Answer:
29/16, or 1.81 in decimal form.
Step-by-step explanation:
To solve this, we have to find a common denominator between the 2 fractions.
We cannot simplify 15/16 any further without getting a decimal, so let's change 7/8.
A common denominator between the 2 fractions is 16, so multiply 7/8 by 2 to get 14/16.
Now, we have to find out how far she walked in total, so add 14/16 + 15/16:
29/16
Hope this helps! :)
What is the mean for the following set of data?
4, 4, 6, 10, 12, 13, 15, 16
A. 10
B. 12
C. 11
D. 9
Answer:
The answer to your problem is, C. 11
Step-by-step explanation:
The range of a data set in statistics is the difference between the largest and the smallest values. While range does have different meanings within different areas of statistics and mathematics, this is its most basic definition. Using the MY OWN EXAMPLE example:
( I have used this sample in many of my answers )
2, 10, 21, 23, 23, 38, 38
38 - 2 = 36
The range in this example is 36. Similar to the mean, range can be significantly affected by extremely large or small values. Using the same example as previously:
2, 10, 21, 23, 23, 38, 38, 1027892
The range, in this case, would be 1,027,890 compared to 36 in the previous case. As such, it is important to extensively analyze data sets to ensure that outliers are accounted for.
Thus the answer to your problem is, C. 11
Solve 3x²-14x=5 by factoring.
Answer:
(x-5)(3x+1)=0
x= 5, x= -1/3
Step-by-step explanation:
3x²-14x=5
3x²-14x-5=0
The factor that goes in are 1 and -15 which equal the sum and products.
Sum: -14
Product: -15
Therefore:
3x²+x-15x-5 = 0
Factor by grouping:
x(3x²+x) -5(-15x-5)
x(3x+1) -5(3x+1)
(x-5)(3x+1) = 0
Use Zero Product Property to solve for X
x-5 = 0 3x+1 = 0
x= 5, x= -1/3
A resistor-inductor-capacitor (RLC-)circuit is modeled by Kirchhoff's Second Law: L di/dt + Ri(t) + 1/c ∫ i(r) dr= V(t) Here, V(t) = 1(1-1, (t)) is the voltage coming from a source, and L, I, C correspond to physical
quantities which we treat as constants. Assuming (0) = 0, describe the corresponding current
function i(t)
In either case, we can solve for A and B using the initial condition i(0) = 0. This gives us the final form of the current function i(t) for the given RLC circuit.
The current function i(t) in the RLC circuit, we need to solve the differential equation given by Kirchhoff's Second Law: L di/dt + Ri(t) + 1/c ∫ i(r) dr= V(t), subject to the initial condition i(0) = 0.
To begin, we can simplify the equation by substituting V(t) = 1/(1+t) and integrating the integral term by parts. This gives us:
L di/dt + Ri(t) + 1/c [i(t) * t - ∫t0 i(t)dt] = 1/(1+t)
Next, we can differentiate both sides with respect to t, which gives:
[tex]L d^2i/dt^2 + R di/dt + i(t)/c = -1/(1+t)^2[/tex]
This is a second-order linear ordinary differential equation with constant coefficients, and we can solve it by assuming a solution of the form i(t) = [tex]e^{(rt)[/tex]. Substituting this into the differential equation and solving for r.
We have two cases, depending on whether the discriminant R^2 - 4L(1/c) is positive, negative, or zero.
Case 1: [tex]R^2 - 4L(1/c) > 0[/tex]
In this case, we have two distinct real roots:
[tex]r_1 = (-R + \sqrt{(R^2 - 4L(1/c)))/(2L} )\\r_2 = (-R - \sqrt{(R^2 - 4L(1/c)))/(2L} )[/tex]
The general solution to the differential equation is then given by:
i(t) = A [tex]e^{(r1t)} + B e^{({(r2t)} - 1/(1+t)^2c[/tex]
Case 2: [tex]R^2 - 4L(1/c) = 0[/tex]
In this case, we have a repeated real root:
r = -R/(2L)
The general solution to the differential equation is then given by:
i(t) = [tex](A + Bt) e^{(rt)} - 1/(1+t)^2c[/tex]
Here A and B are constants determined by the initial conditions.
