please show work thanks! a lot
Find the equation of the line tangent to f(x)=√x-7 at the point where x = 8.

Answers

Answer 1

The equation of the line tangent to the function f(x) = √(x - 7) at the point where x = 8 is y = (1/4)x - 3/2.

To find the equation of the tangent line, we need to determine the slope of the tangent at the given point. We can do this by taking the derivative of the function f(x) = √(x - 7) with respect to x.

Using the power rule for differentiation, we have:

f'(x) = 1/(2√(x - 7)) * 1

Evaluating the derivative at x = 8:

f'(8) = 1/(2√(8 - 7)) = 1/2

The slope of the tangent line is equal to the derivative evaluated at the point of tangency. So, the slope of the tangent line is 1/2.

Now, we can use the point-slope form of a line to find the equation of the tangent line. Given the point (8, f(8)) = (8, √(8 - 7)) = (8, 1), and the slope 1/2, the equation of the tangent line can be written as:

y - y₁ = m(x - x₁)

Substituting the values, we have:

y - 1 = (1/2)(x - 8)

Simplifying the equation, we get:

y = (1/2)x - 4 + 1

y = (1/2)x - 3/2

Therefore, the equation of the line tangent to f(x) = √(x - 7) at the point where x = 8 is y = (1/2)x - 3/2.

Learn more about equation of a tangent line :

https://brainly.com/question/6617153

#SPJ11


Related Questions

valuate the definite integral below. [, (+5x – 5) de Enter your answer in exact form or rounded to two decimal places. Use integration by substitution to solve the integral below. Use C for the constant of integration. -5(In()) 1-30 di Find the following indefinite integral. (53 +8/7) de

Answers

The indefinite integral of (53 + 8/7) dx is (53 + 8/7)x + C. To evaluate the definite integral ∫[(+5x – 5) dx] over the interval [a, b], we need to substitute the limits of integration into the antiderivative and calculate the difference.

Let's find the antiderivative of the integrand (+5x – 5):

∫[(+5x – 5) dx] =[tex](5/2)x^2 - 5x + C[/tex]

Now, let's substitute the limits of integration [a, b] into the antiderivative:

∫[(+5x – 5) dx] evaluated from a to b =[tex][(5/2)b^2 - 5b] - [(5/2)a^2 - 5a][/tex]

=[tex](5/2)b^2 - 5b - (5/2)a^2 + 5a[/tex]

Therefore, the value of the definite integral ∫[(+5x – 5) dx] over the interval [a, b] is [tex](5/2)b^2 - 5b - (5/2)a^2 + 5a.[/tex]

To solve the integral ∫[-5(ln(x))] dx using integration by substitution, let's perform the substitution u = ln(x).

Taking the derivative of u with respect to x, we have:

[tex]du/dx = 1/x[/tex]

Rearranging, we get dx = x du.

Substituting these into the integral, we have:

∫[-5(ln(x))] dx = ∫[-5u] (x du) = -5 ∫u du [tex]= -5(u^2/2) + C = -5(ln^2(x)/2) + C[/tex]

Therefore, the indefinite integral of -5(ln(x)) dx is [tex]-5(ln^2(x)/2) + C.[/tex]

The indefinite integral of (53 + 8/7) dx can be evaluated as follows:

∫[(53 + 8/7) dx] = 53x + (8/7)x + C = (53 + 8/7)x + C

Therefore, the indefinite integral of (53 + 8/7) dx is (53 + 8/7)x + C.

Learn more about integral here:

https://brainly.com/question/30772555

#SPJ11

Show that the following series diverges. Which condition of the Alternating Series Test is not satisfied? 00 1 2 3 4 =+...= 9 Σ (-1)* +1, k 2k + 1 3 5 k=1 Let ak 20 represent the magnitude of the terms of the given series. Identify and describe ak. Select the correct choice below and fill in any answer box in your choice. A. ak = is an increasing function for all k. B. ak = is a decreasing function for all k. C. ak = and for any index N, there are some values of k>N for which ak +12 ak and some values of k>N for which ak+1 ≤ak. Evaluate lim ak lim ak k-00 Which condition of the Alternating Series Test is not satisfied? A. The terms of the series are not nonincreasing in magnitude. B. The terms of the series are nonincreasing in magnitude and lim ak = 0. k→[infinity]o O C. lim ak #0 k→[infinity]o

Answers

The condition of the Alternating Series Test that is not satisfied is A. The terms of the series are not nonincreasing in magnitude.

To show that the given series diverges and determine which condition of the Alternating Series Test is not satisfied, let's analyze the series and its terms.

The series is represented by Σ((-1)^(k+1) / (2k + 1)), where k ranges from 1 to 9. The terms of the series can be denoted as ak = |((-1)^(k+1) / (2k + 1))|.

To identify the behavior of ak, we observe that as k increases, the denominator (2k + 1) becomes larger, while the numerator (-1)^(k+1) alternates between -1 and 1. Therefore, ak is a decreasing function for all k. This eliminates options A and C.

To determine which condition of the Alternating Series Test is not satisfied, we evaluate the limit as k approaches infinity: lim(k→∞) ak. As k increases without bound, the magnitude of the terms ak approaches 0 (since ak is decreasing), satisfying the condition lim(k→∞) ak = 0.

Hence, the condition that is not satisfied is A. . Since ak is a decreasing function, the terms are indeed nonincreasing. Therefore, the main answer is that the condition not satisfied is A.

To know more about Alternating Series Test , refer here :

https://brainly.com/question/30400869#

#SPJ11

Write an exponential function that models the data shown in the table.

x f(x)

0 23

1 103

2 503

3 2503

Answers

Answer:

  f(x) = 20(5^x) +3   (read the comment)

Step-by-step explanation:

You want an exponential function f(x) that models the data (x, f(x)) = (0, 23), (1, 103), (2, 503), (3, 2503).

Exponential function

Except for the apparently added value of 3 with every term, the terms have a common ratio of 5. After subtracting 3, the first term (for x=0) has a value of 20. This is the multiplier.

The exponential function is ...

  f(x) = 20(5^x) +3

__

Additional comment

We see numerous questions on Brainly where the exponent (or denominator) of a number appears to be an appended digit. The "3" at the end of each of the numbers here suggests it might not actually be the least significant digit of the number, but might represent something else.

If the sequence of f(x) values is supposed to be 2/3, 10/3, 50/3, ..., then the exponential function will be ...

  f(x) = 2/3(5^x)

This makes more sense in terms of the kinds of exponential functions we usually see in algebra problems. However, there is nothing in this problem statement to support that interpretation.

<95141404393>

which of the following will reduce the width of a confidence interval, therby making it more informative?
a-increasing standard error
b-decreasing sample size
c-decreasing confidence level
d-increasing confidence level

Answers

The option that will reduce the width of a confidence interval, thereby making it more informative is d- increasing confidence level.

