seven of the ten reactions of glycolysis are reversible (δg near zero) and can be used in reverse of glycolysis for gluconeogenesis. the three irreversible reactions are catalyzed by:

Answers

Answer 1

The reaction used in reverse of glycolysis for gluconeogenesis. The three irreversible reactions are catalyzed by : hexokinase, phosphofructokinase-1, pyruvate kinase.

Option E is correct .

Why is glycolysis not reversible during gluconeogenesis?

Most of the time, this is because gluconeogenesis needs to avoid the energy-saving and irreversible steps of glycolysis. In gluconeogenesis, these three irreversible steps cannot be reversed directly due to their exergonic nature.

What are the reversible and irreversible responses of glycolysis?

Pyruvate is produced by the reactions of glycolysis on glucose 6-phosphate. The whole interaction is cytosolic. Fructose 6-phosphate is produced by the reversible isomerization of glucose 6-phosphate. The physiologically irreversible phosphorylation of fructose 6-phosphate to shape fructose 1,6-bisphosphate is catalyzed by phosphofructokinase.

Incomplete question :

Seven of the ten reactions of glycolysis are reversible (DG near zero) and can be used in reverse of glycolysis for gluconeogenesis. The three irreversible reactions are catalyzed by:


A. hexokinase, phosphoglycerate kinase, pyruvate kinase.


B.  triose phosphate isomerase, phosphoglycerate mutase, pyruvate kinase.


C.  enolase, phosphoglycerate kinase, phosphofructokinase-1.


D.  hexokinase, phosphoglucoisomerase, glyceraldehyde-3-phosphate dehydrogenase.


E.  hexokinase, phosphofructokinase-1, pyruvate kinase.

Learn more about glycolysis :

brainly.com/question/30461189

#SPJ4


Related Questions

(a) Describe the process of electron capture.
(b) What happens to the mass number and atomic number of a nuclide that undergoes electron capture?

Answers

a) Electron capture is a nuclear decay process that occurs when an atomic nucleus captures an inner shell electron, typically from the electron cloud surrounding the nucleus. The process primarily involves interactions between the nucleus and one of its own electrons.

During electron capture, a proton in the nucleus combines with an electron to form a neutron. This process occurs in elements where the proton-to-neutron ratio is not favorable for stability. The captured electron must have specific energy and momentum characteristics to match the energy levels within the nucleus. When the electron is captured, the atomic number decreases by one because one proton is converted into a neutron. The total number of nucleons (protons and neutrons) remains the same, so the mass number of the nuclide remains constant.

(b) When a nuclide undergoes electron capture, the mass number (A) of the nuclide does not change. This is because the total number of protons and neutrons in the nucleus, which determines the mass number, remains the same throughout the process. However, the atomic number (Z) of the nuclide decreases by one. This is because electron capture involves the capture of an electron from the electron cloud surrounding the nucleus, leading to the conversion of a proton into a neutron.

For example, if a nuclide with an atomic number of 42 and a mass number of 96 undergoes electron capture, the resulting nuclide would have an atomic number of 41 (42 - 1) and the same mass number of 96. The identity of the element changes due to the change in the atomic number.

In summary, electron capture leads to a decrease in the atomic number while the mass number remains constant. This process contributes to the overall stability of certain nuclei by balancing the proton-to-neutron ratio.

Learn more about Electron capture here:

https://brainly.com/question/13052571

#SPJ11

A random number generator generates numbers based on a
pre-determined distribtuon, therefore not actually being
random.
True
False

Answers

The given statement "A random number generator generates numbers based on a pre-determined distribution, therefore not actually being random" is false. A random number generator is a program or device that generates random numbers.

It is usually a hardware device or software program that generates a sequence of numbers or symbols in an unpredictable manner. There are two types of random number generators. These are: True random number generators (TRNGs)Pseudorandom number generators (PRNGs)True random number generators (TRNGs) generate random numbers based on physical processes like atmospheric noise, thermal noise, or radioactive decay, which is truly random and provides pure unpredictability.

On the other hand, Pseudorandom number generators (PRNGs) generate random numbers using algorithms and seed values that appear to be random but are actually deterministic, meaning that their outputs are based on a fixed set of inputs and operations, despite the fact that they seem to be random. So, the statement given "A random number generator generates numbers based on a pre-determined distribution, therefore not actually being random" is false.

More on random number generator: https://brainly.com/question/16788123

#SPJ11

50 ml of 0.5 m hcl is added to 200 ml of 0.2 m ammonia (pka = 9.25). the resulting mixture has a ph close to:

Answers

The resulting mixture of 50 ml of 0.5 M HCl and 200 ml of 0.2 M ammonia (pKa = 9.25) will have a pH close to 9.25. To determine the pH of the resulting mixture, we need to consider the reaction between HCl and ammonia (NH3).

HCl is a strong acid that completely ionizes in water to produce H+ ions, while ammonia is a weak base that partially ionizes to produce NH4+ and OH- ions.

The reaction between HCl and ammonia can be represented as follows:

HCl + NH3 ⇌ NH4+ + Cl-

Since the concentration of HCl is higher than that of ammonia, the excess HCl will react with ammonia to form NH4+ ions. This reaction will result in the consumption of OH- ions, leading to a decrease in the hydroxide ion concentration.

The pKa value of ammonia is 9.25, which means at equilibrium, the concentration of NH4+ and NH3 will be approximately equal. At this pH, the solution will be slightly basic.