Learn more about RLC circuit visit: brainly.com/question/28288820
#SPJ4
The scale drawing below represents the side of a ramp. In the scale drawing, two inches equals five feet.
What is the actual area, in square feet, of the side of the ramp?
Answer:
(1/2)(6)(4) = 12 square inches
2 inches = 5 feet, so 4 square inches = 25 square feet.
12/4 = s/25, so s = 75 square feet
"I am struggling with calculating the p-value. I am using z as
the test statistic and have found that z=-4.22. Please help with
finding the p-value. Thank you.
The output voltage for an electric circuit is specified to be 130. A sample of 40 independent readings on the voltage for this circuit gave a sample mean 128.6 and standard deviation 2.1. (a) Test the hypothesis that the average output voltage is 130 against the alternative that it
is less than 130. Use a test with level.05. Report the p-value as well.
The p-value is 0.00002. (a) The average output voltage is less than 130 since our t-statistic is less than the critical value therefore, we can reject the null hypothesis. The p-value is 0.007.
To find the p-value for a z-test, you need to use a z-table or a calculator that can give you the area under the standard normal curve to the left of your test statistic.
In this case, your test statistic is z = -4.22. Using a standard normal table, the area to the left of z = -4.22 is approximately 0.00002.
Therefore, the p-value for this test is p = 0.00002.
(a) Using a one-sample t-test to test the hypothesis that the average output voltage is 130 against the alternative that it is less than 130.
With a sample size of 40 and a sample mean of 128.6, the t-statistic is calculated as:
t = (128.6 - 130) / (2.1 / sqrt(40)) = -2.67
Using a t-table with 39 degrees of freedom (df = n - 1), the critical value for a one-tailed test with a level of significance of 0.05 is -1.685.
Since our t-statistic is less than the critical value, we can reject the null hypothesis and conclude that the average output voltage is less than 130.
Using a t-distribution calculator, the one-tailed p-value for a t-statistic of -2.67 with 39 degrees of freedom is approximately 0.007.
Therefore, the p-value for this test is p = 0.007.
Know more about p-value here:
https://brainly.com/question/13786078
#SPJ11
a) Find the five-number summary for the data. Show your work. (5 points: 1 point
for each number)
27,29,36,43,79
b) Use your results from Part a to display the data on a box plot. (2 points)
25 30 35 40 45 50 55 60 65 70 75 80 85
The five-number summary for the data are:
Minimum (Min) = 27.First quartile (Q₁) = 28.Median (Med) = 36.Third quartile (Q₃) = 61.Maximum (Max) = 79.The data is shown on a box plot below.
The interquartile range (IQR) of the data is 33.
How to determine the five-number summary for the data?In order to determine the statistical measures or the five-number summary for the data, we would arrange the data set in an ascending order:
27, 29, 36,43,79
From the data set above, we can logically deduce that the minimum (Min) is equal to 27.
For the first quartile (Q₁), we have:
Q₁ = [(n + 1)/4]th term
Q₁ = (5 + 1)/4
Q₁ = 1.5th term
Q₁ = 1st term + 0.5(2nd term - 1st term)
Q₁ = 27 + 0.5(29 - 27)
Q₁ = 27 + 0.5(2)
Q₁ = 27 + 1
Q₁ = 28.
From the data set above, we can logically deduce that the median (Med) is equal to 11.
For the third quartile (Q₃), we have:
Q₃ = [3(n + 1)/4]th term
Q₃ = 3 × 1.5
Q₃ = 4.5th term
Q₃ = 4th term + 0.5(5th term - 4th term)
Q₃ = 43 + 0.5(79 - 43)
Q₃ = 43 + 0.5(36)
Q₃ = 61
Mathematically, interquartile range (IQR) of a data set is typically calculated as the difference between the first quartile (Q₁) and third quartile (Q₃):
Interquartile range (IQR) of data set = Q₃ - Q₁
Interquartile range (IQR) of data set = 61 - 28
Interquartile range (IQR) of data set = 33.
In conclusion, a box and whisker plot for the given data set is shown in the image attached below.
Read more on boxplot here: brainly.com/question/29648407
#SPJ1
a 6. Let Xn be a bounded martingale and let T be a stopping time (NOT necessarily bounded). Prove that E[XT] = E[X] by considering the stopping times Tn= min(T, n).]