A confidence interval is a statistical term used to express the degree of uncertainty surrounding a sample population parameter.

It is an estimated range that communicates how precisely we predict the true parameter to be found.

A 95 percent confidence interval, for example, implies that the underlying parameter is likely to fall between two values 95 percent of the time.

Larger confidence intervals suggest that we have less information and are less confident in our conclusions. Alternatively, a narrower confidence interval indicates that we have more information and are more confident in our conclusions.

Standard error is an important statistical concept that measures the accuracy with which a sample mean reflects the population mean.

Standard errors are used to calculate confidence intervals. The formula for standard error depends on the population standard deviation and the sample size. As the sample size grows, the standard error decreases, indicating that the sample mean is increasingly close to the true population mean.

Sample size refers to the number of observations in a statistical sample. It is critical in determining the accuracy of sample estimates and the significance of hypotheses testing.

The sample size must be large enough to generate representative data, but it must also be small enough to keep the study cost-effective. A smaller sample size, in general, means less precise results.

It is important to note that the width of a confidence interval is influenced by sample size, standard error, and the desired level of confidence. By increasing the confidence level, the width of the confidence interval will be reduced, which will make it more informative.

To know more about confidence interval, visit:

https://brainly.com/question/32278466

#SPJ11

True or False: The transition to ICD-10 from ICD-9 occurred more than 20 years after ICD-10 was finalized by the WH

Answers

While the WHO finalized ICD-10 in 1990, the specific timing of the transition from ICD-9 to ICD-10 varied across different countries and healthcare systems.

What is International Classification of Diseases?

In order to communicate diseases, symptoms, aberrant findings, and other components of a patient's diagnosis in a way that is widely recognised by people in the medical and insurance industries, healthcare professionals use the International Classification of Diseases (ICD) codes. ICD-10 is the name of the most recent edition, which is the tenth.

The World Health Organization (WHO) indeed finalized the ICD-10 (International Classification of Diseases, 10th Edition) in 1990. However, the transition from the previous version, ICD-9, to ICD-10 varied across different countries and healthcare systems.

In the US, for example, the transition to ICD-10 took place on October 1, 2015. This means that healthcare providers, insurers, and other entities in the US started using the ICD-10 codes for diagnoses and procedures from that date onwards. Therefore, in the context of the US, the transition to ICD-10 occurred more than 20 years after its finalization by the WHO.

However, it's important to note that other countries may have implemented ICD-10 at different times. The timing of adoption and implementation varied globally, and some countries may have transitioned to ICD-10 earlier or later than others.

In summary, while the WHO finalized ICD-10 in 1990, the specific timing of the transition from ICD-9 to ICD-10 varied across different countries and healthcare systems.

Learn more about ICD-10 on:

https://brainly.com/question/2473620

#SPJ4

Find the area of the triangle.

Answers

Answer:

A = 36 m2

Step-by-step explanation:

[tex]b=3+6=9m[/tex]

[tex]h=8m[/tex]

[tex]A=\frac{bh}{2}[/tex]

[tex]A=\frac{(9)(8)}{2} =\frac{72}{2}[/tex]

[tex]A=36m^{2}[/tex]

Hope this helps.

let (wn) be the sequence of waiting time in a poisson process of internsity lamda = 1. show that xn = 2^n exp{-wn} defines a nonnegative martingale}

Answers

The sequence xn = 2ⁿexp{-wn}  defines a nonnegative martingale. It is based on the waiting time sequence wn in a Poisson process with intensity lambda = 1.

To show that xn = 2ⁿexp{-wn} defines a nonnegative martingale, we need to demonstrate two properties: nonnegativity and the martingale property.

First, let's establish the nonnegativity property. Since wn represents the waiting time sequence in a Poisson process, it is always nonnegative. Additionally, 2ⁿ is also nonnegative for any positive integer n. The exponential function exp{-wn} is nonnegative as well since the waiting time is nonnegative. Therefore, the product of these nonnegative terms, xn = 2ⁿexp{-wn}, is also nonnegative.

Next, we need to verify the martingale property. A martingale is a stochastic process with the property that the expected value of its next value, given the current information, is equal to its current value. In this case, we want to show that E[xn+1 | x1, x2, ..., xn] = xn.

To prove the martingale property, we can use the properties of the Poisson process. The waiting time wn follows an exponential distribution with mean 1/lambda = 1/1 = 1. Therefore, the conditional expectation of exp{-wn} given x1, x2, ..., xn is equal to exp{-1}, which is a constant.

Using this result, we can calculate the conditional expectation of xn+1 as follows:

E[xn+1 | x1, x2, ..., xn] = 2^(n+1) exp{-1} = 2ⁿexp{-1} = xn.

Since the conditional expectation of xn+1 is equal to xn, the sequence xn = 2ⁿ exp{-wn} satisfies the martingale property. Therefore, it defines a nonnegative martingale.

Learn more about integer here: https://brainly.com/question/199119

#SPJ11

suppose a researcher is testing the hypothesis h0: p=0.3 versus h1: p ≠ 0.3 and she finds the p-value to be 0.23. explain what this means. would she reject the null hypothesis? why?
Choose the correct explanation below. A. If the P-value for a particular test statistic is 0.23, she expects results at least as extreme as the test statistic in about 23 of 100 samples if the null hypothesis is true B. If the P-value for a particular test statistic is 0.23, she expects results no more extreme than the test statistic in exactly 23 of 100 samples if the null hypothesis is true. C. If the P-value for a particular test statistic is 0.23, she expects results at least as extreme as the test statistic in exactly 23 of 100 samples if the null hypothesis is true. D. If the P-value for a particular test statistic is 0.23, she expects results no more extreme than the test statistic in about 23 of 100 samples if the null hypothesis is true Choose the correct conclusion below A. Since this event is unusual, she will reject the null hypothesis. B. Since this event is not unusual, she will reject the null hypothesis C. Since this event is unusual, she will not reject the null hypothesis D. Since this event is not unusual, she will not reject the null hypothesis.

Answers

The correct explanation for the p-value of 0.23 is option A.

The correct conclusion is option D.

The p-value represents the probability of obtaining results as extreme or more extreme than the observed test statistic, assuming that the null hypothesis is true. In this case, the p-value of 0.23 suggests that if the null hypothesis is true (p = 0.3), there is a 23% chance of observing results as extreme as the test statistic or more extreme in repeated sampling.

The correct conclusion is option D: "Since this event is not unusual, she will not reject the null hypothesis." When conducting hypothesis testing, a common criterion is to compare the p-value to a predetermined significance level (usually denoted as α). If the p-value is greater than the significance level, it indicates that the observed results are not sufficiently unlikely under the null hypothesis, and therefore, there is insufficient evidence to reject the null hypothesis. In this case, with a p-value of 0.23, which is greater than the commonly used significance level of 0.05, the researcher would not reject the null hypothesis.

