The answer to question 58 is c. Aluminum. When aluminum dissolves in acid waters, it can be extremely toxic to fish, causing death or other negative effects on their health. Acid waters are bodies of water that have a low pH due to acid rain or other sources of acidity.
These acid waters can dissolve metals and other pollutants, making them even more harmful to aquatic life. It is important to monitor and regulate the pH and pollution levels in bodies of water to ensure the health and survival of fish and other aquatic organisms. The most fatal metal to fish when it becomes dissolved in acid waters is c. Aluminum. In acidic environments, aluminum becomes more soluble and toxic to aquatic life, including fish. Elevated levels of dissolved aluminum can lead to gill damage, reduced growth, and even death in fish populations. Although manganese, lead, and zinc can also be harmful in high concentrations, aluminum poses a greater threat in acid waters due to its increased solubility and toxicity.
Learn more about Aluminum here
https://brainly.com/question/246454
#SPJ11
PART OF WRITTEN EXAMINATION:
The reduction reaction that occurs in an electrochemical reaction:
I Occurs at the anode
II occurs at the cathode
III involves the loss of electrons
IV involves the gain of electrons
A) I only
B) II only
C) I and III only
D) II and IV only
The reduction reaction that occurs in an electrochemical reaction involves the gain of electrons and occurs at the cathode. Therefore, the correct answer is option D, II and IV only.
The reduction reaction in an electrochemical reaction involves the gain of electrons, which means that option IV is correct. The reduction reaction occurs at the cathode, where the positively charged ions are attracted to the negatively charged electrode and gain electrons. At the same time, oxidation occurs at the anode, where the negatively charged ions are attracted to the positively charged electrode and lose electrons. Therefore, option II is also correct. Options I and III are incorrect because reduction does not occur at the anode and it involves the gain, not the loss of electrons.
Learn More about electrochemical reaction here :-
https://brainly.com/question/31606417
#SPJ11
How many moles of Cl in one mole of the CaCl2?
One mole of CaCl₂contains 2 moles of chloride ions.
Calcium chloride (CaCl₂) is a salt that consists of one calcium ion (Ca2+) and two chloride ions (Cl-). Therefore, one mole of CaCl₂ contains two moles of chloride ions (2 Cl-).
To calculate the number of moles of Cl- in one mole of CaCl₂, we can use the formula:
moles of Cl- = 2 x moles of CaCl₂
Since one mole of CaCl₂ contains 1 mol of calcium ion and 2 moles of chloride ions, the total number of moles in one mole of CaCl₂is:
1 + 2 = 3 moles
So, the number of moles of Cl- in one mole of CaCl₂ is:
moles of Cl- = 2 x moles of CaCl₂ = 2 x 1 = 2 moles
Therefore, one mole ofCaCl₂ contains 2 moles of chloride ions.
Learn more about chloride ions.
https://brainly.com/question/31606403
#SPJ4
Among the compounds, water, 1-butyne,2-butyne and ethane , which compounds are stronger acids than ammonia 1-butyne and ethane water and ethane 2-butyne and 1-butyne water and 1-butyne
Among the compounds water, 1-butyne, 2-butyne, and ethane, the compounds that are stronger acids than ammonia are water and 1-butyne. This is because water can act as both an acid and a base, while 1-butyne, with its acidic terminal alkyne hydrogen, can donate a proton more readily than ammonia.
Ethane and 2-butyne are not acidic and cannot act as acids. In water, the hydrogen ion (H⁺) is readily released, making it a stronger acid than ammonia. Similarly, 1-butyne has a terminal alkyne group that can release a proton (H⁺) and is therefore a stronger acid than ammonia.
Learn more about stronger acids at https://brainly.com/question/24586675
#SPJ11
AlCl4- + H+ = AlCl3 + HCl. (True or False)
False. The equation AlCl4- + 2H+ = AlCl3 + H2O + HCl is balanced. This is due to the fact that two H+ ions are required to balance the -1 charge of AlCl4- and the charges on either side of the equation.