For a bounded martingale Xₙ and stopping time T (not necessarily bounded), E[XT] = E[X] is proved by considering the stopping times Tₙ= min(T, n) and using the Optional Stopping Theorem.
To prove that E[XT] = E[X], we can utilize the Optional Stopping Theorem.
First, we know that since Xₙ is a bounded martingale, it satisfies the conditions for the Optional Stopping Theorem stating that for any stopping time T, [tex]E[X_{T}] = E[X_{0}][/tex], where [tex]X_{0}[/tex] is the initial value of Xₙ.
Now, taking into consideration stopping times Tn = min(T, n). As Tn is a bounded stopping time, we utilize the Optional Stopping Theorem to get:
[tex]E[X_{Tn}] = E[X_{0}][/tex]
We can rewrite this as:
[tex]E[X_{Tn}] - E[X_{0}] = 0[/tex]
Now, if we take the limit as n→∞.As Xn is a bounded martingale, it follows that E[|Xn|] < infinity for all n. Thus, utilizing Dominated Convergence Theorem, we get:
[tex]lim_{n} E[X_{Tn}] = E[lim_{n} X_{Tn}] = E[XT][/tex]
Similarly, [tex]lim_{n} E[X_{0}] = E[X].[/tex]
Therefore, taking the limit as n→∞ in our previous equation, we get:
E[XT] - E[X] = 0
Or, equivalently:
E[XT] = E[X]
So, E[XT] = E[X] by considering the stopping times Tn= min(T, n)].
To know more about the martingale visit:
https://brainly.com/question/31700267
#SPJ11
We are considering a survey of 240 residents of Halifax to inform the government’s perspective on whether rent controls should be maintained in the city. Respondents answer on a 1-5 scale, 1 being strongly disagree and 5 is strongly agree. [Note: in practice, there are some better ways to do this than just to average these numbers together.] Suppose the true population average is 3.5 with a standard deviation of 1.4. (a) 2pts What is the standard error of this survey’s estimate for the mean? (b) 4pts With what probability would this survey miss the true mean of 3.5 by more than 0.1 points?
The standard error of the survey's estimate for the mean is approximately 0.09 and the probability that the survey misses the true mean of 3.5 by more than 0.1 points is approximately 0.13 or 13%.
(a)The standard error of the survey's estimate for the mean is given by:
[tex]SE=\frac{I}{\sqrt{n} }[/tex]
In this case, σ = 1.4, n = 240, so:
[tex]SE= \frac{1.4}{\sqrt{240} } = 0.09[/tex]
Therefore, the standard error of the survey's estimate for the mean is approximately 0.09.
(b) To find the probability that the survey misses the true mean of 3.5 by more than 0.1 points, we need to find the probability that the absolute difference between the sample mean and the true mean is greater than 0.1:
Using a standard normal table or calculator, we can find that the probability of a standard normal random variable being greater than 0.1 / SE ≈ 1.11 is approximately 0.13.
Therefore, the probability that the survey misses the true mean of 3.5 by more than 0.1 points is approximately 0.13 or 13%.
To know more about "Probability" refer here:
https://brainly.com/question/30034780#
#SPJ11
Mary bought 5 packages of 8 cupcakes. How many cupcakes did Mary buy in all?
A] 40
B] 48
C] 35
D] 32
y²+4y-7 evaluate the expression when y=7
6.2.1b: Solve for missing angles and side lengths using trigonometric
ratios.
A triangle is shown.
The values of the missing sides and angles are;
<D = 32 degrees
d = 8. 75
e = 16. 50
How to determine the valuesTo determine the value we need to note that the sum of the angles in a triangle is 180 degrees.
From the information given, we have;
<E + <D + <F = 180
substitute the values
90 + 58 + <D = 180
collect the like terms
<D = 32 degrees
Using the sine identity
sin 58 = 14/x
cross multiply the values
x = 16. 50
Using the tangent identity;
tan 58 = 14/y
cross multiply
y = 8. 75
Learn more about trigonometric identities at: https://brainly.com/question/7331447
#SPJ1
Nayeli has a points card for a movie theater.
• She receives 40 rewards points just for signing up.
• She earns 14.5 points for each visit to the movie theater.
• She needs at least 185 points for a free movie ticket.