Learn more about probability here:

https://brainly.com/question/32004014

#SPJ11








Find The volume of The sold obtained by rotating The region bounded by the graphs of y = 16-xi y = 3x + 12,x=-1 about The x-axis

Answers

The volume of the solid obtained is (960π/7) cubic units.

What is the volume of the solid formed?

The given region is bounded by the graphs of y = 16 - x² and y = 3x + 12, along with the line x = -1. To find the volume of the solid obtained by rotating this region about the x-axis, we can use the method of cylindrical shells.

We integrate along the x-axis from the point of intersection between the two curves (which can be found by setting them equal to each other) to x = -1.

For each infinitesimally thin strip of width dx, the circumference of the shell is given by 2πx, and the height is the difference between the two curves, (16 - x²) - (3x + 12).

The integral for the volume is:

V=∫-4−1 2πx[(16−x² )−(3x+12)]dx

Simplifying and evaluating the integral gives the volume V = (960π/7) cubic units.

Learn more about volume of the solid

brainly.com/question/29159668

#SPJ11

a complex number is plotted on the complex plane (horizontal real axis, vertical imaginary axis). write the number in trigonometric form, using where is in degrees.

Answers

When a complex number is plotted on the complex plane, it is represented by a point in the two-dimensional plane with the horizontal axis representing the real part and the vertical axis representing the imaginary part.

To write the number in trigonometric form, we first need to find the modulus, which is the distance between the origin and the point representing the complex number. We can use the Pythagorean theorem to find the modulus. Once we have the modulus, we can find the argument, which is the angle that the line connecting the origin to the point representing the complex number makes with the positive real axis. We can use the inverse tangent function to find the argument in radians and then convert it to degrees. Finally, we can write the complex number in trigonometric form as r(cos(theta) + i sin(theta)), where r is the modulus and theta is the argument. By using this method, we can represent complex numbers in a way that makes it easy to perform arithmetic operations and understand their geometric properties.

To learn more about complex number , visit:

https://brainly.com/question/12668393

#SPJ11

Find the rejection region for a
1.) two tailed test at 10% level of significance
H, :μά μο, α= 0.01 a

Answers

The rejection region for a two-tailed test at a 10% level of significance can be found by dividing the significance level (0.10) equally between the two tails of the distribution. The critical values for rejection are determined based on the distribution associated with the test statistic and the degrees of freedom.

In a two-tailed test, we are interested in detecting if the population mean differs significantly from a hypothesized value in either direction. To find the rejection region, we need to determine the critical values that define the boundaries for rejection.

Since the significance level is 10%, we divide it equally between the two tails, resulting in a 5% significance level in each tail. Next, we consult the appropriate statistical table or use statistical software to find the critical values associated with a 5% significance level and the degrees of freedom of the test.

The critical values represent the boundaries beyond which we reject the null hypothesis. In a two-tailed test, we reject the null hypothesis if the test statistic falls outside the critical values in either tail. The rejection region consists of the values that lead to rejection of the null hypothesis.

By determining the critical values and defining the rejection region, we can make decisions regarding the null hypothesis based on the observed test statistic.

Learn more about null hypothesis  here:

https://brainly.com/question/19263925

#SPJ11


Find an equation of the plane.
The plane through the origin and the points (3, −4, 6) and (6,
1, 4)

Answers

The equation of the plane passing through the origin and the points (3, -4, 6) and (6, 1, 4) is: 3x + 18y + 12z = 0.

What is the equation of the plane?

Assuming a plane can be defined by a normal vector and a point on a plane;

Let's find the normal vector on the plane.

Taking the cross product of the two plane

Vector AB = (3, -4, 6) - (0, 0, 0) = (3, -4, 6)

Vector AC = (6, 1, 4) - (0, 0, 0) = (6, 1, 4)

Normal vector = AB × AC = (3, -4, 6) × (6, 1, 4)

Using determinant method, the cross product is;

i   j   k

3  -4   6

6   1   4

Evaluating this;

i(4 - 1) - j(6 - 24) + k(18 - 6)

= 3i - (-18j) + 12k

= 3i + 18j + 12k

The normal vector on the plane is calculated as; (3, 18, 12).

Using the normal vector and the point that lies on the plane, the equation of the plane can be calculated as;

The general form of an equation on a plane is Ax + Bx + Cz = D

Plugging the values

3x + 18y + 12z = D

Substituting (0, 0, 0) into the equation above and solve for D;

3(0) + 18(0) + 12(0) = D

D = 0

The equation of the plane is 3x + 18y + 12z = 0

learn more on equation of a plane here;

https://brainly.com/question/30655803

#SPJ1

11. Find the absolute maximum and the absolute minimum, if exists, for each function, 5x3-6x4 A) f(x) = 5x3 – 6x4 B) f(x) = 5x **** 5x - 6x4 5-6x - 5 2+1 4

Answers

The function A) f(x) = 5x^3 – 6x^4 has no absolute maximum or minimum because it is a fourth-degree polynomial with a negative leading coefficient.

In detail, to find the absolute maximum and minimum values of a function, we need to analyze its critical points, endpoints, and behavior at infinity. However, for the function f(x) = 5x^3 – 6x^4, it is evident that as x approaches positive or negative infinity, the value of the function becomes increasingly negative. This indicates that the function has no absolute maximum or minimum.

The graph of f(x) = 5x^3 – 6x^4 is a downward-opening curve that gradually approaches negative infinity. It does not have any peaks or valleys where it reaches a maximum or minimum value.

Consequently, we conclude that this function does not possess an absolute maximum or minimum.

Learn more about fourth-degree polynomial:

https://brainly.com/question/25827330

#SPJ11

(6) Use cylindrical coordinates to evaluate JJ xyz dv E where E is the solid in the first octant that lies under the paraboloid z = 4-x² - y². (7) Suppose the region E is given by {(x, y, z) | √√x² + y² ≤ z ≤ √√4 − x² - y²} Evaluate ²0 x² dV (Hint: this is probably best done using spherical coordinates)

Answers

To evaluate JJxyz dv E using cylindrical coordinates, we first need to express the limits of integration in cylindrical coordinates. The equation of the paraboloid is given by z = 4 - x² - y².