Due to differences in the amount of atoms of each element on the two sides, the above equation is not balanced. We must add coefficients to the reactants and products in order to balance it. We discover that two H+ ions are required to balance the charge on the AlCl4- ion after doing this. In addition, water (H2O) and HCl are also produced together with AlCl3. AlCl4-+2H+=AlCl3+H2O+HCl is the reaction's balanced equation. False. Because there are not an equal amount of atoms on both sides, the above equation is unbalanced. AlCl4- + 2H+ = AlCl3 + H2O + HCl is the balanced equation because two H+ ions are required to balance the charge on the AlCl4- ion and because the reaction also yields water and HCl.
learn more about charges here:
https://brainly.com/question/11944606
#SPJ11
Which of the following processes are exothermic? endothermic? How can you tell? (a) combustion; (b) freezing water; (c) melting ice; (d) boiling water; (e) condensing steam; (f) burning paper.
Here's a classification of the given processes into exothermic and endothermic categories:
(a) Combustion: Exothermic. Combustion releases heat as chemical bonds are broken and new ones are formed, usually accompanied by the release of energy.
(b) Freezing water: Exothermic. During freezing, water molecules lose energy and form a solid structure, releasing heat in the process.
(c) Melting ice: Endothermic. Melting ice requires the absorption of heat to break the bonds between water molecules in the solid state and convert them into a liquid state.
(d) Boiling water: Endothermic. Boiling water involves the absorption of heat to convert liquid water into water vapor.
(e) Condensing steam: Exothermic. During condensation, water vapor molecules release heat as they transition from the gaseous state to the liquid state.
(f) Burning paper: Exothermic. Burning paper is a form of combustion, where chemical reactions release heat as the paper is broken down.
To know more about the exothermic & endothermic refer here :
https://brainly.com/question/4345448#
#SPJ11
Vertical sashes should be closed except when
- Measuring the airflow of a hood
- Access to equipment inside the hood is necessary
- There is some chemical reaction occurring inside the hood
- One expects an explosion
Vertical sashes in a fume hood are an important safety feature that help to contain hazardous materials and protect the user. Typically, these sashes should be closed at all times except when certain circumstances arise. For instance, they may need to be opened to measure the airflow of a hood.
Which is essential for ensuring proper ventilation and preventing dangerous buildup of fumes or vapors. Similarly, if there is a need to access equipment inside the hood, the sashes may be opened temporarily. In some cases, if there is a chemical reaction occurring inside the hood, the sashes may need to be opened slightly to allow for proper ventilation. Finally, if there is an expectation of an explosion, the Vertical sashes should be opened to minimize the risk of injury. In general, it is important to follow proper safety procedures and guidelines when working with fume hood to ensure the safety of both the user and the surrounding environment.
learn more about fume hood Refer: https://brainly.com/question/29582094
#SPJ11
H(g)+Cl(g)→HCl(g)The formation of HCl(g) from its atoms is represented by the equation above. Which of the following best explains why the reaction is thermodynamically favored?
The reaction is thermodynamically favored because it releases energy, which is indicated by the negative value of the change in enthalpy (∆H) of the reaction. This means that the products have a lower enthalpy than the reactants, making the reaction spontaneous and energetically favorable.
Additionally, the decrease in the disorder or randomness of the system (negative ∆S) is outweighed by the decrease in enthalpy, resulting in a negative change in Gibbs free energy (∆G) and indicating that the reaction will proceed in the forward direction.
To know more about enthalpy, visit: https://brainly.com/question/29741969
#SPJ11
Ammonia rapidly reacts with hydrogen chloride, making ammonium chloride. Calculate the number of grams of excess reactant when 3.46 g of NH3 reacts with 4.91 g of HCl.
The number of grams of excess reactant is 1.16 grams of NH₃.
To calculate the number of grams of excess reactant, we first need to determine the limiting reactant, which is the reactant that is completely consumed and determines the amount of product formed. The other reactant is considered the excess reactant.
Given;
Mass of NH₃ = 3.46 g
Mass of HCl = 4.91 g
To determine the limiting reactant, we can compare the moles of each reactant using their respective molar masses.