Hence, the resulting mixture will have a pH close to 9.25. However, it is important to note that a more precise calculation is required to determine the exact pH based on the concentrations and equilibrium constants of the involved species.

Learn more about ammonia here :

https://brainly.com/question/29519032

#SPJ11

For the following electrochemical cell:
Sn(s) | Sn2+(aq) ||Ag+ (aq) | Ag(s)
Given the following E° (V)
Sn2++2e-_Sn
-0.1375 V
Ag+ e-_Ag
+0.7996 V
Q1: Is the above cell a Voltaic cell or an
Electrolytic cell?
a) Voltaic cell b) Electrolytic cell

Answers

The given electrochemical cell, Sn(s) | Sn2+(aq) || Ag+(aq) | Ag(s), is a voltaic cell.

In a voltaic cell, the spontaneous redox reaction occurs spontaneously, generating electrical energy. The cell operates based on the difference in reduction potentials between the two half-reactions. The anode (Sn(s) | Sn2+(aq)) undergoes oxidation, releasing electrons, while the cathode (Ag+(aq) | Ag(s)) undergoes reduction, accepting electrons. This generates an electric current that flows from the anode to the cathode.

Know more about voltaic cell here:

https://brainly.com/question/29186551

#SPJ11

After drawing the Lewis structure for the following molecule, BSF, is the double bond between boron and sulfur polar or nonpolar?

Group of answer choices


polar


nonpolar

Answers

In general, double bonds between atoms with a relatively small electronegativity difference are likely to be nonpolar, while double bonds between atoms with a large electronegativity difference are more likely to be polar. Therefore, the answer is 2. nonpolar.  

To determine whether the double bond between boron and sulfur in the molecule BSF is polar or nonpolar, we need to consider the electronegativity values of the atoms involved in the bond. Electronegativity is a measure of an atom's ability to attract electrons to itself in a covalent bond.

In the case of BSF, the electronegativity difference between boron and sulfur is about 0.4. This is a relatively small electronegativity difference, which suggests that the bond is likely to be nonpolar. Therefore, the answer is 2. nonpolar.  

Learn more about nonpolar visit: brainly.com/question/30763634

#SPJ4

Correct Question:

After drawing the Lewis structure for the following molecule, BSF, is the double bond between boron and sulfur polar or nonpolar?

Group of answer choices

1. polar

2. nonpolar.

a trigonal planar molecule will have bond angles of __________.

Answers

A trigonal planar molecule will have bond angles of 120 degrees.

In a trigonal planar molecular geometry, the central atom is surrounded by three bonding pairs of electrons, arranged in a flat, triangular shape. The repulsion between these electron pairs pushes them as far apart as possible, resulting in bond angles of 120 degrees between each pair.

Examples of trigonal planar molecules include boron trifluoride (BF3) and formaldehyde (H2CO).

A trigonal planar molecule consists of three atoms bonded to a central atom, with all atoms lying in a flat plane. The bond angles between the three atoms are identical, measuring 120 degrees.

The bond angles arise from the arrangement of electron pairs around the central atom. In a trigonal planar geometry, the central atom is surrounded by three bonding pairs or three bonding pairs and zero lone pairs of electrons. The electron pairs repel each other, leading to a geometry that maximizes the separation between them, resulting in bond angles of 120 degrees.

This arrangement is commonly observed in molecules such as boron trifluoride (BF3), formaldehyde (CH2O), and some organic molecules with a trigonal planar geometry around a carbon atom, such as benzene (C6H6) and propene (CH3CHCH2).

It's worth noting that while the ideal bond angle in a trigonal planar molecule is 120 degrees, there can be slight deviations in actual bond angles due to factors like the presence of lone pairs or the presence of different atoms or functional groups attached to the central atom. However, the general concept of a trigonal planar geometry with bond angles close to 120 degrees remains applicable.

To know more about trigonal planar refer here

https://brainly.com/question/29753855#

#SPJ11

the number of iron atoms per million hydrogen atoms is

Answers

The number of iron atoms per million hydrogen atoms can vary, depending on the context and location. Generally, iron is less abundant than hydrogen, but in specific environments, the ratio may be slightly higher due to synthesis processes.

The number of iron atoms per million hydrogen atoms can vary depending on the context. In general, the abundance of iron in the universe is relatively low compared to hydrogen. However, in certain environments such as stars or interstellar clouds where heavier elements have been synthesized, the ratio of iron to hydrogen may be slightly higher. The specific ratio would depend on the location and conditions being considered.

Learn more about hydrogen here, https://brainly.com/question/19813237

#SPJ11

A strong acid has _______.
(select all that apply)
- a large percent ionization
- a low percent ionization
- a low Ka value
- a large Ka value

Answers

The correct statements for a strong acid are:

- A large percent ionization

- A large Ka value

A strong acid has the following characteristics:

- A large percent ionization: A strong acid undergoes nearly complete ionization in water, resulting in a large percent ionization. This means that a significant proportion of the acid molecules dissociate into ions in the aqueous solution.

- A large Ka value: Ka (acid dissociation constant) is a measure of the strength of an acid. A strong acid has a large Ka value, indicating that it completely dissociates into ions in water and has a high tendency to donate protons.