In cylindrical coordinates, this becomes z = 4 - r²cos²θ - r²sin²θ = 4 - r². Thus, the limits of integration become:

0 ≤ θ ≤ π/2

0 ≤ r ≤ √(4 - r²)

The Jacobian for cylindrical coordinates is r, so we have:

JJxyz dv E = ∫∫∫E E rdrdθdz

= ∫₀^(π/2) ∫₀^√(4-r²) ∫₀^(4-r²) r dzdrdθ

= ∫₀^(π/2) ∫₀^√(4-r²) r(4-r²)drdθ

= ∫₀^(π/2) [-1/2(4-r²)²]₀^√(4-r²)dθ

= ∫₀^(π/2) [-(4-2r²)(2-r²)/2]dθ

= ∫₀^(π/2) [(r⁴-4r²+4)/2]dθ

= [r⁴θ/4 - 2r²θ/2 + 2θ/2]₀^(π/2)

= π/8

Thus, JJxyz dv E = π/8.

To evaluate ²0 x² dV using spherical coordinates, we first need to express x in terms of spherical coordinates. We have:

x = rsinφcosθ

The limits of integration become:

0 ≤ θ ≤ 2π

0 ≤ φ ≤ π/4

0 ≤ r ≤ 2cosφ

The Jacobian for spherical coordinates is r²sinφ, so we have:

²0 x² dV = ∫∫∫E x²sinφdφdθdr

= ∫₀^(2π) ∫₀^(π/4) ∫₀^(2cosφ) r⁴sin³φcos²φsinφdrdφdθ

= ∫₀^(2π) ∫₀^(π/4) [-1/5cos⁵φ]₀^(2cosφ) dφdθ

= ∫₀^(2π) [-32/15 - 32/15]dθ

= -64/15

Thus, ²0 x² dV = -64/15.

To know more about limits of integration refer here:

https://brainly.com/question/31994684#

#SPJ11

If g(1) = -4, g(5) = -4, and ¹ [*9(x) dx = g(x) dx = -7, evaluate the integral 15₁²29 xg'(x) dx.

Answers

The value of the integral 15₁²²⁹ xg'(x) dx is -90. First, let's use the given information to find g(x). We know that g(1) = -4 and g(5) = -4, so g(x) must be a constant function that is equal to -4 for all values of x between 1 and 5 (inclusive).



Next, we are given that ¹ [*9(x) dx = g(x) dx = -7. This tells us that the integral of 9(x) from 1 to 5 is equal to -7. We can use this information to find the value of the constant of integration in g(x).

∫ 9(x) dx = [4.5(x^2)]_1^5 = 20.25 - 4.5 = 15.75

Since g(x) = -4 for all values of x between 1 and 5, we know that the integral of g'(x) from 1 to 5 is equal to g(5) - g(1) = -4 - (-4) = 0.

Now we can use the given integral to find the answer.

∫ 15₁²²⁹ xg'(x) dx = 15 ∫ 1²⁹  xg'(x) dx - 15 ∫ 1¹⁵ xg'(x) dx

Since g'(x) = 0 for all values of x between 1 and 5, we can split the integral into two parts:

= 15 ∫ 1⁵ xg'(x) dx + 15 ∫ 5²⁹ xg'(x) dx

The first integral is equal to zero (since g'(x) = 0 for x between 1 and 5), so we can ignore it and focus on the second integral.

= 15 ∫ 5²⁹ xg'(x) dx

= 15 [xg(x)]_5²⁹ - 15 ∫ 5²⁹ g(x) dx

= 15 [5(-4) - 29(-4)] - 15 [-4(29 - 5)]

= -90

Learn more about function here:

brainly.com/question/31062578

#SPJ11

please help asap
15. [0/5 Points] DETAILS PREVIOUS ANSWERS LARCALCET7 5.7.069. MY NOTES ASK YOUR TEACHER Find the area of the region bounded by the graphs of the equations. Use a graphing utility to verify your result

Answers

The area of the region bounded by the graphs of y = 4 sec(x) + 6, x = 0, x = 2, and y = 0 is approximately 16.404 square units.

To find the area of the region bounded by the graphs of y = 4 sec(x) + 6, x = 0, x = 2, and y = 0, we need to evaluate the integral of the function over the specified interval.

The integral representing the area is:

A = ∫[0,2] (4 sec(x) + 6) dx

We can simplify this integral by distributing the integrand:

A = ∫[0,2] 4 sec(x) dx + ∫[0,2] 6 dx

The integral of 6 with respect to x over the interval [0,2] is simply 6 times the length of the interval:

A = ∫[0,2] 4 sec(x) dx + 6x ∣[0,2]

Next, we need to evaluate the integral of 4 sec(x) with respect to x. This integral is commonly evaluated using logarithmic identities:

A = 4 ln|sec(x) + tan(x)| ∣[0,2] + 6x ∣[0,2]

Now we substitute the limits of integration:

A = 4 ln|sec(2) + tan(2)| - 4 ln|sec(0) + tan(0)| + 6(2) - 6(0)

Since sec(0) = 1 and tan(0) = 0, the second term in the expression evaluates to zero:

A = 4 ln|sec(2) + tan(2)| + 12

Using a graphing utility or calculator, we can approximate the value of ln|sec(2) + tan(2)| as approximately 1.351.

Therefore, the area of the region bounded by the given graphs is approximately:

A ≈ 4(1.351) + 12 ≈ 16.404 square units.

learn more about area here:

https://brainly.com/question/32329571

#SPJ4

The complete question is:

Calculate the area of the region enclosed by the curves defined by the equations y = 4 sec(x) + 6, x = 0, x = 2, and y = 0, and verify the result using a graphing tool.

(1 point) The planes 5x + 3y + 5z = -19 and 2z - 5y = 17 are not parallel, so they must intersect along a line that is common to both of them. The parametric equations for this line are: Answer: (x(t)

Answers

The parametric equations for the line of intersection are:

x(t) = (-57/10) - (31/10)t, y(t) = t, z(t) = (5/2)t + 17/2, where the parameter t can take any real value.

To find the parametric equations for the line of intersection between the planes, we can solve the system of equations formed by the two planes:

Plane 1: 5x + 3y + 5z = -19 ...(1)

Plane 2: 2z - 5y = 17 ...(2)

To begin, let's solve Equation (2) for z in terms of y:

2z - 5y = 17

2z = 5y + 17

z = (5/2)y + 17/2

Now, we can substitute this expression for z in Equation (1):

5x + 3y + 5((5/2)y + 17/2) = -19

5x + 3y + (25/2)y + (85/2) = -19

5x + (31/2)y + 85/2 = -19

5x + (31/2)y = -19 - 85/2

5x + (31/2)y = -57/2

To obtain the parametric equations, we can choose a parameter t and express x and y in terms of it. Let's set t = y:

5x + (31/2)t = -57/2

Now, we can solve for x:

5x = (-57/2) - (31/2)t

x = (-57/10) - (31/10)t

Therefore, the parametric equations for the line of intersection are:

x(t) = (-57/10) - (31/10)t

y(t) = t

z(t) = (5/2)t + 17/2

The parameter t can take any real value, and it represents points on the line of intersection between the two planes.