Molar mass of NH₃ (ammonia) = 17.03 g/mol
Molar mass of HCl (hydrogen chloride) = 36.46 g/mol
Moles of NH₃ = mass of NH₃ / molar mass of NH₃
Moles of HCl = mass of HCl / molar mass of HCl
Plugging in the given values;
Moles of NH₃ = 3.46 g / 17.03 g/mol
= 0.2031 mol
Moles of HCl = 4.91 g / 36.46 g/mol
= 0.1347 mol
To calculate the amount of excess reactant, we subtract the moles of the limiting reactant from the moles of the excess reactant;
Excess moles of NH₃ = Moles of NH₃ - Moles of HCl
Excess moles of NH₃ = 0.2031 mol - 0.1347 mol
= 0.0684 mol
Now, we can calculate the mass of the excess reactant using its molar mass;
Mass of excess NH₃ = Excess moles of NH₃ × molar mass of NH₃
Mass of excess NH₃ = 0.0684 mol × 17.03 g/mol
= 1.16 g
To know more about reactant here
https://brainly.com/question/2948214
#SPJ1
For the following reaction, if nh3 is used up at a rate of 0. 30mmin, what is the rate of formation of h2? 2nh3→n2 3h2
The rate of formation of [tex]H_{2}[/tex] is 0.45 min⁻¹
The balanced chemical equation is:
2 [tex]NH_{3}[/tex]→ [tex]N_{2}[/tex] + 3[tex]H_{2}[/tex]
From the equation, we can see that for every 2 moles of [tex]NH_{3}[/tex] consumed, 3 moles of H2 are formed. Therefore, the ratio of the rate of formation of [tex]H_{2}[/tex]to the rate of consumption of [tex]NH_{3}[/tex] is 3/2.
Given that [tex]NH_{3}[/tex] is being consumed at a rate of 0.30 min⁻¹, the rate of formation of [tex]H_{2}[/tex] can be calculated as follows:
Rate of formation of [tex]H_{2}[/tex] = (3/2) × Rate of consumption of [tex]NH_{3}[/tex]
Rate of formation of [tex]H_{2}[/tex] = (3/2) × 0.30 min⁻¹
Rate of formation of [tex]H_{2}[/tex] = 0.45 min⁻¹
Therefore, the rate of formation of [tex]H_{2}[/tex] is 0.45 min⁻¹
Learn more about chemical equation,
https://brainly.com/question/30087623
#SPJ4
te express your answer in condensed form in order of increasing orbital energy as a string without blank space between orbitals. for example, [he]2s22p2 should be entered as [he]2s^22p^2
In order of increasing orbital energy, this configuration can be expressed in condensed form as follows:
[Ne]3s²3p²
The electron configuration of sulfur is 1s²2s²2p⁶3s²3p⁴.
To express this configuration in condensed form in order of increasing orbital energy, we can group the electrons by the principal energy level (n) and list them in order of increasing sublevel (s, p, d, f):
[Ne]3s²3p²
Here, [Ne] represents the electron configuration of the noble gas neon, whose completely filled 2s and 2p subshells are included in the core electrons of the sulfur atom. The valence electrons of sulfur are located in the 3s and 3p subshells, which have higher energy levels than the core electrons.
Learn more about electronic configuration on:
https://brainly.com/question/17066934
#SPJ11
Which form of the Arrhenius equation can be conveniently used to calculate Ea for a reaction?
The form of the Arrhenius equation that can be conveniently used to calculate Ea for a reaction is the ln(k2/k1) = Ea/R * (1/T1 - 1/T2) form. This equation allows us to determine the activation energy (Ea) of a reaction by comparing the rate constants (k) of the reaction at two different temperatures (T1 and T2).
To calculate the activation energy (Ea) for a reaction, you can conveniently use the linear form of the Arrhenius equation. The linear form is given as:
ln(k) = -Ea/(R*T) + ln(A)
where:
- k is the reaction rate constant
- Ea is the activation energy
- R is the gas constant (8.314 J/(mol*K))
- T is the temperature in Kelvin
- A is the pre-exponential factor
To determine Ea, you can perform the reaction at different temperatures, measure the corresponding rate constants (k), and plot ln(k) against 1/T. The slope of the resulting line is equal to -Ea/R, from which you can calculate the activation energy (Ea) for the reaction.