Therefore, the correct statements for a strong acid are:

- A large percent ionization

- A large Ka value

To know more about ionization refer here

brainly.com/question/1602374#

#SPJ11

Calculate the volume (in mL) of 0. 00500 M KCl solution that needs to be added to a 50. 0 mL volumetric flask and diluted with deionized (DI) water in order to prepare a calibration standard solution with a concentration of 1. 50 x 10-4 M KCl. As part of your preparation for this experiment, repeat this calculation for each of the calibration standards you would need to prepare and record the information in your notes so that you have it ready during the lab session

Answers

You would need to add 1.50 mL of the 0.00500 M KCl solution to the 50.0 mL volumetric flask and then dilute it with deionized water to prepare a calibration standard solution with a concentration of 1.50 x [tex]10^{(-4)[/tex] M KCl.

C1V1 = C2V2

Rearranging the equation, we have:

V1 = (C2 * V2) / C1

Substituting the values, we get:

V1 = (1.50 x [tex]10^{(-4)[/tex] M * 50.0 mL) / 0.00500 M

= (1.50 x [tex]10^{(-4)[/tex] * 50.0) / 0.00500

= 1.50 mL

Concentration refers to the ability to focus one's attention and mental effort on a specific task or object. It involves directing and sustaining cognitive resources toward a particular goal or objective while filtering out distractions. Concentration is a fundamental cognitive process that plays a crucial role in various aspects of human functioning, such as learning, problem-solving, decision-making, and performance in different activities.

When individuals are concentrated, they allocate their mental energy and resources to the task at hand, enabling them to process information more effectively, retain knowledge, and enhance their overall performance. Concentration is often associated with increased productivity and efficiency as it allows individuals to work with heightened accuracy and attention to detail. It also helps in overcoming obstacles and staying motivated in the face of challenges.

To know more about Concentration refer to-

https://brainly.com/question/3045247

#SPJ4

for the catalase test, would a false positive from the reaction between the inoculating loop and hydrogen peroxide be caused by poor specificity or poor sensitivity of the test system? explain.

Answers

A false positive result in the catalase test caused by the reaction between the inoculating loop and hydrogen peroxide would be due to poor specificity of the test system.

Specificity refers to the ability of a test to accurately identify the target substance while excluding other substances. In the case of the catalase test, the target substance is the enzyme catalase, which is present in certain bacteria and is responsible for the breakdown of hydrogen peroxide into water and oxygen.

A false positive occurs when a test incorrectly indicates the presence of the target substance when it is actually absent. In this scenario, if the inoculating loop used in the test reacts with hydrogen peroxide, generating bubbles of oxygen, it would falsely suggest the presence of catalase. However, the reaction is not due to the presence of the catalase enzyme in the bacteria being tested.

This indicates that the test lacks specificity because it is unable to distinguish between the actual catalase enzyme and other substances that can react with hydrogen peroxide. The false positive result is caused by the non-specific reaction of the inoculating loop with hydrogen peroxide, leading to an incorrect interpretation of the presence of catalase.

In summary, a false positive in the catalase test due to the reaction between the inoculating loop and hydrogen peroxide indicates poor specificity of the test system, as it fails to accurately identify the target enzyme and distinguish it from other substances.

Learn more about hydrogen peroxide  here:

https://brainly.com/question/29167071

#SPJ11

Which of the following pairs would be appropriate to make a buffer of pH 2.0? a H2C2O4 and NaHC204 b HNO2 and KNO2 c Na2SO3 and NaHSO3 d Na2HPO4 and Na3PO4 e NaHSO4 and H2SO4

Answers

The other options listed do not involve weak acid and conjugate base pairs with suitable pKa values to generate a buffer at pH 2.0.

To make a buffer of pH 2.0, we need a weak acid and its conjugate base with a pKa close to the desired pH. Among the given options, the pair that would be appropriate to make a buffer of pH 2.0 is:

d) Na2HPO4 and Na3PO4

Phosphoric acid (H3PO4) has multiple dissociation constants, with pKa values of approximately 2.15, 7.20, and 12.32. The pair Na2HPO4 and Na3PO4 consists of the dihydrogen phosphate ion (HPO42-) and the phosphate ion (PO43-), respectively. These ions are formed by the partial or complete deprotonation of phosphoric acid.

Since the pKa of the dihydrogen phosphate ion (HPO42-) is close to 2.15, using Na2HPO4 and Na3PO4 in appropriate proportions can create a buffer solution with a pH around 2.0.

The other options listed do not involve weak acid and conjugate base pairs with suitable pKa values to generate a buffer at pH 2.0.

Learn more about weak acid here:

https://brainly.com/question/29833185

#SPJ11

In photosynthesis, plants form glucose (C6H12O6) and oxygen from carbon dioxide and water.
a). Calculate ΔH∘rxn at 15 ∘ C.
b). Calculate ΔS∘rxn at 15 ∘ C.
c). Calculate ΔG∘rxn at 15 ∘ C.

Answers

The thermodynamic quantities ΔH°rxn, ΔS°rxn, and ΔG°rxn for the photosynthesis reaction, we need the standard enthalpy change (∆H°f) and standard entropy change (∆S°f) values for the reactants and products involved.

