"P(A) =
P(B) =
P(A∩B) =
Are A and B independent events?
Consider the well failure data given below. Let A denote the event that the geological formation of a well has more than 1000 wells, and let B denote the event that a well failed. Wells Geological Formation Group Failed Total Gneiss 130 1885 Granite 2 28 Loch raven schist 443 3733 Mafic 14 363 Marble 29 309 Prettyboy schist 60 1403 Otherschists 46 933 Serpentine 3 39

Answers

Answer 1

In the given data, we have the probabilities P(A), P(B), and P(A∩B). The summary of the answer is that A and B are not independent events.

In order to determine if events A and B are independent, we need to check if P(A) * P(B) is equal to P(A∩B). If this condition is satisfied, then A and B are considered independent events.

From the information provided, we don't have the exact values of P(A), P(B), and P(A∩B). Without knowing these probabilities, we cannot determine if A and B are independent events. It is only stated that P(A) = P(B) = P(A∩B), but this alone does not guarantee independence.

To establish independence, it would be necessary to verify that P(A) * P(B) = P(A∩B). If this equation holds true, it would indicate that the occurrence of one event does not affect the probability of the other event happening. Without this information, we cannot determine the independence of events A and B based solely on the given data.

Learn more about probability here:

https://brainly.com/question/21586810

#SPJ11


Related Questions


What percentage of the global oceans are Marine Protected Areas
(MPA's) ?
a. 3.7% b. 15.2% c. 26.7% d. 90%

Answers

Option (c) 26.7% of the global oceans are Marine Protected Areas (MPAs). Marine Protected Areas (MPAs) are designated areas in the oceans that are set aside for conservation and management purposes.

They are intended to protect and preserve marine ecosystems, biodiversity, and various species. MPAs can have different levels of restrictions and regulations, depending on their specific objectives and conservation goals.

As of the current knowledge cutoff in September 2021, approximately 26.7% of the global oceans are designated as Marine Protected Areas. This means that a significant portion of the world's oceans has some form of protection and management in place to safeguard marine life and habitats. The establishment and expansion of MPAs have been driven by international agreements and initiatives, as well as national efforts by individual countries to conserve marine resources and promote sustainable practices.

It is worth noting that the percentage of MPAs in the global oceans may change over time as new areas are designated or existing MPAs are expanded. Therefore, it is important to refer to the most up-to-date data and reports from reputable sources to get the most accurate and current information on the extent of Marine Protected Areas worldwide.

Learn more about percentage here: brainly.com/question/29541337

#SPJ11

determine whether the statement is true or false. if it is false, rewrite it as a true statement. a sampling distribution is normal only if the population is normal.

Answers

It is false that sampling distribution is normal only if the population is normal.

Is it necessary for the population to be normal for the sampling distribution to be normal?

According to the central limit theorem, when sample sizes are sufficiently large (typically n ≥ 30), the sampling distribution of the sample mean tends to approximate a normal distribution regardless of the population's underlying distribution.

This is true even if the population itself is not normally distributed. However, for small sample sizes, the shape of the population distribution can have a greater influence on the shape of the sampling distribution.

Read more about population

brainly.com/question/25630111

#SPJ4

A particle moving in simple harmonic motion can be shown to satisfy the differential equation
d2x x(t)-k- = dt2
On your handwritten working show that a particle whose position is given by
x(t) = 5 sin(3t) + 4 cos(3t)
is moving in simple harmonic motion. What is the value of k in this case?

Answers

To evaluate the volume of the region bounded by the surface z = 9 - x² - y² and the xy-plane, we can use a double integral.

The region of integration corresponds to the projection of the surface onto the xy-plane, which is a circular disk centered at the origin with a radius of 3 (since 9 - x² - y² = 0 when x² + y² = 9).

By adding "0" to the right-hand side, the equation becomes 4x - 4 = 4x + 0. Since the two expressions on both sides are now identical (both equal to 4x), the equation holds true for all values of x.