Learn more about :
Arrhenius equation : brainly.com/question/30514582
#SPJ11
Nitrogen monoxide, NO(g), and carbon monoxide, CO(g), are air pollutants generated by automobiles. It has been proposed that under suitable conditions these two gases could react to form N2(8) and CO2(8), which ar components of unpolluted air. (a) Write a balanced equation for the reaction described above. Indicate whether the carbon in CO is oxidized or whether it is reduced in the reaction. Justify your answer.
a)The balanced equation for the reaction described above is:
2NO(g) + 2CO(g) → N₂(g) + 2CO₂(g)
In this reaction, the carbon in CO is oxidized. We can determine this by analyzing the change in oxidation states.
In the balanced equation for the reaction, nitrogen monoxide (NO) and carbon monoxide (CO) combine to form nitrogen gas (N₂) and carbon dioxide (CO₂), which are both components of unpolluted air.
In the reaction, the carbon in CO is oxidized. This is because the oxidation state of carbon in CO is +2, while in CO₂ it is +4. This means that the carbon has gained two electrons, which is the definition of oxidation. Therefore, the carbon in CO is oxidized in the reaction.
Learn more about CO at https://brainly.com/question/30048336
#SPJ11
If the mass is 12.3 g, volume without mineral is 50ml, volume with mineral is 53ml, then what is: (a) the volume of water displaced and (b) the final density of the mineral?
a.) The Volume of water displaced is 3 ml
b.) The final density of the mineral is 4.1 g/ml.
(a) The volume of water displaced is the ratio of the volume containing mineral to the volume excluding mineral.
Volume of water displaced = Volume with mineral - Volume without mineral
Volume of water displaced = 53 ml - 50 ml
Volume of water displaced = 3 ml.
(b) The following formula can be used to determine the mineral's density:
Mass / Volume equals density.
The difference between the mass of the mineral and the mass without the mineral is the mass of the mineral.
Mass of mineral = Mass with mineral - Mass without mineral
Mass of mineral = 12.3 g - 0 g (since the mass without mineral is not given)
Mass of mineral = 12.3 g
By deducting the volume without the mineral from the volume with, one may determine the volume of the mineral.
Volume of mineral = Volume with mineral - Volume without mineral
Volume of mineral = 53 ml - 50 ml
Volume of mineral = 3 ml
Therefore, the density of the mineral is:
Density = Mass of mineral / Volume of mineral
Density = 12.3 g / 3 ml
Density = 4.1 g/ml
Therefore, the final density of the mineral is 4.1 g/ml.
For such more question on Volume:
https://brainly.com/question/29796637
#SPJ11
According to the Bohr model of the atom, the energies of the electrons around an atom
have positive values.
are quantized.
equal n, the orbit number.
are quantificated.
get further apart as n increases.
According to the Bohr model of the atom, the energies of the electrons around an atom are quantized. The Bohr model, proposed by Niels Bohr in 1913, was an early attempt to describe the structure of atoms.
In this model, an atom consists of a central nucleus surrounded by electrons orbiting in specific energy levels or shells.
Electrons in the Bohrs model can only occupy discrete energy levels, meaning they cannot have just any energy value; instead, their energies are quantized. The quantization of electron energy levels is based on the concept that electrons can only occupy orbits with specific, fixed distances from the nucleus. Each of these orbits corresponds to a specific energy level. Electrons can move between energy levels by absorbing or emitting energy in the form of photons, but they cannot exist in between these quantized energy levels.
The energy levels are often represented by the principal quantum number, n, which is a positive integer (n = 1, 2, 3, etc.). As the value of n increases, the energy of the electron in that orbit also increases, and the electron is found at a greater distance from the nucleus. Consequently, the energy levels get further apart as n increases.
learn more about Bohrs model Refer: https://brainly.com/question/11299441
#SPJ11
complete question:
According to the Bohr model of the atom, the energies of the electrons around an atom
a, have positive values.
b. are quantized.
c. equal n, the orbit number.
d. are quantificated.
e. get further apart as n increases
write the reaction and the ksp expressions for the following slightly soluble salts dissolving in water
When a slightly soluble salt dissolves in water, it dissociates into its constituent ions, resulting in an equilibrium reaction. The equilibrium constant for this reaction is known as the solubility product constant, Ksp.