To know more about parametric equations, visit the link : https://brainly.com/question/30451972

#SPJ11

Find an equation in Cartesian form (that is, in terms of (×, y, 2) coordinates) of
the plane that passes through the point (2, y, 2) = (1, 1, 1) and is normal to the
vector v = 3i + 2j + k.

Answers

To find an equation in Cartesian form of a plane passing through a given point and with a normal vector, we can use the point-normal form of the equation.

The equation of a plane in Cartesian form can be expressed as Ax + By + Cz = D, where (x, y, z) are the coordinates of any point on the plane, and A, B, C are the coefficients of the variables x, y, and z, respectively.

To find the coefficients A, B, C and the constant D, we can use the point-normal form of the equation.

In this case, the given point on the plane is (2, y, 2) = (1, 1, 1), and the normal vector is v = (3, 2, 1). Applying the point-normal form, we have:

(3, 2, 1) dot ((x, y, z) - (2, y, 2)) = 0

Expanding and simplifying the dot product, we get:

3(x - 2) + 2(y - y) + (z - 2) = 0

Simplifying further, we have:

3x - 6 + z - 2 = 0

Combining like terms, we obtain the equation of the plane in Cartesian form:

3x + z = 8

Therefore, the equation in Cartesian form of the plane passing through the point (2, y, 2) = (1, 1, 1) and with a normal vector v = 3i + 2j + k = (3, 2, 1) is 3x + z = 8.

Learn more about Cartesian here:

https://brainly.com/question/28986301

#SPJ11

Find all values of a, b, and c for which A is symmetric. -1 a – 2b + 2C 2a + b + c A = -4 -1 a + c 5 -5 -3 a = i -14 b= i C= Use the symbol t as a parameter if needed.

Answers

To determine the values of a, b, and c for which matrix A is symmetric, we need to equate the elements of A to their corresponding transposed elements. Let's set up the equations:

-1a - 2b + 2c = -4 (1) -1a + c = -1 (2) 2a + b + c = 5 (3) -5a - 3b = i (4) -14b = i (5)

From equation (5), we have: b = -i/14

Substituting this value of b into equation (4): -5a - 3(-i/14) = i -5a + 3i/14 = i

To eliminate the complex term, we can equate the real and imaginary parts separately: Real Part: -5a = 0 => a = 0 Imaginary Part: 3i/14 = i

By comparing the coefficients, we find: 3/14 = 1

This is not possible, so there are no values of a, b, and c for which matrix A is symmetric

Learn more about matrix here : brainly.com/question/29132693

#SPJ11

can you answer all questions show the answer clearly
please
thank you
Question 5 Not yet answered Marked out of 5.00 P Flag question Using the root test, which series converges? Select one: O A. -IC1+)21 + 1=n-4 O B. Σ=1 (n+1)" 4(n+1) O C. None of the choices. D. ("#29

Answers

The series that converges using the root test is B. Σ=1 (n+1)" 4(n+1).

The root test is a method used to determine the convergence or divergence of a series by considering the limit of the nth root of the absolute value of its terms. For a series Σ aₙ, the root test states that if the limit of the absolute value of the nth root of aₙ as n approaches infinity is less than 1, the series converges.

In the given options, we can apply the root test to each series and determine their convergence.

For option A, -IC1+)21 + 1=n-4, the limit of the nth root of the absolute value of its terms does not approach a finite value as n approaches infinity. Therefore, we cannot conclude its convergence or divergence using the root test.

For option B, Σ=1 (n+1)" 4(n+1), we can apply the root test. Taking the limit of the nth root of the absolute value of its terms, we get a limit of (n+1)^(4/ (n+1)). As n approaches infinity, this limit simplifies to 1. Since the limit is less than 1, the series converges.

Therefore, the correct answer is B. Σ=1 (n+1)" 4(n+1).

To learn more about series click here: brainly.com/question/31583448

#SPJ11

A pond contains 2400 L of pure water and an uknown amount of an undesirable chemical Water containinig 0.04 kg of this chemical per ter flows into the pond at a rate of 6 L/h. The modure flows out at the same rate, so the amount of water in the pond remains constant. Assume that the chemical is uniformly distributed throughout the pond Let Q(t) be the amount of chemical (in kg) in the pond at time thours (a) Write a differential equation for the amount of chemical in the pond? at any time time (enter for Q() dQ di (b) How much chemical will be in the pond after a long time? 200- (kg) (c) Does the limiting value in part (b) depend on the amount that was present initially?? 4

Answers

The differential equation for the amount of chemical in the pond is [tex]\frac{dQ}{dt}=(0.04\frac{kg}{L})\times(6\frac{L}{h})-(\frac{Q(t)}{2400L})\times(6\frac{L}{h})[/tex]. After a long time, the pond will contain 200 kg of chemical. The limiting value in part (b) does not depend on the amount of chemical present initially.

To write the differential equation for the amount of chemical in the pond, we consider the rate of change of the chemical in the pond over time. The chemical enters the pond at a rate of [tex]0.04\frac{kg}{L} \times 6\frac{L}{h}[/tex], and since the amount of water in the pond remains constant at 2400 L, the rate of chemical inflow is [tex]\frac{0.04\frac{kg}{L} \times 6\frac{L}{h}}{2400L \times 6\frac{L}{h}}[/tex]. The rate of change of the chemical in the pond is also influenced by the outflow, which is equal to the inflow rate. Therefore, we subtract [tex](\frac{Q(t)}{2400})\times6\frac{L}{h}[/tex] from the inflow rate.

Combining these terms, we have the differential equation [tex]\frac{dQ}{dt}=(0.04\frac{kg}{L})\times(6\frac{L}{h})-(\frac{Q(t)}{2400L})\times(6\frac{L}{h})[/tex]. After a long time, the pond will reach a steady state, where the inflow rate equals the outflow rate, and the amount of chemical in the pond remains constant. In this case, the limiting value of Q(t) will be [tex]0.04\frac{kg}{L} \times 6\frac{L}{h}\times t=200kg[/tex].

The limiting value in part (b), which is 200 kg, does not depend on the amount of chemical present initially. It only depends on the inflow rate and the volume of the pond, assuming a steady state has been reached.

Learn more about rate of change here:

https://brainly.com/question/29181502

#SPJ11

Let f(x, y) = 5x²y2 + 3x + 2y, then Vf(1,2) = 42i + 23j Select one OTrue False

Answers

The statement "Let f(x, y) = 5x²y2 + 3x + 2y, then Vf(1,2) = 42i + 23j " is False.

1. To find Vf(1,2), we need to compute the gradient of f(x, y) and evaluate it at the point (1, 2).

2. The gradient of f(x, y) is given by ∇f = (∂f/∂x)i + (∂f/∂y)j, where ∂f/∂x and ∂f/∂y are the partial derivatives of f with respect to x and y, respectively.