Adding 0 to an expression does not change its value, so the equation 4x - 4 = 4x + 0 is satisfied for any value of x, making it true for all values of x.

To learn more about equations click here, brainly.com/question/29657983

#SPJ11

Solve. 55=9c+13-2c

SHOW YOUR WORK PLEASE!!!!!!!!!!!!!!

Answers

Step-by-step explanation:

Sure! Let's solve the equation step by step:

Given equation: 55 = 9c + 13 - 2c

First, let's combine like terms on the right side of the equation:

55 = (9c - 2c) + 13

Simplifying further:

55 = 7c + 13

Next, let's isolate the variable term by subtracting 13 from both sides of the equation:

55 - 13 = 7c

Simplifying:

42 = 7c

To solve for c, we can divide both sides of the equation by 7:

42/7 = c

Simplifying:

6 = c

Therefore, the solution to the equation is c = 6.

Let me know if you have any further questions!

Find the characteristic polynomial, the eigenvalues, the vectors proper and, if possible, an invertible matrix P such that P^-1APbe diagonal, A=
1 - 1 4
3 2 - 1
2 1 - 1

Answers

Let A be the matrix. To find the characteristic polynomial, we need to find det(A-λI), where I is the identity matrix.The characteristic polynomial for matrix A is obtained by finding det(A - λI):

Now we have to find eigen values [tex]λ1 = -1λ2 = 1± 2√2[/tex] We can find eigenvectors corresponding to each eigenvalue: λ1 = -1 For λ1, we have the following matrix:This can be transformed to reduced row echelon form as follows:Therefore, the eigenvectors corresponding to λ1 are x1 = (-1, 3, 2) and x2 = (1, 0, 1).λ2 = 1 + 2√2 For λ2, we have the following matrix:This can be transformed to reduced row echelon form as follows:Therefore, the eigenvector corresponding to λ2 is x3 = (3 - 2√2, 1, 2).

Now we need to find P^-1 to make P^-1AP diagonal:Finally, the diagonal matrix is formed by finding P^-1AP.

To know more about Invertible matrix visit-

https://brainly.com/question/31062095

#SPJ11

Put the following equation of a line into slope-intercept form, simplifying all fractions.
Y-X = 8

Answers

The y-intercept, represented by b, is the constant term, which is 8 in this equation. The y-intercept indicates the point where the line intersects the y-axis. So, the equation Y - X = 8, when simplified and written in slope-intercept form, is Y = X + 8. The slope of the line is 1, and the y-intercept is 8.

To convert the equation Y - X = 8 into slope-intercept form (y = mx + b), where m represents the slope and b represents the y-intercept, we need to isolate the y variable.

Let's rearrange the equation step by step:

Add X to both sides of the equation to isolate the Y term:

Y - X + X = 8 + X

Y = 8 + X

Rearrange the terms in ascending order:

Y = X + 8

Now the equation is in slope-intercept form. We can see that the coefficient of X (the term multiplied by X) is 1, which represents the slope of the line. In this case, the slope is 1.

For more such questions on slope

https://brainly.com/question/16949303

#SPJ8

How
many square decimeters are in 40 square centimeters?
How many cubic meters are in 2 decimaters?

Answers

There are 0.4 square decimeters in 40 square centimeters . There are 0.002 cubic meters in 2 decimeters.

Square decimeters in 40 square centimeters:

One square decimeter is equivalent to 100 square centimeters.

It means that if we multiply the value of square centimeters by 0.01, we can find the value of square decimeters.

So, 40 square centimeters will be:

40 × 0.01 = 0.4 square decimeters

Therefore, there are 0.4 square decimeters in 40 square centimeters

Cubic meters in 2 decimeters

One cubic meter is equivalent to 1,000 cubic decimeters.

We can convert decimeters into cubic meters by multiplying them with 0.001.

So, 2 decimeters in cubic meters will be:

2 × 0.001 = 0.002 cubic meters

Therefore, there are 0.002 cubic meters in 2 decimeters.