The balanced equation for photosynthesis is:

6 CO₂(g) + 6 H₂O(l) → C₆H₁₂O₆(aq) + 6 O₂(g)

a) Calculate ΔH°rxn at 15°C:

The standard enthalpy change (∆H°f) values for the reactants and products at 25 °C (298 K) are as follows:

∆H°f [CO₂(g)] = -393.5 kJ/mol

∆H°f [H₂O(l)] = -285.8 kJ/mol

∆H°f [C₆H₁₂O₆(aq)] = -1273.3 kJ/mol

∆H°f [O2(g)] = 0 kJ/mol (oxygen is in its standard state)

Using the stoichiometric cofficients of the balanced equation, we can calculate ∆H°rxn:

∆H°rxn = Σ(n * ∆H°f [products]) - Σ(m * ∆H°f [reactants])

= (1 * -1273.3 kJ/mol) + (6 * 0 kJ/mol) - (6 * -393.5 kJ/mol) - (6 * -285.8 kJ/mol)

= -1273.3 kJ/mol + 0 kJ/mol + 2361 kJ/mol + 1714.8 kJ/mol

= 3802.5 kJ/mol

Therefore, ΔH°rxn at 15°C is 3802.5 kJ/mol.

b) Calculate ΔS°rxn at 15°C:

The standard entropy change (∆S°f) values for the reactants and products at 25 °C (298 K) are as follows:

∆S°f [CO₂(g)] = 213.7 J/(mol·K)

∆S°f [H₂O(l)] = 69.9 J/(mol·K)

∆S°f [C₆H₁₂O₆(aq)] = 212.1 J/(mol·K)

∆S°f [O₂(g)] = 205.0 J/(mol·K)

Using the stoichiometric coefficients of the balanced equation, we can calculate ∆S°rxn:

∆S°rxn = Σ(n * ∆S°f [products]) - Σ(m * ∆S°f [reactants])

= (1 * 212.1 J/(mol·K)) + (6 * 205.0 J/(mol·K)) - (6 * 213.7 J/(mol·K)) - (6 * 69.9 J/(mol·K))

= 212.1 J/(mol·K) + 1230.0 J/(mol·K) - 1282.2 J/(mol·K) - 419.4 J/(mol·K)

= -259.5 J/(mol·K)

Therefore, ΔS°rxn at 15°C is -259.5 J/(mol·K).

To know more about photosynthesis reaction refer here:

https://brainly.com/question/30715543#

#SPJ11

hydrogenation of an alkene is an example of what kind of reaction

Answers

Hydrogenation of an alkene is an example of an addition reaction. In this process, hydrogen gas is added to the double bond of an alkene, resulting in the formation of a single bond and the conversion of the alkene into an alkane.

The reaction is typically catalyzed by a metal such as platinum or palladium, and may also involve the use of a solvent such as ethanol or methanol. Hydrogenation is commonly used in the food industry to convert unsaturated fats into saturated fats, which have a longer shelf life and are more solid at room temperature.
Hydrogenation of an alkene is an example of an addition reaction. In this process, hydrogen atoms are added to the carbon atoms of the alkene double bond, converting it to an alkane. The reaction typically occurs in the presence of a catalyst, such as platinum, palladium, or nickel. This type of reaction is considered exothermic, as energy is released during the formation of new chemical bonds. Overall, hydrogenation leads to the saturation of the carbon-carbon double bond, resulting in a more stable and less reactive compound.

To know about Hydrogenation :

https://brainly.com/question/28060590

#SPJ11

eugenol can also be isolated from cloves using extraction with co2. a. true b. false

Answers

b. false

Eugenol is typically extracted from cloves using methods such as steam distillation or solvent extraction, but not with CO2 extraction. CO2 extraction is a technique commonly used to extract essential oils from various plant materials, but it is not the preferred method for isolating eugenol from cloves.

To know more about Eugenol refer here

https://brainly.com/question/31424314#

#SPJ11

what is the major product formed upon treatment of ( r) 1-bromo-4-methylhexane with sodium cyanide?

Answers

The reaction of (R)-1-bromo-4-methylhexane with sodium cyanide (NaCN) in the presence of a polar aprotic solvent such as DMSO or DMF is a nucleophilic substitution reaction, known as a S**N2 reaction.

The nucleophile (CN-) attacks the carbon atom bearing the leaving group (Br-) from the backside, leading to inversion of stereochemistry at the stereocenter. The reaction can be represented as follows:

(R)-1-bromo-4-methylhexane + NaCN → (S)-4-methylhexanenitrile + NaBr

The major product formed is (S)-4-methylhexanenitrile, where the nitrile functional group (-CN) has replaced the bromine atom.

To know more about stereochemistry refer here

brainly.com/question/13266152#

#SPJ11

calculate the gibbs free energy of the following ethanol reaction. assume standard conditions (1 atm, 25oc).

Answers

The Gibbs free energy change (ΔG°) for the combustion of ethanol at standard conditions is -614 kJ/mol.

To calculate the Gibbs free energy change (ΔG°) for a reaction, we need the standard Gibbs free energy of formation (ΔG°f) values for the reactants and products involved in the reaction. The reaction you provided, the combustion of ethanol, can be represented as:

C2H5OH(l) + 3O2(g) → 2CO2(g) + 3H2O(l)

The standard Gibbs free energy of formation values (ΔG°f) for the compounds involved are:

ΔG°f(C2H5OH(l)) = -174.8 kJ/mol

ΔG°f(O2(g)) = 0 kJ/mol

ΔG°f(CO2(g)) = -394.4 kJ/mol

ΔG°f(H2O(l)) = -237.2 kJ/mol

Now we can calculate the ΔG° for the reaction using the following equation:

ΔG° = ΣnΔG°f(products) - ΣnΔG°f(reactants)

where n is the stoichiometric coefficient of each compound.