3. Taking the partial derivatives, we have ∂f/∂x = 10xy² + 3 and ∂f/∂y = 10x²y + 2.

4. Evaluating the partial derivatives at (1, 2), we get ∂f/∂x = 10(1)(2)² + 3 = 43 and ∂f/∂y = 10(1)²(2) + 2 = 22.

5. Therefore, Vf(1,2) = 43i + 22j, not 42i + 23j, making the statement False.

Learn more about gradient :

https://brainly.com/question/30249498

#SPJ11

1. Find the total amount of an investment of $6000 at 5.5% interest compounded continuously for 11 years.
2. Use the natural decay function, N(t) = N0e-kt, to find the decay constant for a substance that has a half-life of 1000 years. Then find how long it takes for there to be 12% of the substance left.

Answers

The total amount of the investment after 11 years is approximately $11,257.38. and it takes approximately 1732.49 years for there to be 12% of the substance left.

1. To find the total amount of an investment of $6000 at 5.5% interest compounded continuously for 11 years, we can use the formula for continuous compound interest:

A = P * e^(rt),

where A is the total amount, P is the principal (initial investment), e is the base of the natural logarithm, r is the interest rate, and t is the time in years.

In this case, P = $6000, r = 5.5% (or 0.055), and t = 11 years. Plugging these values into the formula, we have:

A = $6000 * e^(0.055 * 11).

Using a calculator or computer software, we can calculate the value of e^(0.055 * 11) to be approximately 1.87623.

Therefore, the total amount after 11 years is:

A = $6000 * 1.87623 ≈ $11,257.38.

So, the total amount of the investment after 11 years is approximately $11,257.38.

2. The natural decay function is given by N(t) = N0 * e^(-kt), where N(t) represents the amount of substance remaining at time t, N0 is the initial amount, e is the base of the natural logarithm, k is the decay constant, and t is the time.

We are given that the substance has a half-life of 1000 years. The half-life is the time it takes for the substance to decay to half of its original amount. In this case, N(t) = 0.5 * N0 when t = 1000 years.

Plugging these values into the natural decay function, we have:

0.5 * N0 = N0 * e^(-k * 1000).

Dividing both sides by N0, we get:

0.5 = e^(-k * 1000).

To find the decay constant k, we can take the natural logarithm (ln) of both sides:

ln(0.5) = -k * 1000.

Solving for k, we have:

k = -ln(0.5) / 1000.

Using a calculator or computer software, we can evaluate this expression to find the decay constant k ≈ 0.000693147.

Now, to find how long it takes for there to be 12% (0.12) of the substance remaining, we can substitute the values into the natural decay function:

0.12 * N0 = N0 * e^(-0.000693147 * t).

Dividing both sides by N0, we get:

0.12 = e^(-0.000693147 * t).

Taking the natural logarithm (ln) of both sides, we have:

ln(0.12) = -0.000693147 * t.

Solving for t, we find:

t = -ln(0.12) / 0.000693147.

Using a calculator or computer software, we can evaluate this expression to find t ≈ 1732.49 years.

Therefore, it takes approximately 1732.49 years for there to be 12% of the substance left.

To learn more about interest

https://brainly.com/question/28020457

#SPJ11

Differential Equation
y" + 4y = 0, t²-8t+16, t²-6t+4, t26 0≤t

Answers

The solution to the given differential equation y" + 4y = 0, is:

y(t) = (1/2)sin(2t) + 0(t^2 - 8t + 16) + 0*(t^2 - 6t + 4),

which simplifies to: y(t) = (1/2)*sin(2t).

The given differential equation is y" + 4y = 0. Let's solve this differential equation using the method of characteristic equations.

The characteristic equation corresponding to this differential equation is r^2 + 4 = 0.

Solving this quadratic equation, we get:

r^2 = -4

r = ±√(-4)

r = ±2i

The roots of the characteristic equation are complex conjugates, which means the general solution will have a combination of sine and cosine functions.

The general solution of the differential equation is given by:

y(t) = c1cos(2t) + c2sin(2t),

where c1 and c2 are arbitrary constants to be determined based on initial conditions.

Now, let's solve the initial value problem using the given conditions.

For t = 0, y = 0:

0 = c1cos(20) + c2sin(20)

0 = c1*1 + 0

c1 = 0

For t = 0, y' = 1:

1 = -2c1sin(20) + 2c2cos(20)

1 = 2c2

c2 = 1/2

Therefore, the particular solution satisfying the initial conditions is:

y(t) = (1/2)*sin(2t).

Now let's solve the given non-homogeneous differential equations:

For t^2 - 8t + 16:

Let's find the particular solution for this equation. Assume y(t) = A*(t^2 - 8t + 16), where A is a constant to be determined.

y'(t) = 2A*(t - 4)

y''(t) = 2A

Substituting these into the differential equation:

2A + 4A*(t^2 - 8t + 16) = 0

6A - 32A*t + 64A = 0

Comparing coefficients, we get:

6A = 0 => A = 0

So the particular solution for this equation is y(t) = 0.

For t^2 - 6t + 4:

Let's find the particular solution for this equation. Assume y(t) = B*(t^2 - 6t + 4), where B is a constant to be determined.

y'(t) = 2B*(t - 3)

y''(t) = 2B

Substituting these into the differential equation:

2B + 4B*(t^2 - 6t + 4) = 0

6B - 24B*t + 16B = 0

Comparing coefficients, we get:

6B = 0 => B = 0

So the particular solution for this equation is y(t) = 0.

In summary, the solution to the given differential equation y" + 4y = 0, along with the provided non-homogeneous equations, is:

y(t) = (1/2)sin(2t) + 0(t^2 - 8t + 16) + 0*(t^2 - 6t + 4),

which simplifies to:

y(t) = (1/2)*sin(2t).

To know more about non-homogeneous differential equations, visit the link : https://brainly.com/question/30876746

#SPJ11

Approximate the value of the definite integral using the Trapezoidal Rule and Simpson's Rule for the indicated value of n. Round your answers to three decimal places. 4 book 3 dx, n = 4 x² +7 (a) Trapezoidal Rule (b) Simpson's Rule

Answers

To approximate the value of the definite integral ∫[3 to 4] (x² + 7) dx using the Trapezoidal Rule and Simpson's Rule with n = 4, we divide the interval [3, 4] into four subintervals of equal width. using the Trapezoidal Rule with n = 4, the approximate value of the definite integral ∫[3 to 4] (x² + 7) dx is approximately 19.4685 and using Simpson's Rule with n = 4, the approximate value of the definite integral ∫[3 to 4] (x² + 7) dx is approximately 21.333 (rounded to three decimal places).