Use the drop-down menu below to write an inequality representing v, the number of
visits she needs to make in order to get a free movie ticket.
An inequality representing v, the number of visits Nayeli needs to make to get a free movie ticket is 40 + 14.5v ≥ 185.
What is inequality?Inequality describes a mathematical statement that states that two or more algebraic expressions are unequal.
Inequalities are represented as:
Greater than (>)Less than (<)Greater than or equal to (≥)Less than or equal to (≤)Not equal to (≠).The rewards points Nayeli has just for signing up = 40
The points earned per visit to the movie theater = 14.5
The total number of points required for a free movie ticket ≥ 185
Let the number of visits Nayeli needs to make too get a free movie ticket = v
Inequality:40 + 1.45v ≥ 185
Learn more about inequalities at https://brainly.com/question/24372553.
#SPJ1
Jennie has 4 gallons of punch that she will pour into pint-size glasses. How many pints will she have?
The required, Jennie will have 32 pints of punch to pour into pint-size glasses.
There are 8 pints in a gallon. So, 4 gallons of punch will contain:
4 x 8 = 32 pints
Therefore, Jennie will have 32 pints of punch to pour into pint-size glasses.
Learn more about unit conversion here:
https://brainly.com/question/19420601
#SPJ1
Determine if the statement is true or false, a justify you answer. Assume S is nontrivial and u and v are both nonzero. If u and v are vectors, then proj_v u is a multiple of u. a.True. proj_v u is a multiple of both u and v. b.True, by the definition of Projection Onto a Vector. c.False. proj_v u is a multiple of v, not u. d.False. proj_v u is not a multiple of either u or v. e.False. proj_v u is a multiple of ||u||, not u.
The statement is false.
The projection of vector u onto vector v, denoted as proj_v u, is not necessarily a multiple of vector u.
In the case of vector projection, proj_v u is a scalar multiple of vector v, not vector u. It represents the component of vector u that lies in the direction of vector v.
This projection is obtained by taking the dot product of u and v, divided by the dot product of v and itself (which is equivalent to the magnitude of v squared), and then multiplying it by vector v. The resulting projection is parallel to vector v and can be scaled by a scalar factor, but it does not necessarily align with vector u.
Therefore, option c is the correct answer. Proj_v u is a multiple of vector v, not vector u.
Learn more about Vector:
brainly.com/question/24256726
#SPJ11
The probability assigned to each experimental outcome must be
a. one
b. between zero and one
c. smaller than zero
d. any value larger than zero
The probability assigned to each experimental outcome must be: b. between zero and one
The probability assigned to each experimental outcome must be between zero and one. This is because probability is a measure of how likely an event is to occur, and it cannot be negative or greater than 100%. A probability of zero means that the event will not occur, while a probability of one means that the event is certain to occur. Probabilities between zero and one indicate the likelihood of an event occurring, with higher probabilities indicating greater likelihood. It is important for probabilities to add up to one across all possible outcomes, as this ensures that all possible events are accounted for and that the total probability is normalized. Probability theory is used in many fields, including statistics, finance, and engineering, and is essential for making informed decisions based on uncertain events. By assigning probabilities to different outcomes, we can calculate expected values and make predictions about future events, helping us to better understand the world around us.
To learn more about probability, click here:
brainly.com/question/30034780
#SPJ11
Which table shows a linear function
The table that shows a linear function include the following: B. table B.
What is a linear function?In Mathematics, a linear function is a type of function whose equation is graphically represented by a straight line on the cartesian coordinate.
This ultimately implies that, a linear function has the same (constant) slope and it is typically used for uniquely mapping an input variable to an output variable, which both increases simultaneously.
In this context, we have:
Slope = (0 - 2)/(-3 + 5) = (2 - 0)/(-3 + 1) = -1
Read more on linear function here: brainly.com/question/27325295
#SPJ1
Write the number in standard form 7. 1x10^4=
The number 7.1 x 10⁴ in standard form is: 71,000
In standard form, a number is expressed as a coefficient multiplied by a power of 10, where a coefficient is a number greater than or equal to 1 and less than 10, and the power of 10 represents the number of places the decimal point must be moved to obtain the number's value.