For the given reaction:

ΔG° = (2ΔG°f(CO2(g)) + 3ΔG°f(H2O(l))) - (ΔG°f(C2H5OH(l)) + 3ΔG°f(O2(g)))

Plugging in the values:

ΔG° = (2(-394.4 kJ/mol) + 3(-237.2 kJ/mol)) - (-174.8 kJ/mol + 3(0 kJ/mol))

ΔG° = -788.8 kJ/mol - (-174.8 kJ/mol)

ΔG° = -614 kJ/mol

Therefore, the Gibbs free energy change (ΔG°) for the combustion of ethanol at standard conditions is -614 kJ/mol.

Learn more about ethanol here:

https://brainly.com/question/29294678

#SPJ11

For each pair of
concentrations, tell which
represents the more acidic solution.
a. [H*] = 1.2 x 10-³ M or
[H*]= 4.5 x 10-4 M
b. [H*] = 2.6 x 10-6 M or
[H*] = 4.3 x 10-8 M
c. [H*] = 0.000010 M or
[H*] = 0.0000010 M

Answers

Acids and bases can be measured using a pH scale. The scale has a range of 0 to 14. An indicator called Litmus paper is used to determine if a chemical is an acid or a basic. Here among the given pair, the solution which is more acidic is option A.

The H⁺ ion concentration's negative logarithm is known as pH. As a result, the meaning of pH is justified as the strength of hydrogen. Strongly acidic solutions are those with a pH value of 0, which is known. Additionally, as the pH value rises from 0 to 7, the acidity decreases, while solutions with a pH of 14 are classified as very basic solutions.

pH = -log [H⁺]

a. pH = -log [ 1.2 x 10⁻³] = 2.92

-log [4.5 x 10⁻⁴] = 3.34

b. -log [2.6 x 10⁻⁶] = 5.58 , -log [ 4.3 x 10⁻⁸] = 7.36

c.  -log [ 0.000010] = 5 ,  -log [ 0.0000010] = 6

Thus the correct option is A.

To know more about pH, visit;

https://brainly.com/question/27945512

#SPJ1

the number of pi bonds in the oxalate ion (C2O4^-2) is?
a. 1
b. 2
c. 3
d. 4
e. 5

Answers

The oxalate ion (C2O4^-2) contains three pi bonds. The summary of the answer is that there are three pi bonds in the oxalate ion.

Now, let's delve into the explanation. The oxalate ion consists of two carbon atoms (C) and four oxygen atoms (O), with a charge of -2. Each carbon atom forms a double bond with one oxygen atom, resulting in two sigma bonds between carbon and oxygen. The remaining two oxygen atoms each form a single bond with one of the carbon atoms, resulting in two additional sigma bonds. A pi bond is formed when two p orbitals overlap sideways, allowing for electron sharing between the carbon and oxygen atoms. In the oxalate ion, there are two pi bonds formed by the overlapping of p orbitals in the double bonds between the carbon and oxygen atoms. Additionally, there is one more pi bond formed by the overlapping of p orbitals in the single bond between the carbon and oxygen atoms. To summarize, the oxalate ion (C2O4^-2) has a total of three pi bonds, contributing to its molecular structure and chemical properties.

learn more about pi bonds here: brainly.com/question/31321414

#SPJ11

To see how weighted averages compare to traditional averages, you can try each method and then compare the results. Find the average mass of 3 atoms of C-12 and 1 atom of C-13 by adding up their masses and dividing by four. Then use the Gizmo to find the weighted average. What do you find?

Answers

The traditional average mass of the 3 atoms of C-12 and 1 atom of C-13 is 12.25 atomic mass units.  The weighted average mass of the 3 atoms of C-12 and 1 atom of C-13 using the Gizmo is approximately 12.02 atomic mass units.

Using the traditional average:

(3 atoms of C-12 + 1 atom of C-13) / 4 = (3 * 12 amu + 1 * 13 amu) / 4 = (36 amu + 13 amu) / 4 = 49 amu / 4 = 12.25 amu

Using the Gizmo, the weighted average mass would be:

(0.98 * 12 amu + 0.02 * 13 amu) = 0.98 * 12 amu + 0.02 * 13 amu = 11.76 amu + 0.26 amu = 12.02 amu

Atomic mass, also known as atomic weight, is a fundamental concept in chemistry that refers to the average mass of an atom of a particular chemical element. It is expressed in atomic mass units (amu) or unified atomic mass units (u), where 1 amu is approximately equal to the mass of a proton or neutron.

The atomic mass of an element takes into account the different isotopes of that element and their relative abundances in nature. Isotopes are atoms of the same element that have different numbers of neutrons in their nuclei, resulting in slight variations in mass. Since different isotopes occur in different proportions, the atomic mass is an average value that considers these differences.

To know more about Atomic mass refer to-

brainly.com/question/30678413

#SPJ4

When acid is added to pure water, the pH ___________, and when base is added to pure water, the pH ___________.
Select one:
a. decreases, decreases
b. increases, decreases
c. decreases, increases
d. increases, increases

Answers

Answer: c

Explanation:

acid added to water will decrease pH and base will increase waters pH

What is the frequency of a photon of light (in Hz) that has an energy of 3.75 × 10^-21 J

Answers

The frequency of the photon of light with an energy of 3.75 × 10^-21 J is approximately 5.662 × 10^12 Hz.

The frequency of a photon of light can be calculated using the equation:

E = h * f

where E is the energy of the photon, h is Planck's constant (approximately 6.626 × 10^-34 J·s), and f is the frequency of the photon.