(a) Trapezoidal Rule:

In the Trapezoidal Rule, we approximate the integral by summing the areas of trapezoids formed by adjacent subintervals. The formula for the Trapezoidal Rule is:

∫[a to b] f(x) dx ≈ (b - a) / (2n) * [f(a) + 2f(x₁) + 2f(x₂) + ... + 2f(xₙ₋₁) + f(b)]

For n = 4, we have:

∫[3 to 4] (x² + 7) dx ≈ (4 - 3) / (2 * 4) * [f(3) + 2f(3.25) + 2f(3.5) + 2f(3.75) + f(4)]

First, let's calculate the values of f(x) at the given x-values:

f(3) = 3² + 7 = 16

f(3.25) = (3.25)² + 7 ≈ 17.06

f(3.5) = (3.5)² + 7 = 19.25

f(3.75) = (3.75)² + 7 ≈ 21.56

f(4) = 4² + 7 = 23

Now we can substitute these values into the Trapezoidal Rule formula:

∫[3 to 4] (x² + 7) dx ≈ (4 - 3) / (2 * 4) * [f(3) + 2f(3.25) + 2f(3.5) + 2f(3.75) + f(4)]

≈ (1/8) * [16 + 2(17.06) + 2(19.25) + 2(21.56) + 23]

Performing the calculation:

≈ (1/8) * [16 + 34.12 + 38.5 + 43.12 + 23]

≈ (1/8) * 155.74

≈ 19.4685

Therefore, using the Trapezoidal Rule with n = 4, the approximate value of the definite integral ∫[3 to 4] (x² + 7) dx is approximately 19.4685 (rounded to three decimal places).

(b) Simpson's Rule:

In Simpson's Rule, we approximate the integral using quadratic interpolations between three adjacent points. The formula for Simpson's Rule is:

∫[a to b] f(x) dx ≈ (b - a) / (3n) * [f(a) + 4f(x₁) + 2f(x₂) + 4f(x₃) + 2f(x₄) + ... + 4f(xₙ₋₁) + f(b)]

For n = 4, we have:

∫[3 to 4] (x² + 7) dx ≈ (4 - 3) / (3 * 4) * [f(3) + 4f(3.25) + 2f(3.5) + 4f(3.75) + 2f(4)]

Evaluate the function at each of the x-values and perform the calculation to obtain the approximation using Simpson's Rule.

To approximate the value of the definite integral ∫[3 to 4] (x² + 7) dx using Simpson's Rule with n = 4, we can evaluate the function at each of the x-values and perform the calculation. First, let's calculate the values of f(x) at the given x-values:

f(3) = 3² + 7 = 16

f(3.25) = (3.25)² + 7 ≈ 17.06

f(3.5) = (3.5)² + 7 = 19.25

f(3.75) = (3.75)² + 7 ≈ 21.56

f(4) = 4² + 7 = 23

Now we can substitute these values into the Simpson's Rule formula:

∫[3 to 4] (x² + 7) dx ≈ (4 - 3) / (3 * 4) * [f(3) + 4f(3.25) + 2f(3.5) + 4f(3.75) + 2f(4)]

≈ (1/12) * [16 + 4(17.06) + 2(19.25) + 4(21.56) + 2(23)]

Performing the calculation:

≈ (1/12) * [16 + 68.24 + 38.5 + 86.24 + 46]

≈ (1/12) * 255.98

≈ 21.333

Therefore, using Simpson's Rule with n = 4, the approximate value of the definite integral ∫[3 to 4] (x² + 7) dx is approximately 21.333 (rounded to three decimal places).

Learn more about definite integral here: https://brainly.com/question/28400852

#SPJ11

The rushing yards from one week for the top 5 quarterbacks in the state are shown. Put the numbers in order from least to greatest.
A) -20, -5, 10, 15, 40
B) -5, -20, 10, 15, 40
C) -5, 10, 15, -20, 40
D) 40, 15, 10, -5, -20

Answers

The correct order for the rushing yards from least to greatest for the top 5 quarterbacks in the state is:
A) -20, -5, 10, 15, 40

The quarterback with the least rushing yards for that week had -20, followed by -5, then 10, 15, and the quarterback with the most rushing yards had 40. It's important to note that negative rushing yards can occur if a quarterback is sacked behind the line of scrimmage or loses yardage on a play. Therefore, it's not uncommon to see negative rushing yards for quarterbacks. The answer option A is the correct order because it starts with the lowest negative number and then goes in ascending order towards the highest positive number.

Option A is correct for the given question.

Learn more about quarterbacks here:

https://brainly.com/question/20340637

#SPJ11

Perform the calculation.
63°23-19°52

Answers

To perform the calculation of 63°23-19°52, we need to subtract the two angles. The result of 63°23 - 19°52 is 44 - 29/60 degrees.

63°23 can be expressed as 63 + 23/60 degrees, and 19°52 can be expressed as 19 + 52/60 degrees.

Subtracting the two angles:

63°23 - 19°52 = (63 + 23/60) - (19 + 52/60)

= 63 - 19 + (23/60 - 52/60)

= 44 + (-29/60)

= 44 - 29/60

Therefore, the result of 63°23 - 19°52 is 44 - 29/60 degrees.

To subtract the two angles, we convert them into decimal degrees. We divide the minutes by 60 to convert them into fractional degrees. Then, we perform the subtraction operation on the degrees and the fractional parts separately.

In this case, we subtracted the degrees (63 - 19 = 44) and subtracted the fractional parts (23/60 - 52/60 = -29/60). Finally, we combine the results to obtain 44 - 29/60 degrees as the answer.

LEARN MORE ABOUT angles here: brainly.com/question/31818999

#SPJ11

which of the following situations can be modeled by a function whose value changes at a constant rate per unit of time? select all that apply. a the population of a city is increasing 5% per year. b the water level of a tank falls by 5 gallons every day. c the number of reptiles in the zoo increases by 5 reptiles each year. d the amount of money collected by a charity increases by 5 times each year.

Answers

b) The water level of a tank falls by 5 gallons every day.

c) The number of reptiles in the zoo increases by 5 reptiles each year.

In both scenarios, the values change by a fixed amount consistently over a specific unit of time, indicating a constant rate of change.

The situations that can be modeled by a function whose value changes at a constant rate per unit of time are:

a) The population of a city is increasing 5% per year. This scenario represents a constant growth rate over time, where the population changes by a fixed percentage annually.

b) The water level of a tank falls by 5 gallons every day. Here, the water level decreases by a fixed amount (5 gallons) consistently each day.

c) The number of reptiles in the zoo increases by 5 reptiles each year. This situation represents a constant annual increase in the reptile population, with a fixed number of reptiles being added each year.