In this case, the coefficient is 7.1, which is greater than or equal to 1 and less than 10. The power of 10 is 4, which means that the decimal point must be moved 4 places to the right to obtain the value of the number. Therefore, we get 71,000.
To know more about whole number, here
https://brainly.com/question/461046
#SPJ4
If x and y vary directly, and X = 3 when y = 15, what is the value of x when y = 25?
Answer:
Step-by-step explanation:
on a coordinate plane, kite h i j k with diagonals is shown. point h is at (negative 3, 1), point i is at (negative 3, 4), point j is at (0, 4), and point k is at (2, negative 1).
On a coordinate plane, kite HIJK with diagonals is shown. Point H is located at (-3, 1), point I is at (-3, 4), point J is at (0, 4), and point K is at (2, -1). The diagonals of this kite connect points H and J, and points I and K, creating an intersecting pattern within the shape.
Based on the information provided, we know that a kite shape has been loaded onto a coordinate plane with points h, i, j, and k located at specific coordinates. The coordinates for point h are (-3, 1), for point i are (-3, 4), for point j are (0, 4), and for point k are (2, -1). Additionally, we know that the kite has diagonals, but we are not given any information about their lengths or intersection points.
Know more about kite here:
https://brainly.com/question/26679673
#SPJ11
Answer:
B is the answer
Step-by-step explanation:
PLS HELP ASAP THANKS
The x-value of the vertex of the given quadratic equation is -2.
How to find the x value of the vertexQuadratic equation in standard vertex form is written as:
f(x) = a(x - h)^2 + k
Definition of parameters
a is the coefficient of the quadratic term, and (h, k) represents the coordinates of the vertex of the parabola.In the given equation:
7(x + 2)^2 - 7
We can see that
a = 7
h = -2
k = -7
f(x) = 7(x - (-2))^2 - 7
Learn more about vertex at
https://brainly.com/question/525947
#SPJ1
2) A gho with a cost price of Nu 750 was sold for Nu 900. What was the percent markup?
The percent markup is 20%
The selling price of the Nu is 900
The cost price of the Nu is 750
The percent markup can be calculated as follows
= 900-750/750 × 100
= 150/750 × 100
= 0.2 × 100
= 20%
Hence the percent markup is 20%
Read more on percent markup here
https://brainly.com/question/29259999
#SPJ1
A pole 12 feet tall is used to support a guy wire for a tower, which runs from the tower to a metal stake in the ground. After placing the pole, Jamal measures the distance from the pole to the stake and from the pole to the tower, as shown in the diagram below. Find the length of the guy wire, to the nearest foot.
Answer:
The given question is on trigonometry which requires the application of required function so as to determine the value known. So that the length of the guy wire is 67.0 feet.
Trigonometry is an aspect of mathematics that requires the application of some functions to determine the value of an unknown quantity.
Let the length of the guy wire be represented by l, and the angle that the guy wire makes with the stake be θ. So that applying the appropriate trigonometric function to determine the value of θ, we have:
Tan θ =
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
adjacent
opposite
=
11
4
4
11
Tan θ = 2.75
θ =
�
�
�
−
1
Tan
−1
2.75
= 70.0169
θ =
7
0
�
70
o
Considering triangle formed by the tower and the stake to determine the value of l, we have;
Cos θ =
�
�
�
�
�
�
�
�
ℎ
�
�
�
�
�
�
�
�
�
hypotenuse
adjacent
Cos
7
0
�
70
o
=
23
�
l
23
l =
23
�
�
�
7
0
�
Cos70
o
23
=
23
0.3420
0.3420
23
l = 67.2515
l = 67 feet
The length of the guy wire is 67 feet.
For more on trigonometric, check: https://brainly.com/question/6459892
which equation is true when n = 5? A) 2n = 7 B) n + 3 =8 C) 9 -n = 14 D) n/15 = 3
The answer is B.
In order to get the answer, you replace the letter n to 5 and workout the problems to see which one is true.
B is the answer because n + 3 = 8
5 + 3 = 8
Answer:
B
Step-by-step explanation:
n+3 =
5+3=
Use polar coordinates to find the volume of the given solid.
Enclosed by the hyperboloid −x2 − y2 + z2 = 6 and the plane z = 3
-x2 - y2 + 9 = 6 >>> x2 + y2= 3 so r2 = 3 >>> squart 0<=r <=3
My question is that why negative square root of 3 is not included in the range???