Given that the energy of the photon is 3.75 × 10^-21 J, we can rearrange the equation to solve for the frequency:

f = E / h

Substituting the values:

f = (3.75 × 10^-21 J) / [tex](10^-21 / 10^-34) Hz[/tex]

To simplify this calculation, we can express the scientific notation in a way that facilitates division:

f = (3.75 / 6.626) × [tex](10^-21 / 10^-34) Hz[/tex]

f ≈ 0.5662 × 10^13 Hz

To express the frequency in a standard form, we can convert the decimal to scientific notation:

f ≈ 5.662 × 10^12 Hz

Therefore, the frequency of the photon of light with an energy of 3.75 × [tex]10^-21[/tex] J is approximately[tex]5.662 × 10^12 Hz.[/tex]

for more such question on energy visit

https://brainly.com/question/5650115

#SPJ8

in addition to radiative impacts, additional warming from doubling carbon dioxide concentrations comes from

Answers

In addition to radiative impacts, there are several other mechanisms that contribute to the additional warming to the atmosphere  from doubling carbon dioxide (CO₂) concentrations in the. These include:

Increased water vapor feedback: As the atmosphere warms, it can hold more water vapor, which is itself a greenhouse gas. This leads to a positive feedback loop, where increased CO₂ concentrations cause warming, which leads to more water vapor in the atmosphere, which causes further warming.

Reduced albedo feedback: As the Earth's surface warms, it can lead to changes in the reflectivity, or albedo, of the surface. For example, melting of snow and ice exposes darker land or water, which absorbs more solar radiation and causes further warming.

Changes in atmospheric circulation: Changes in temperature and pressure patterns can alter the distribution of heat and moisture across the Earth, which can affect climate patterns and lead to further warming.

Changes in ocean circulation: Changes in temperature and salinity patterns in the ocean can affect ocean currents, which in turn can affect climate patterns and lead to further warming.

Overall, these feedback mechanisms amplify the radiative forcing from increased CO₂ concentrations and lead to additional warming beyond what would be expected from the radiative properties of CO₂ alone.

To know more about  radiative impacts refer here:

https://brainly.com/question/29771617#

#SPJ11

when 1,3-butadiene is protonated, a resonance-stabilized allylic carbocation is formed. draw the curved arrows below that show the movement of electrons between the two major resonance structures.

Answers

When 1,3-butadiene is protonated, a resonance-stabilized allylic carbocation is formed. The positive charge of the carbocation is located on the carbon that is adjacent to the double bond. The double bond electrons then shift to the adjacent carbon, forming a double bond between the two carbons. This results in two major resonance structures.

The first structure shows the positive charge on the carbon that is adjacent to the double bond, and the second structure shows the double bond between the two carbons, with a single bond between the carbon and the proton. The movement of electrons between these two major resonance structures can be shown using curved arrows, as follows: The curved arrow starts from the double bond and points towards the positively charged carbon, indicating the shift of electrons towards the carbon atom. Then, another curved arrow starts from the carbon atom and points towards the proton, indicating the formation of a new bond between the carbon atom and the proton. The resonance-stabilized allylic carbocation is formed due to the movement of electrons between the two major resonance structures.

to know more about resonance structures visit:

https://brainly.com/question/25022370

#SPJ11

Propose a mechanism for the given transformation by drawing curved arrows. The mechanism should proceed through an enol intermediate.

Answers

The proposed mechanism for the given transformation through an enol intermediate involves protonation, deprotonation, tautomerization, and rearrangement, with the use of curved arrows to show the movement of electrons.

To propose a mechanism for the given transformation through an enol intermediate, we need to start with the initial reactant and then show the movement of electrons using curved arrows. The mechanism should proceed through the following steps:
1. Protonation of the carbonyl oxygen by a strong acid such as H2SO4 or HCl to form the oxonium ion.
2. Deprotonation of the α-carbon by a base such as NaOH or KOH to form the enol intermediate.
3. Tautomerization of the enol to the keto form, with the movement of electrons from the π-bond to the carbonyl oxygen.
4. Rearrangement of the carbonyl group to form the final product.
Throughout the mechanism, curved arrows should be used to show the movement of electrons from one atom to another. The enol intermediate is important because it is a more reactive form than the keto form and can undergo further reactions such as aldol condensation or Michael addition. The use of curved arrows is important because it allows us to track the movement of electrons and understand the mechanism of the reaction.
In summary, the proposed mechanism for the given transformation through an enol intermediate involves protonation, deprotonation, tautomerization, and rearrangement, with the use of curved arrows to show the movement of electrons.

To know more about protonation visit: https://brainly.com/question/30276705

#SPJ11

Consider the reaction:



CaCO3 + 2 HI → Cal, + H2O + CO2



a) If 4. 35 g of CaCO3 react with 55. 0 mL of 0. 25 M HI determine:



8



(i) The volume of CO, that would be formed at STP (theoretical yield)



9



(ii) Identify the limiting and the excess reactants



10 (iii) If. 135 L of CO2 is actually produced, calculate the % Yield

Answers

The theoretical yield of CO2 at STP is 977 mL. This means that CaCO3 is the excess reactant and HI is the limiting reactant.  the percent yield of CO2 is 21.9%.

[tex]CaCO_3 + 2HI -- CaI_2 + H_2O + CO_2[/tex]

(i) The volume  [tex]CO_2[/tex] that would be formed at STP (theoretical yield):

First, let's calculate the moles of [tex]CaCO_3[/tex]:

molar mass of [tex]CaCO_3[/tex] = 40.08 + 12.01 + 3(16.00) = 100.09 g/mol

moles of [tex]CaCO_3[/tex] = 4.35 g / 100.09 g/mol = 0.04347 mol

Now, we can use the mole ratio to find the moles of [tex]CO_2[/tex] produced:

moles of[tex]CO_2[/tex] = 0.04347 mol

PV = nRT

V = nRT/P

V = (0.04347 mol)(0.08206 L·atm/mol·K)(273.15 K)/(1 atm)

V = 0.977 L or 977 mL

Therefore, the theoretical yield  [tex]CO_2[/tex] at STP is 977 mL.