Know more about the One cubic meter

https://brainly.com/question/18407138

#SPJ11

(HINT: USE MATRIXCALC.ORG/EN/ TO COMPUTE STUFF AND CHECK YOUR WORK.) (1) Given matrix M below, find the rank and nullity, and give a basis for the null space. M= --3 6 3 2 -4 -2 -10 2 3 1 3

Answers

The rank of matrix M is 1.The nullity of matrix M is 3.A basis for the null space of matrix M is [3 1 1]ᵀ.

How to find the rank and nullity of matrix M?

To find the rank and nullity of matrix M, as well as a basis for the null space, we need to perform row reduction on the matrix and analyze the resulting row echelon form.

Using the provided matrix M:

M =[tex]\left[\begin{array}{cccc}-3&6&3\\2&-4&-2\\-10&2&3\\1&3&1\end{array}\right] \\[/tex]

We perform row reduction on matrix M to bring it to row echelon form:

R = [tex]\left[\begin{array}{cccc}1&-2&-1\\0&0&0\\0&0&0\\0&0&0&\end{array}\right] \\[/tex]

The row echelon form R shows that there is one pivot column (corresponding to the first column), and three free columns (corresponding to the second and third columns).

Thus, the rank of matrix M is 1, and the nullity is 3.

To find a basis for the null space, we consider the free variables. In this case, the second and third columns have no pivots, so the variables x2 and x3 can be chosen as free variables.

We set them equal to 1 to find solutions that satisfy the null space condition.

Let x2 = 1 and x3 = 1. We solve the equation R * [x1 x2 x3]ᵀ = [0 0 0 0] to obtain the values of x1:

1 * x1 - 2 * 1 - 1 * 1 = 0

x1 - 2 - 1 = 0

x1 = 3

Therefore, a basis for the null space of matrix M is given by the vector [3 1 1]ᵀ.

Learn more about rank, nullity, and basis of null space of a matrix

brainly.com/question/29801097

#SPJ11

Find the bases for Col A and Nul A, and then state the dimension of these subspaces for the matrix A and an echelon form of A below. 1 3 7 2 -1 1372 -1 2 7 17 6 -1 0132 1 A = - 3 - 12 - 30 - 7 10 0001

Answers

The bases for ColA and NulA are {1,2,-1,3}, {1,0,-2,7,-23,6}. The dimension of the subspace ColA is 3 and the dimension of NulA is 3.

To find the bases for the subspaces of the matrix A, we first need to reduce it into echelon form.

This is shown below:

 1    3    7     2  -1      1372  -1    2    7    17    6    -1  0   -3  -12  -30  -7   10   0   0    0  -34 -11  -9

The reduced matrix is in echelon form. We can now obtain the bases for the column space (ColA) and null space (NulA). The non-zero rows in the echelon form of A correspond to the leading entries in the columns of A. Hence, the leading entries in the first, second, and fourth columns of A are 1, 3, and -1, respectively.The bases for ColA are the columns of A that correspond to the leading entries in the echelon form of A. Therefore, the bases for ColA are {1, 2, -1, 3}.The bases for NulA are the special solutions to the homogeneous equation

Ax = 0.

We can obtain these special solutions by expressing the reduced matrix in parametric form, as shown below:

x1 = -3x2

= -10 - (11/34)x3

= 1/34x4 = 0x5

= 0x6

= 0

Therefore, a basis for NulA is {1, 0, -2, 7, -23, 6}. The dimension of ColA is 3 and the dimension of NulA is 3.

learn more about homogeneous equation

https://brainly.com/question/14926412

#SPJ11

Compute the limit lim xx→0 lis (1+x)-x/ X^2. Compute the integrals

Answers

The limit is ∫ x^2 dx = (1/3)x^3 + C 'where C is the constant of integration.