In polar coordinates, the radial distance "r" is defined as the distance from the origin to a point in the plane. Since distance cannot be negative, we only consider the positive square root of 3 in the range for this problem. So, the correct range for "r" is 0 ≤ r ≤ √3, and negative square root of 3 is not included because it doesn't represent a valid distance in polar coordinates.
To find the volume of the given solid enclosed by the hyperboloid −x2 − y2 + z2 = 6 and the plane z = 3 using polar coordinates, we need to express the equation of the hyperboloid in terms of polar coordinates.
Substituting x = rcosθ and y = rsinθ, we get:
−r2cos2θ − r2sin2θ + z2 = 6
Simplifying, we get:
z2 = 6 - r2
Since the plane z = 3 intersects the hyperboloid, we have:
3 = √(6 - r2)
Solving for r, we get:
r = √3
Hence, the range for r is 0 ≤ r ≤ √3.
In summary, the negative square root of 3 is not included in the range of r because r represents a distance and cannot be negative. The volume of the solid can be found by integrating the function f(r,θ) = √(6 - r2) over the range 0 ≤ r ≤ √3 and 0 ≤ θ ≤ 2π using polar coordinates. The result will be in cubic units and can be obtained by evaluating the integral.
Learn more about coordinates here : brainly.com/question/16634867
#SPJ11
How do I solve for the angle and X
The measure of angle x in the given right triangle is 71.8°
Calculating the measure of an angle x in the right triangleFrom the question, we are to determine the measure of angle in the given triangle
The given triangle is a right triangle
We can determine the value of angle x by using SOH CAH TOA
sin (angle) = Opposite / Hypotenuse
cos (angle) = Adjacent / Hypotenuse
tan (angle) = Opposite / Adjacent
In the given triangle,
Adjacent = 5
Hypotenuse = 16
Thus,
cos (x) = 5/16
x = cos⁻¹ (5/16)
x = 71.7900°
x ≈ 71.8°
Hence, the measure of angle x is 71.8°
Learn more on Calculating measure of an angle here: https://brainly.com/question/25215131
#SPJ1
PLS HELP ME ASAP PLS RN
I'm not sure if this is correct but 9560 (rectangle surface area) + 900 (triangle surface area) =10460...
DON'T TRUST ME ON THIS ONE CHECK IT YOURSELF BUT IM PRAYING FOR YOU
Answer: 21120
Step-by-step explanation:
Area for the rectangluar prism
A(Rect)= LA+2B
where LA,Lateral area = Ph P,Perimeter of base= 30+120+30+120 = 300
h, height =20
LA=300(20)=6000
B,area of base=(30)(120)=3600
A(rect)=LA+2B=6000+2(3600)
=13200
Area for triangular prism, turn on side so triangle is base(columned)
A(triangle) = LA+2B
LA= Ph Perimeter of triangle = 17+17+30=64 h=120
LA=(64)(120)=7680
B, the base is the triangle=1/2 bh where b =30 h=8
B=1/2 (30)(8)
=120
A(triangle)=7680+2(120) =7920
Add the 2 areas
A(total)=13200+7920=21120
The length of Dominic's rectangular living room is 9 meters and the distance between opposite corners is 10 meters. What is the width of Dominic's living room? If necessary, round to the nearest tenth.
Answer:
We can use the Pythagorean theorem to solve for the width of Dominic's living room. The Pythagorean theorem states that for a right triangle with legs of length a and b and hypotenuse of length c, a² + b² = c².
In this case, we can treat the length of the living room (9 meters) as one leg of the right triangle, and the distance between opposite corners (10 meters) as the hypotenuse. Let w be the width of the living room. Then the other leg of the right triangle has length w.
Applying the Pythagorean theorem, we get:
9² + w² = 10²
81 + w² = 100
w² = 19
w ≈ 4.4
Therefore, the width of Dominic's living room is approximately 4.4 meters.
Step-by-step explanation:
The ages of three men are in the ratio 3 : 4 : 5. If the difference between the ages of the oldest and the youngest is 18 years, find the sum of the ages of the three man.