Ksp is a measure of the degree of solubility of a salt and is dependent on the ionic concentration of the solution.Let us consider the example of silver chloride (AgCl), which is a slightly soluble salt. When AgCl dissolves in water, it dissociates into its constituent ions, Ag+ and Cl-. This process is represented by the following chemical equation:AgCl(s) ⇌ Ag+(aq) + Cl-(aq)The equilibrium constant expression for this reaction is given by:[tex]Ksp = [Ag^+][Cl^-][/tex]where [[tex]Ag^+[/tex]] and [tex][Cl^-][/tex] represent the ionic concentrations of silver and chloride ions, respectively.Similarly, the Ksp expressions for other slightly soluble salts, such as calcium carbonate (CaCO3), lead(II) iodide (PbI2), and silver sulfate (Ag2SO4), can be written based on their respective dissociation reactions in water.[tex]For CaCO3: CaCO3(s) ⇌ Ca2+(aq) + CO32-(aq)\\Ksp = [Ca2+][CO32^-][/tex][tex]For PbI2: PbI2(s) ⇌ Pb2+(aq) + 2I-(aq)\\Ksp = [Pb2+][I^-]^2[/tex][tex]For Ag2SO4: Ag2SO4(s) ⇌ 2Ag+(aq) + SO42-(aq)\\Ksp = [Ag+]^2[SO42^-][/tex]These Ksp expressions are useful for determining the solubility of a salt in water and can be used to predict the formation of a precipitate under certain conditions, such as changes in temperature or pH.For more such question on Ksp
https://brainly.com/question/29557204
#SPJ11
How many moles of KClO3 are needed to produce 1039 L of O2according to the following equation?2KClO3→2KCl(s)+3O2(g)
Approximately 30.9 moles of KClO3 are needed to produce 1039 L of O2 according to the given equation. To determine how many moles of KClO3 are needed to produce 1039 L of O2 according to the equation 2KClO3 → 2KCl(s) + 3O2(g), follow these steps:
Step:1. Determine the stoichiometric ratio between KClO3 and O2 from the balanced equation. In this case, it is 2 moles of KClO3 producing 3 moles of O2.
Step:2. Convert the given volume of O2 (1039 L) to moles using the ideal gas law. Assume standard temperature and pressure (STP) conditions, where 1 mole of any gas occupies 22.4 L.
Moles of O2 = 1039 L / 22.4 L/mol = 46.4 moles (approximately)
Step:3. Using the stoichiometric ratio, calculate the moles of KClO3 needed to produce 46.4 moles of O2.
(2 moles KClO3 / 3 moles O2) x 46.4 moles O2 = 30.9 moles of KClO3 (approximately)
Learn more about KClO3 here, https://brainly.com/question/30662282
#SPJ11
Determine the mass of carbon dioxide that should be produced in the reaction between 3. 74g of carbon and excess oxygen what is the maximum recent yield if 11. 34g of CO2 is recovers
The mass of carbon dioxide that should be produced in the reaction is equals to 44.01 g. The maximum Percent yield is 25.8%.
We have a molecule of carbon dioxide. In a reaction between carbon and excess oxygen to form a molecule of carbon dioxide. The reaction [tex]C + O_2 →CO_2[/tex]
Mass of carbon use in reaction =3.74 g
Mass of carbon dioxide that recover
=11.34 g
We have to determine the mass of carbon dioxide. Molar mass of Carbon dioxide= 44.01 g/mol
From the reaction, the one mole of carbon and one mole of oxygen reacts and form one mole of carbon dioxide molecule.
Mass of carbon dioxide = molar mass of carbon dioxide × moles of carbon dioxide
= 44.01 g/mol × 1 mole
= 44.01 g
Now, the maximum recent yield = [tex]\frac{ 11.34}{44.01} [/tex]
= 0.258
Percentage of yield = 25.8%. Hence, required value is 25.8%.