We can simplify the expression before taking the limit.

lim (x→0) [(1+x)^(-x) / x^2]

First, we rewrite (1+x)^(-x) as e^(-x * ln(1+x)) using the property (a^b)^c = a^(b*c). Thus, the expression becomes:

lim (x→0) [e^(-x * ln(1+x)) / x^2]

Next, we can use the property that ln(1+x) is approximately equal to x for small values of x. So we can approximate the expression as:

lim (x→0) [e^(-x^2) / x^2]

Now, as x approaches 0, the exponential term e^(-x^2) approaches 1 since (-x^2) approaches 0. And x^2 in the denominator also approaches 0. Therefore, we have:

lim (x→0) [e^(-x^2) / x^2] = 1/0

Since the denominator approaches 0, the limit diverges to positive infinity (∞).

Now, let's compute the integrals:

1. ∫ (1+x) dx

Integrating (1+x) with respect to x, we get:

∫ (1+x) dx = x + (1/2)x^2 + C

where C is the constant of integration.

2. ∫ x^2 dx

Integrating x^2 with respect to x, we get:

∫ x^2 dx = (1/3)x^3 + C

where C is the constant of integration.

To learn more about integrals click here:

brainly.com/question/31433126

#SPJ11

Which of the following sets of vectors are bases for R³? O a O c, d O b, c, d O a, b, c, d O a, b a) (1, 0, 0), (2, 2, 0), (3,3,3) b) (2, 3, –3), (4, 9, 3), (6, 6, 4) c) (3, 4, 5), (6, 3, 4), (0, �

Answers

The set of vectors that forms a basis for R³ is option (a): (1, 0, 0), (2, 2, 0), (3, 3, 3).

Which set of vectors forms a basis for R³: (a) (1, 0, 0), (2, 2, 0), (3, 3, 3), (b) (2, 3, -3), (4, 9, 3), (6, 6, 4), or (c) (3, 4, 5), (6, 3, 4), (0, 0, 0)?

The set of vectors that forms a basis for R³ is option (a) which consists of vectors (1, 0, 0), (2, 2, 0), and (3, 3, 3).

To determine if a set of vectors forms a basis for R³, we need to check two conditions:

1. The vectors are linearly independent.

2. The vectors span R³.

In option (a), the three vectors are linearly independent because none of them can be expressed as a linear combination of the others. Additionally, these vectors span R³, which means any vector in R³ can be expressed as a linear combination of these three vectors.

Option (b) does not form a basis for R³ because the three vectors are linearly dependent. The third vector can be expressed as a linear combination of the first two vectors.

Option (c) does not form a basis for R³ because the three vectors are not linearly independent. The second vector can be expressed as a linear combination of the first and third vectors.

Therefore, option (a) is the correct answer as it satisfies both conditions for a basis in R³.

Learn more about set of vectors

brainly.com/question/28449784

#SPJ11

The MPs indicates that we need 500 units of Item X at the start of Week 5. Item X has a lead time of 3 weeks. There are receipts of Item X planned as follows: 120 units in Week 1, 120 units in Week 3, and 100 units in Week 4. When and how large of an order should be placed to meet this demand requirement?

Answers

An order of 660 units should be placed at the start of Week 2 to meet the demand requirement of 500 units at the start of Week 5.

We have,

To determine when and how large of an order should be placed to meet the demand requirement of 500 units of Item X at the start of Week 5, we need to consider the lead time and the planned receipts.

Given:

Demand requirement: 500 units at the start of Week 5

Lead time: 3 weeks

Planned receipts: 120 units in Week 1, 120 units in Week 3, and 100 units in Week 4

We can calculate the available inventory at the start of Week 5 by considering the planned receipts and deducting the units used during the lead time:

Available inventory at the start of Week 5

= Planned receipts in Week 1 + Planned receipts in Week 3 + Planned receipts in Week 4 - Units used during the lead time

Available inventory at the start of Week 5 = 120 + 120 + 100 - 500 = -160

The available inventory is negative, indicating a shortage of 160 units at the start of Week 5.