These three scenarios involve changes that occur at a constant rate per unit of time, making them suitable for modeling using a function with a constant rate of change.

for such more question on fixed amount

https://brainly.com/question/25109150

#SPJ8

whats is the intermediate step in the form (x+a)^2=b as a result of completing the square for the following equatio? −6x^2+36x= −714

Answers

To complete the square for the equation we can first factor out the coefficient of x^2 to get:

-6(x^2 - 6x) = -714

Next, we need to add and subtract the square of half the coefficient of x, which is (6/2)^2 = 9. This will allow us to write the expression inside the parentheses as a perfect square:

-6(x^2 - 6x + 9 - 9) = -714

Now we can simplify the expression inside the parentheses by factoring it as a perfect square:

-6((x - 3)^2 - 9) = -714

Finally, we can simplify the expression on the left by distributing the -6:

-6(x - 3)^2 + 54 = -714

So the intermediate step in completing the square for the equation −6x^2+36x= −714 is -6(x - 3)^2 + 54 = -714.

what is the annual percentage yield (apy) for money invested at the given annual rate? round results to the nearest hundredth of a percent. 3.5% compounded continuously. a. 3.56%. b. 35.5%.c. 35.3%. d. 3.50%

Answers

The correct answer is option c. 35.3%. The annual percentage yield (apy) for money invested at the given annual rate of 3.5% compounded continuously is  35.3%.

The annual percentage yield (APY) is a measure of the total interest earned on an investment over a year, taking into account the effects of compounding.

To calculate the APY for an investment with continuous compounding, we use the formula:

[tex]APY = 100(e^r - 1)[/tex],

where r is the annual interest rate expressed as a decimal.

In this case, the annual interest rate is 3.5%, which, when expressed as a decimal, is 0.035. Plugging this value into the APY formula, we get:

[tex]APY = 100(e^{0.035} - 1).[/tex]

Using a calculator, we find that [tex]e^{0.035[/tex] is approximately 1.03571. Substituting this value back into the APY formula, we get:

APY ≈ 100(1.03571 - 1) ≈ 3.571%.

Rounding this value to the nearest hundredth of a percent, we get 3.57%.

Among the given answer choices, option c. 35.3% is the closest to the calculated value.

Options a, b, and d are significantly different from the correct answer.

Therefore, option c. 35.3% is the most accurate representation of the APY for an investment with a 3.5% annual interest rate compounded continuously.

To learn more about annual percentage yield visit:

brainly.com/question/30774234

#SPJ11

Other Questions
an old school ice cream shop that was quite popular in the neighborhood for many years, is suffering huge loss because of the opening of a nearby supermarket that hosts a variety of ice creams in their freezer section. the ice cream shop was once popular for their unique flavored ice creams but they are unable to predict the supply and demand causing many customers to get disappointed because they go out of stock every so often. the owner of the ice cream shop is your friend and asks you for advice to resolve this problem. take them through the sdlc phases and present requirements, designs and a project plan for your proposed system to the owner. Find the average value fave of the function f on the given interval. f(0) = 8 sec (0/4), [0, 1] fave martina is about to travel in an airplane for the first time and is very anxious about it. based on the results of a 1959 study by stanley schachter, which of the following social preferences would you expect martina to have? correct answer(s) she will prefer to wait with other people who are anxious about flying more than with people who are not flying that day. press space to open she will prefer the company of less anxious people to calm her down. press space to open she will prefer being around other people who are also worried about the upcoming flight because it will help reduce uncertainty about the situation. press space to open she will try to be alone, so as not to make other people anxious. Certain characteristics of the defendant are often considered by jurors. For example, Phillip is a known thug and gang member. He was on trial for the death of a priest that he ran over while evading police. In this case, it is likely that Phillip will receive a verdict that would be _____ if he had killed a _____.A) harsher than: fellow gang member B) harsher than: nun C) as harsh as: fellow gang member D) as harsh as: nun o N (S)-2-butanol reacts with potassium dichromate (K2CrO4) in aqueous sulfuric acid to give A(C4H8O). Treatment of A with ethylmagnesium bromide in anhydrous ether gives B(C6H14O).Draw the structure of B.Include stereochemistry using the single up & single down drawing tools, and draw only the hydrogens at chiral centers and at aldehyde carbons. Which of the following partitions are examples of Riemann partitions of the interval [0, 1]? Answer, YES or NO and justify your answer. 3 (a) Let n Z+. P = {0, 1/2, /2, /12, , 1}. n' n' n' (b) P = {1, 0.5, 0, 0.5, 1}. (c) P = {0, , , , 1}. 1, 4' 2 according to the presentation, when are cattle sent to a processing facility? the extraembryonic membranes in the reptile egg enhace elimination of wastes from the embryo? What is the molality of a solution containing 11.5 g of ethylene glycol dissolved in 145 g of water. Note: ethylene glycol = C2H602 a. 0.0342 m b. 0.222 m c. 1.28 m d. 1.85 m the outcome of a simulation experiment is a(n) probablity distrubution for one or more output measures Given and f'(-1) = 4 and f(-1) = -5. Find f'(x) = and find f(3) H f"(x) = 4x + 3 T/F. economic profit = accounting profit - the opportunity costs of resources already owned by the producer. Naomi made sand art bottles to sell at her school's craft fair. First, she bought 4 kilograms of sand in different colors. Then, she filled as many 100-gram bottles as she could. How many sand art bottles did Naomi make? FILL IN THE BLANK. ND = 506.25/w^2The equilibrium level of the real wage is _________nothing (Round your answer to two decimal places)? what is the real wage? f(x+h)-f(x) h occur frequently in calculus. Evaluate this limit for the given value of x and function f. *** Limits of the form lim h-0 f(x)=x, x= -8 The value of the limit is. (Simplify your answer Write the solution set of the given homogeneous system in parametric vector form.X+2Xz+9X3 =02X1+ X2 + 9X3 = 0- X1 + X2= 0 1a. How effective has Apple inc been in using its assets? Provide examples1b. How solvent is the company? explain1c. Explain how effective has Apple Inc been in generating returns to its shareholders? Evaluate the following integral. 7 2 dx S 0 49- What substitution will be the most helpful for evaluating this integral? O A. x = 7 tan 0 OB. x= 7 sin 0 O C. x=7 sec 0 Find dx. dx = de Rewrite the After its first year of business, Best Measures, Inc.'s sales revenue were $100,000 of which $90,000 was collected and total expenses of $60,000 of which $20,000 was paid. Which of the following statements is correct? (Select all that apply.) Multiple select question. a. Accrual-based net income equals $70,000. b. Cash-basis net income equals $40,000. c. Accrual-basis net income equals $80,000. d. Cash-basis net income equals $70,000. e. Cash-basis net income equals $80,000. f. Accrual-basis With regard to racial differences in IQs, the work of ____ revealed that southern Whites test as less intelligent than northern Blacks. a. Goddard b. Thorndike c. Herrnstein d. Terman e. Bond