(ii) Identify the limiting and excess reactants:

moles of HI = (0.25 mol/L)(0.0550 L) = 0.01375 mol

moles of [tex]CaCO_3[/tex] = 0.04347 mol

moles of HI required = 2 × 0.04347 mol = 0.08694 mol

(iii) Moles of [tex]CO_2[/tex] = 2 x Moles of HI = 2 x 0.0138 mol = 0.0276 mol

Now we can calculate the theoretical yield of [tex]CO_2[/tex] in liters at STP:

V = nRT/P = (0.0276 mol)(0.0821 L·atm/(mol·K))(273 K)/(1 atm) = 0.617 L

The percent yield is then calculated by dividing the actual yield by the theoretical yield and multiplying by 100%:

% Yield = (Actual Yield / Theoretical Yield) x 100%

% Yield = (0.135 L / 0.617 L) x 100% = 21.9%

The theoretical yield is the maximum amount of product that can be obtained in a chemical reaction, assuming that all the reactants are consumed and converted to the desired product. Theoretical yield is based on the stoichiometry of the reaction, which describes the balanced chemical equation showing the molar ratios of the reactants and products. The actual yield, on the other hand, is the amount of product actually obtained in a chemical reaction, which can be less than the theoretical yield due to various factors such as incomplete reactions, side reactions, and losses during the purification process.

The theoretical yield is an important concept in chemistry as it provides a benchmark for assessing the efficiency of a chemical reaction. By comparing the actual yield to the theoretical yield, chemists can determine the percentage yield, which is a measure of how much of the theoretical yield was actually obtained. The percentage yield is an indicator of the quality of a chemical reaction and can be used to optimize reaction conditions or to evaluate the feasibility of a chemical process.

To know more about Theoretical yield refer to-

brainly.com/question/14966377

#SPJ4

______________ is the method of energy transfer that involves the flow of fluid materials

Answers

Convection is the method of energy transfer that involves the flow of fluid materials.

Which of these aqueous solutions has the lowest pH?
a,0.100 M NaOH
b,0.100 M Na2O
c,0.100 M Na3N
d,All of these solutions have the same pH due to the leveling effect.
e,These all are solutions of weak bases, so Kb values are needed in order to decide.

Answers

The correct answer is:

a, 0.100 M NaOH has the lowest pH

NaOH is a strong base that dissociates completely in water to form hydroxide ions (OH-). Since hydroxide ions are a source of hydroxide ions in water, they increase the concentration of hydroxide ions and subsequently decrease the concentration of hydrogen ions (H+). This results in a high concentration of hydroxide ions and a low concentration of hydrogen ions, leading to a high pH.

Know more about hydroxide ions here:

https://brainly.com/question/14619642

#SPJ11

how much of a 10 g sample of strontium-90 is lieft after 84 years?​

Answers

Answer: 2.576 G

Explanation:

To determine the remaining amount of strontium-90 after 84 years, we need to consider its half-life. The half-life of strontium-90 is approximately 29 years.

Using the radioactive decay formula:

Amount remaining = Initial amount * (1/2)^(time elapsed / half-life)

We can calculate the remaining amount as follows:

Amount remaining = 10 g * (1/2)^(84 years / 29 years)

Amount remaining = 10 g * (1/2)^(2.896)

Amount remaining ≈ 10 g * 0.2576

Amount remaining ≈ 2.576 g

Therefore, approximately 2.576 grams of the original 10-gram sample of strontium-90 would be left after 84 years.

calculate the change in entropy for following ethane combustion reaction: c2h6 7/2 o2 → 3h2o(g) 2co2 assume standard conditions (p = 1atm, t = 25°c).

Answers

To calculate the change in entropy (ΔS) for the combustion of ethane, we can use the standard molar entropy values for the reactants and products. The balanced equation for the combustion of ethane is:

C2H6 + 7/2 O2 → 3 H2O(g) + 2 CO2

The standard molar entropy values for ethane, oxygen, water vapor, and carbon dioxide are:

ΔS°(C2H6) = 229.5 J/(mol·K)

ΔS°(O2) = 205.0 J/(mol·K)

ΔS°(H2O(g)) = 188.7 J/(mol·K)

ΔS°(CO2) = 213.6 J/(mol·K)

Using these values, we can calculate the change in entropy for the reaction as follows:

ΔS° = ΣnΔS°(products) - ΣmΔS°(reactants)

where n and m are the stoichiometric coefficients of the products and reactants, respectively.

ΔS° = [3 mol H2O(g) × 188.7 J/(mol·K)] + [2 mol CO2 × 213.6 J/(mol·K)] - [1 mol C2H6 × 229.5 J/(mol·K)] - [7/2 mol O2 × 205.0 J/(mol·K)]

ΔS° = 104.6 J/(mol·K)

Therefore, the change in entropy for the combustion of ethane at standard conditions is 104.6 J/(mol·K).