To meet the demand requirement, an order should be placed. Since the lead time is 3 weeks, the order should be placed 3 weeks before the start of Week 5, which is at the start of Week 2.

The order quantity should be the difference between the demand requirement and the available inventory, considering the shortage:

Order quantity = Demand requirement - Available inventory

= 500 - (-160)

= 660 units

Therefore,

An order of 660 units should be placed at the start of Week 2 to meet the demand requirement of 500 units at the start of Week 5.

Learn more about expressions here:

https://brainly.com/question/3118662

#SPJ1




Suppose that the minimum and maximum values for the attribute temperature are 40 and 61, respectively. Map the value 47 to the range [0, 1]. Round your answer to 1 decimal place.

Answers

The mapped value of 47 to the range [0, 1] with a minimum temperature of 40 and a maximum temperature of 61 is approximately 0.3.

To calculate the mapped value, we need to find the relative position of the value 47 within the range of temperatures. First, we calculate the range of temperatures by subtracting the minimum value (40) from the maximum value (61), which gives us 21.

Next, we calculate the distance between the minimum value and the value we want to map (47) by subtracting the minimum value (40) from the value we want to map (47), which gives us 7.

To obtain the mapped value, we divide the distance between the minimum value and the value we want to map (7) by the range of temperatures (21), resulting in approximately 0.3333. Rounded to one decimal place, the mapped value of 47 to the range [0, 1] is 0.3.

To learn more about minimum value click here:

brainly.com/question/29310649

#SPJ11

The mapped value of 47 to the range [0, 1] with a minimum temperature of 40 and a maximum temperature of 61 is approximately 0.3.

To calculate the mapped value, we need to find the relative position of the value 47 within the range of temperatures. First, we calculate the range of temperatures by subtracting the minimum value (40) from the maximum value (61), which gives us 21.

Next, we calculate the distance between the minimum value and the value we want to map (47) by subtracting the minimum value (40) from the value we want to map (47), which gives us 7.

To obtain the mapped value, we divide the distance between the minimum value and the value we want to map (7) by the range of temperatures (21), resulting in approximately 0.3333. Rounded to one decimal place, the mapped value of 47 to the range [0, 1] is 0.3.

To learn more about minimum value click here:

brainly.com/question/29310649

#SPJ11

4. Describe the end behavior of f(x)=x²-x² - 4x +4. Solve for the zeros of f(x). 5. Evaluate N with a calculator: N = log: 85 6. Prove the identity: tan 2x + 1 = sec ²x 7. Write the equation of a parabola in standard form where the vertex is (-2,-3) and f(3) = 2

Answers

4. The end behavior of f(x) = x² - x² - 4x + 4 is that as x approaches infinity or negative infinity,

the graph of the function approaches negative infinity.

Since the leading coefficient is negative, the graph opens downwards.

The function has a constant value of 4. Therefore, the range of the function is [4,4].

To find the zeros of f(x), we equate the function to zero and solve for x. f(x) = 0 = x² - x² - 4x + 4 0 = - 4x + 4 4x = 4 x = 1 5.

To evaluate N with a calculator, we use the change-of-base formula. N = log: 85 N = log(85) / log(10) N = 1.929418925 6.

To prove the identity tan 2x + 1 = sec ²x, we start with the left-hand side. LHS = tan 2x + 1 = sin 2x / cos 2x + 1 = 1 / cos ²x = sec ²x RHS = sec ²x  

Hence, LHS = RHS.

Therefore, the identity is true. 7.

The equation of a parabola in standard form is given by y = a(x - h)² + k, where (h,k) is the vertex.

Since the vertex is (-2,-3),

h = -2 and k = -3.

We have y = a(x + 2)² - 3

[tex]To find a, we use the point (3,2) which lies on the graph. f(3) = 2 gives us 2 = a(3 + 2)² - 3 5a² = 5 a² = 1 a = ±1[/tex]

Substituting in the equation of the parabola,

we have two possible equations: y = (x + 2)² - 3 or y = -(x + 2)² - 3

To know more about change-of-base formula visit:

https://brainly.com/question/16595774

#SPJ11

The curve 55+y³ + 3x - 2y = 1 is shown in the graph below in blue. Find the equation of the line tangent to the cu at the point (0, -1).