For more information about percent yield, visit:
https://brainly.com/question/14714924
#SPJ4
Half reaction for conversion of sulphite to sulfate
Overall, this reaction is important in environmental chemistry as it can be used to remove sulphites from water and other solutions.
The half reaction for the conversion of sulphite to sulfate involves the transfer of two electrons and two hydrogen ions. The half reaction can be represented as follows:
[tex]SO_3^{2-} + 2H^+ + 2e^- -- > SO_4^{2-}[/tex]
This half reaction shows that sulphite ([tex]SO_3^{2-}[/tex]) is oxidized to sulfate ([tex]SO_4^{2-}[/tex]) by losing two electrons and two hydrogen ions. This process can occur in the presence of an oxidizing agent, such as hydrogen peroxide or chlorine. The sulfate ion is the final product of the reaction and the sulfur dioxide molecule is released as a gas into the atmosphere.
To learn more about sulfate click here https://brainly.com/question/4117459
#SPJ11
How did the infrared spectrum of your product demonstrate that aspirin had been synthesized? - What evidence would you expect to see of unreacted salicylic acid? What evidence would you expect to see of unreacted acetic anhydride? - What evidence would you expect to see of acetylsalicylic acid (aspirin)? - Which species did you observe?
Based on their ability to absorb infrared light, chemical compounds may be recognised and described using infrared spectrum and infrared spectroscopy, a potent analytical technique.
IR spectroscopy may be used to validate the creation of acetylsalicylic acid (aspirin) and find any unreacted starting materials (salicylic acid and acetic anhydride) in the aspirin manufacturing process.
The characteristic salicylic acid absorption bands, which include a broad and strong peak in the 3300-2500 cm-1 range due to the O-H stretching vibration and a sharp peak at about 1700 cm-1 due to the C=O stretching vibration of the carboxylic acid group, would be visible in the IR spectrum as evidence of unreacted salicylic acid. Consequently, by contrasting the product's IR spectrum with other IR spectra.
Learn more about infrared spectrum visit: brainly.com/question/14783701
#SPJ4
Which tool likely made these marks?
hammer
file
saw
O screwdriver
Answer: Saw
Explanation:
Pretty obvious
Answer:
Which tool likely made these marks?
O hammer
O file
O sawO screwdriver
Explanation:
You're welcome.
2. A new alloy of steel is 525 g at 100°C. It is dropped into 375 grams of water at 25 °C. The final temperature changes to 55°C, what is the specific heat of steel?
Answer:
The specific heat of the steel can be calculated using the formula:
Q = mcΔT
where Q is the heat transferred, m is the mass of the steel, c is the specific heat of the steel, and ΔT is the change in temperature.
First, calculate the heat transferred from the steel to the water:
Qsteel = mcΔT = (525 g)(c)(100 °C - 55 °C) = 27675c J
Next, calculate the heat transferred from the water to the steel:
Qwater = mcΔT = (375 g)(4.184 J/g. °C)(55 °C - 25 °C) = 50202 J
Since the heat lost by the steel is equal to the heat gained by the water:
Qsteel = Qwater
27675c J = 50202 J
c = 1.81 J/g. °C
Therefore, the specific heat of the steel is 1.81 J/g. °C.
Explanation:
In a single covalent bond, _____total electrons are shared (please enter the number of shared electrons).
In a single covalent bond, two total electrons are shared.
Two total electrons are shared by one covalent bond. One pair of electrons are shared by two atoms in a single covalent connection.
In order to create a stable electron configuration for both atoms, each atom contributes one electron to create a shared pair.
A single covalent bond involves the sharing of one pair of electrons between two atoms.
Common examples of this kind of link between two nonmetals include the bond between the two hydrogen atoms in a molecule of H2 or the bond between the carbon and oxygen atoms in a molecule of CO.
For such more question on electrons:
https://brainly.com/question/371590
#SPJ11
what is the molarity of a solution that contains 32.00g sodium chlorid and 275g of water (i will give brainliest)
The molarity of the solution that contains 32.00 g of sodium chloride and 275 g of water is 1.994 M.