To know more about entropy (ΔS) refer here

brainly.com/question/17087340#

#SPJ11

Two intermetallic compounds, A3B and AB3, ex- ist for elements A and B. If the compositions for A3B and AB3 are 91. 0 wt% A–9. 0 wt% B and 53. 0 wt% A–47. 0 wt% B, respectively, and element A is zirconium, identify element B

Answers

The compositions of the intermetallic compounds A3B and AB3 are given as percentages of element A and element B, respectively.

Another approach to identifying element B would be to perform chemical analysis on small samples of the compounds. This would involve determining the elemental composition of the samples using techniques such as X-ray fluorescence (XRF) or inductively coupled plasma mass spectrometry (ICP-MS). From the elemental composition, element B could be identified based on its position in the periodic table and its known properties. However, the compositions do not provide enough information to determine the identity of element B.

In order to identify element B, additional information is needed. One possible way to identify element B is to compare the known properties of the compounds formed by A and B. For example, if A forms a cubic structure and B forms a tetragonal structure, then element B is likely zirconium (Zr). However, without additional information, it is not possible to definitively identify element B using only the given compositions of A3B and AB3.  

Learn more about compounds visit: brainly.com/question/29547278

#SPJ4

Other Questions
find the volume of a rectangular prism 2 1/2, 7, 3 1/2 de reases with an increase in confidence level. N) deceases; increases increases; decreases B) increases; increases D) decreases; decreases SHORT ANSWER. 11) (2 pts) Three randomly selected households are surveyed as a pilot project for a larger survey to be conducted later. The numbers of people in the households are 5, 7, and 9. Consider the values of 5, 7, and 9 to be a population. Assum samples of size n = 2 are randomly selected with replacement from the population of 5, 7, and 9. The nine different samples are as follows: (5, 5), (5. 7). (5, 9). (7. 5), (7. 7). (7. 9). (9. 5). (9, 7), and (9.9). (1) Find the mean of each of the nine samples, then summarize the sampling distribution of the means in the format of a table representing the probability distribution. (ii) Compare the population mean to the mean of the sample means. (iii) Do the sample means target the value of the population mean? In general, do means make good estimators of population means? Why or why not? in humans the glomerular filtration rate normal ranges from a 7-year-old girl has a history of cerebral palsy, static encephalopathy, seizure disorder, and recent aspiration pneumonia. she completed treatment for pneumonia two days ago but now has developed foul-smelling, watery diarrhea and abdominal cramping. her vital signs are within normal limits for age. what is the treatment of choice? If one species in a couple is a good oxidizing agent is the other species necessarily a good reducing agent? Explain. a restaurant offers a special pizza with any 5 toppings. if the restaurant has 14 topping from which to choose, how many different special pizzas are possible? a company recieves 10,000 in cashfor services yet to be performed, using the accrual methodhow do you record the transaction Excel Dry-Cleaning advertises so effectively that Next Day Cleaners's regular customers patronize Excel instead of Next Day. Excel has committeda. appropriation.b. wrongful interference with a business relationship.c. wrongful interference with a contractual relationship.d. none of the above. Which of the following is not an ultimate explanation for behavior? a) A fruit fly orients toward a patch of rotting fruit when odor molecules bind to receptors on its antennae b) A jellyfish migrates up toward light during the day because food resources are plentiful there c) Birds migrate south because resources are more plentiful there during the winter months. d) A gazelle jumps in the air when a predator approaches to signal that it is healthy and not worth approaching Which part of the kingpin should the locking jaws close around? a. the base b. the shank c. the head. t which term refers to bleeding between menstrual periods? The preservation of innovation best illustrates the survival value ofA)individualism.B)culture.C)epigenetics.D)gender schemas. A wooden mirror frame is 30 centimeters wide and 50 centimeters tall. If the area of the mirror inside the wooden frame is 684 square centimeters, how many centimeters wide, x, is the border surrounding the mirror? Which of these organisms were NOT found in the middle of the Mesozoic? Birds Dinosaurs Mammals Flowers 1 L of air, initially at room temperature (300 K) and atmospheric pressure (1 atm), is heated at constant pressure until it doubles in volume. (a) Calculate the temperature of the air after it has doubled in volume. You can assume that air is an ideal gas. human blood has an osmolarity of about 300 mosm and shark blood has an osmolarity of about 1000 mosm. if you collected blood samples from both humans and sharks and attempted to freeze them, which would freeze at a lower temperature? eprenaf yleegoueneaf fiviceBackground: In the early middle ages, pagans lived in Denmark. In the story Beowulf, thehero brings Christianity to their world and battles the evil Grendel, and other monsters.Question: Explain what the story's message has to do with religious practices by asserting aclaim in your thesis statement. What will help them succeed against the monster? Why havethey failed up to this point in the story?Format: Write 300 words in complete sentences to defend your claim, starting with a thesisstatement. Use 1 in-text reference about pagan practices and 1 in-text reference aboutChristian practices, referring to the line number. Conclude by restating your thesis. Usegood grammar, punctuation, capitalization, and spelling.The author's message is that... because the pagans were seeking the guidance of the devil. So,the author says that "(lineGrading RubricThesis StatementBody-SupportCitationsConclusionMechanicsTotal/25 to prepare for anything coming up in the road ahead Oak glen currently employs 8 patrol officers who each write an average of 24 parking tickets per day. For every additional officer placed on patrol, the average number of parking tickets per day written by each officer decreases by 4. How many additional officers should be placed on patrol in order to maximize the number of parking tickets written per day Combinatorial selection in amoebal hosts drives the evolution of the human pathogen Legionella pneumophila by_______ Steam Workshop Downloader