Answer :
Sum of their ages = 108 years.Step-by-step explanation:
It's given that The ages of three men are in the ratio 3 : 4 : 5
Let's assume,
Age of first men = 3x Second men = 4x Third men = 5xAlso, the difference between the ages of the oldest and the youngest is 18 years.
Age of youngest men = 3x Age of oldest men = 5xDifference in their ages ,
[tex]:\implies [/tex] 5x - 3x = 18 years
[tex]:\implies [/tex] 2x = 18
[tex]:\implies [/tex] x = 18/2
[tex]:\implies [/tex] x = 9
Hence,
Age of first men = 3x
[tex]:\implies [/tex] 3 × 9
[tex]:\implies [/tex] 27 years
Age of second men = 4x
[tex]:\implies [/tex] 4 × 9
[tex]:\implies [/tex] 36 years.
Age of thrid men = 5x
[tex]:\implies [/tex] 5 × 9
[tex]:\implies [/tex] 45 years.
Now, Sum of the ages of three man
[tex]:\implies [/tex] 27 + 36 + 45
[tex]:\implies [/tex] 108 years.
Therefore, The sum of the ages of three man is 108 years.
In a class of 30 students there are 18 who have passed Mathematics, 16 who have passed English and 6 who have not passed either of them. We randomly select a student from that class:
1.a) What is the probability that he has advanced in English and Mathematics?
2.b) Knowing that he has passed Mathematics, what is the probability that he has passed English?
3.c) Are the events "Pass Mathematics" and "Pass English" independent?
We can conclude that the events "Pass Mathematics" and "Pass English" are dependent
a) The probability that a student has advanced in both Mathematics and English can be calculated using the formula:
P(Math and Eng) = P(Math) + P(Eng) - P(Math or Eng)
where P(Math) is the probability of passing Mathematics, P(Eng) is the probability of passing English, and P(Math or Eng) is the probability of passing at least one of them.
From the given information, we have:
P(Math) = 18/30 = 0.6
P(Eng) = 16/30 = 0.5333
P(Math or Eng) = 1 - P(not passing either) = 1 - 6/30 = 0.8
Substituting these values into the formula, we get:
P(Math and Eng) = 0.6 + 0.5333 - 0.8 = 0.3333
Therefore, the probability that a student has advanced in both Mathematics and English is 0.3333 or approximately 33.33%.
b) If we know that a student has passed Mathematics, we can use conditional probability to calculate the probability that they have passed English:
P(Eng | Math) = P(Eng and Math) / P(Math)
We already calculated P(Eng and Math) in part (a) as 0.3333. To find P(Math), we can use the information given in the problem:
P(Math) = 18/30 = 0.6
Substituting these values into the formula, we get:
P(Eng | Math) = 0.3333 / 0.6 = 0.5556
Therefore, the probability that a student has passed English given that they have passed Mathematics is 0.5556 or approximately 55.56%.
c) To determine whether the events "Pass Mathematics" and "Pass English" are independent, we can compare their joint probability (the probability of passing both) to the product of their individual probabilities:
P(Math and Eng) = 0.3333
P(Math) = 0.6
P(Eng) = 0.5333
If the events are independent, then we should have:
P(Math and Eng) = P(Math) x P(Eng)
Substituting in the values we calculated, we get:
0.3333 ≠ 0.3198
Since the joint probability is not equal to the product of the individual probabilities, we can conclude that the events "Pass Mathematics" and "Pass English" are dependent.
To learn more about visit:
https://brainly.com/question/27235369
#SPJ11
\left(2x^{5}-7x^{3}\right)-\left(4^{x2}-3x^{3}\right)
The expression 2x^5 - 7x^3 - (4x^2 - 3x^3) when evaluated is 2x^5 - 10x^3 - 4x^2
Evaluating the expressionFrom the question, we have the following parameters that can be used in our computation:
\left(2x^{5}-7x^{3}\right)-\left(4^{x2}-3x^{3}\right)
Express properly
So, we have
2x^5 - 7x^3 - (4x^2 - 3x^3)
Open the bracket
So, we have
2x^5 - 7x^3 - 4x^2 - 3x^3
Evaluate the like terms
2x^5 - 10x^3 - 4x^2
Hence, the solution is 2x^5 - 10x^3 - 4x^2
Read more about expression at
https://brainly.com/question/15775046
#SPJ1