To calculate the molarity of a solution, we first need to determine the number of moles of the solute (sodium chloride, NaCl) and the volume of the solution (in liters).
Given; Mass of NaCl = 32.00 g
Mass of water = 275 g
Calculate the number of moles of NaCl.
To find the number of moles of NaCl, we can use its molar mass, which is the sum of the atomic masses of sodium (Na) and chlorine (Cl).
Molar mass of NaCl=Atomic mass of Na + Atomic mass of Cl
= 22.99 g/mol (for Na) + 35.45 g/mol (for Cl)
= 58.44 g/mol
Number of moles of NaCl = Mass of NaCl/Molar mass of NaCl
= 32.00 g / 58.44 g/mol
= 0.5477 mol
Now, we can convert the mass of water to volume in liters.
The mass of water needs to be converted to volume in liters in order to calculate the molarity of the solution. This can be done using the density of water, which is approximately 1 g/mL or 1 g/cm³.
Density of water= 1 g/mL or 1 g/cm³
Mass of water = 275 g
Volume of water = Mass of water/Density of water
= 275 g / 1 g/mL
= 275 mL (since 1 mL = 1 cm³)
Converting mL to L;
Volume of water = 275 mL / 1000 mL/L
= 0.275 L
Now, we can Calculate the molarity of the solution.
Molarity (M) is termed as the number of moles of solute per liter of solution.
Molarity (M) = Number of moles of solute/Volume of solution (in liters)
Plugging in the values;
Molarity (M) = 0.5477 mol / 0.275 L
= 1.994 M
To Know more about molarity here
https://brainly.com/question/8732513
#SPJ1
A solution from the stockroom has a concentration of 14 molarity. For use in a lab 3.5 liters of 2.3 molarity is needed. How many liters of the original solution
should be used?
The volume (in liters) of the the original solution that should be used is 0.578 Liter
How do i determine the volume that should be used?The volume of the original solution that should be used can be obtained as follow:
Molarity of original solution (M₁) = 14 MVolume of diluted solution (V₂) = 3.5 Liters Molarity of diluted solution (M₂) = 2.3 MVolume of original solution needed (V₁) =?Dilution equation is given as follow:
M₁V₁ = M₂V₂
Inputting the given parameters, we have:
14 × V₁ = 2.3 × 3.5
14 × V₁ = 8.05
Divide bioth sides by 14
V₁ = 8.05 / 14
V₁ = 0.578 Liter
Thus, from the above calculation, we can conclude that the volume of the original solution needed is 0.578 Liter
Learn more about volume:
https://brainly.com/question/24159217
#SPJ1
a tank contain 102 moles of gas. it has a pressure of 68 atm at a temperature of 316 K. calculate the volume of the tank in liters
Answer:
38.89302738712 litres
Explanation:
pv =nRT
V = nRT/p where R is the ideal gas constant R=8.314 J/mol·K
p in atm to p in pascal = x 101325
V = (102)(8.314)(316)/(68 x 101325)
V = 0.03889302739 m3
m3 to l = x 1000
0.03889302739 x 1000
V = 38.89302738712 litres
please mark my answer brainliest
g if you need to know the hydroxide ion concentration of an aqueous solution with legal ramifications, which method would be the best method to use to ensure accuracy without any reasonable doubt.
The best method to determine the hydroxide ion concentration of an aqueous solution with legal ramifications would be to use titration with a standardised acid solution.
Titration with a strong acid and a reliable indicator, followed by careful calculations, is the best method to determine hydroxide ion concentration. This method provides high accuracy and precision, allowing you to confidently determine the hydroxide ion concentration in the aqueous solution.This method is highly accurate and provides precise results. It involves adding the acid solution to the solution of unknown hydroxide ion concentration until the equivalence point is reached, which is indicated by a color change in the solution. The amount of acid solution used can then be used to calculate the hydroxide ion concentration of the original solution with high accuracy and without reasonable doubt.
