. one of the tasks of the systems analyst is suggesting alternative . the last and ongoing phase of the systems life cycle is systems . the document that shows the levels of management and formal lines of authority is a(n) . this phase begins with designing alternative systems. another name for system implementation. the phase in which the old system is replaced and training begins. the four approaches to conversion are parallel, pilot, phased, and . the approach in which the new system is implemented gradually over a period of ti 10. Find an equation of the tangent line to the graph of the function f(x) 5x+3 at the point (2,13). x-1 Find the volume of the solid obtained by rotating the region bounded by the given curves about the specified axis. x + y = 2, x= 3 - (y - 1)2; about the x-axis. Volume = Let l be the line containing (0,0,1) that is parallel to y = 2x is the xy-plane. a. Sketch the line L 1 write its equation in parametric vector form b. Let P be the plane containing 2010, 1) that is perpen- dicules to live L. Include ? in your sketch from part a. Find the equation for P. c. Let Po be a point on line L,Pot 50 10,1). Find a L point Pot that is on L, the same distance from (0,01) as Po, and is on the other side of slave P from Po. 2) Find the roots of the functions below using the Bisectionmethod, using five iterations. Enter the maximum error made.a) f(x) = x3 -5x2 + 17x + 21b) f(x) = 2x cos xc) f(x) = x2 - 5x + 6 Which of the following describes the relationship between organizational citizenship behaviors (OCBs) and job satisfactionSelect one:A. OCB's are a strong cause of job satisfactionB. OCB's and job satisfaction are almost never observed together (no correlation)C. job satisfaction is a strong cause of OCB'sD. none of these Steam Workshop Downloader