Learn more about hydroxide ion concentration : https://brainly.com/question/28145224
#SPJ11
The half-life period of a zero order reaction, A ââ product is given by:
A. [A]âk[A]âk
B. 0.693k0.693k
C. [A]â2k[A]â2k
D. 2[A]âk
The correct answer is B. The half-life period of a zero order reaction is given by the equation 0.693/[A]k, where [A] is the initial concentration of the reactant and k is the rate constant for the reaction. This equation shows that the half-life period is independent of the initial concentration of the reactant, which is a characteristic of zero order reactions.
For a zero-order reaction, the half-life period is given by the following formula:
Half-life (t½) = [A₀] / 2k
Where:
- t½ is the half-life period
- [A₀] is the initial concentration of reactant A
- k is the rate constant for the reaction
So, the correct answer is:
D. 2[A]₀/k
Learn more about :
zero order reaction : brainly.com/question/30752435
#SPJ11
The hydrogen sulfite or bisulfite ion HS03 can act as either an acid or a base in water. Write two hydrolysis reactions for HSO,- (One acting as an acid and one as a base.
The hydrogen sulfite or bisulfite ion (HSO3-) can act as an acid or a base in water, depending on the solution's pH. When HSO3- is in an acidic solution, it can act as a base and accept a proton to form the sulfurous acid (H2SO3):
HSO3- + H3O+ → H2SO3 + H2O
In this reaction, the HSO3- ion accepts a proton (H+) from the hydronium ion (H3O+) to form the sulfurous acid (H2SO3). The reaction's forward direction can be driven by increasing the acidity of the solution or by adding more H3O+ ions.On the other hand, when HSO3- is in a basic solution, it can act as an acid and donate a proton to form the sulfite ion (SO32-):HSO3- + OH- → SO32- + H2O.In this reaction, the HSO3- ion donates a proton (H+) to the hydroxide ion (OH-) to form the sulfite ion (SO32-). The reaction's forward direction can be driven by increasing the solution's basicity or by adding more OH- ions.It is important to note that HSO3- is a weak acid, and its hydrolysis reaction can be influenced by various factors such as temperature, pressure, and the presence of other ions in the solution. Additionally, HSO3- is a sulfite ion that is commonly found in food and beverage products as a preservative. People who are sensitive to sulfites may experience allergic reactions after consuming foods or drinks that contain them.
Learn more about hydrogen here
https://brainly.com/question/24433860
#SPJ11
which statement is true? answer unselected the number of standard atomic orbitals is less than the number of hybrid atomic orbitals. unselected there is no connection between the number of standard atomic orbitals and the number of hybrid atomic orbitals. unselected the number of standard atomic orbitals is greater than the number of the hybrid atomic orbitals. unselected the number of hybrid atomic orbitals made equals the number of standard atomic orbitals used. unselected i don't know yet
The statement that is true is that the number of hybrid atomic orbitals made equals the number of standard atomic orbitals used. Hybridization is a process that involves the combination of atomic orbitals to form new hybrid orbitals. The number of hybrid orbitals formed is equal to the number of standard atomic orbitals used in the hybridization process. This is because the new hybrid orbitals are a combination of the original orbitals.
For example, in sp hybridization, one s orbital and one p orbital combine to form two sp hybrid orbitals. In this case, two standard atomic orbitals were used to form two hybrid orbitals. Similarly, in sp2 hybridization, one s orbital and two p orbitals combine to form three sp2 hybrid orbitals. In this case, three standard atomic orbitals were used to form three hybrid orbitals.
Therefore, it can be concluded that the number of standard atomic orbitals used in hybridization is directly related to the number of hybrid orbitals formed. This is an important concept in understanding the geometry and bonding of molecules, and is a fundamental concept in chemistry.
for more such questions on atomic orbitals
https://brainly.com/question/11457131
#SPJ11
true/false. An addition polymer is formed when two monomers containing bonds react in the presence of a(n) initiator.
True, An addition polymerization is a process in which monomers containing carbon-carbon double bonds (such as ethene) react with an initiator (such as a radical) to form a polymer with a long chain of repeating units.
In an addition polymerization, two monomers containing double or triple bonds react in the presence of an initiator, which helps initiate the reaction.
The initiator can break the double or triple bonds, allowing the monomers to form new single bonds and create a polymer chain.
Learn more about addition polymerization
brainly.com/question/27354910
#SPJ11