Answers

The equation of the line tangent to the curve 55 + y³ + 3x - 2y = 1 at the point (0, -1) is y = -1 - 6x.

To find the equation of the tangent line, we need to determine the slope of the curve at the given point and use the point-slope form of a line. First, we differentiate the equation of the curve with respect to x:

d/dx(55 + y³ + 3x - 2y) = d/dx(1)

3 - 2(dy/dx) + 3(dx/dx) - 2(dy/dx) = 0

6 - 4(dy/dx) = 0

dy/dx = 6/4 = 3/2

Now we have the slope of the curve at the point (0, -1). Using the point-slope form of a line, we substitute the coordinates of the point and the slope:

y - y₁ = m(x - x₁)

y - (-1) = (3/2)(x - 0)

y + 1 = (3/2)x

y = (3/2)x - 1 - 1

y = (3/2)x - 2

Therefore, the equation of the tangent line to the curve at the point (0, -1) is y = -1 - 6x.

To learn more about tangent click here :

brainly.com/question/27021216

#SPJ11




Exercice 2 (3 Marks) dy In the ODE dx : f(x,y) (y(-3) = 2, By using h=0.6 in the interval [-3 0], write the procedure of the midpoint method to calculate y₁. Precise the values of xo,X1/2, X1 and yo

Answers

The values of xo, X1/2, X₁, and y₀  are as follows: xo = -3 X1/2 = -2.7 X₁ = -2.4 y₀  = 2 .The midpoint method is a numerical technique for solving ordinary differential equations (ODEs). It works by calculating the slope of the ODE at the midpoint of each time interval and using this slope to estimate the value of the solution at the end of the interval.

Step 1: Define the interval. Interval [-3, 0] can be divided into three subintervals of width h = 0.6: [-3, -2.4], [-2.4, -1.8], and [-1.8, -1.2].

Step 2: Calculate the midpoint for each subinterval The midpoint of each subinterval is given by: xᵢ₊₁/₂ = xᵢ + h/2

For the first subinterval, x₀ = -3 and

h = 0.6, so x₀₊₁/₂

= -3 + 0.3

= -2.7

For the second subinterval, x₁ = -2.4 and

h = 0.6, so x₁₊₁/₂

= -2.4 + 0.3

= -2.1

For the third subinterval, x₂ = -1.8 and

h = 0.6, so x₂₊₁/₂

= -1.8 + 0.3

= -1.5

Step 3: Calculate the slope at each midpoint The slope of the ODE at each midpoint can be calculated using the formula:

kᵢ = f(xᵢ + h/2, yᵢ + kᵢ₋₁/2 * h/2)

For the first subinterval, we have:

k₀ = f(-2.7, 2 + 0.5 * f(-3, 2) * 0.3)

For the second subinterval, we have:

k₁ = f(-2.1, 2 + 0.5 * k₀ * 0.3)

For the third subinterval,

we have: k₂ = f(-1.5, 2 + 0.5 * k₁ * 0.3)

Step 4: Calculate y₁

Using the formula y₁ = y₀ + k₀ * h, we can calculate y₁ as:

y₁ = 2 + k₀ * 0.6

To know more about midpoint method, refer

https://brainly.com/question/30242985

#SPJ11

fill in the blank. 14. (-13.33 Points] DETAILS ASWMSC115 2.E.019. MY NOTES ASK YOUR TEACHER PRACTICE ANOTHER Consider the following linear program. Max 34 + 48 s.t. -14 + 2B9 1A + 28 511 ZA + 18 S 18 ABD (a) Write the problem in standard form. Max 3A + 40 + s.t. -1A + 2B + = 9 14 + 20 = 11 2A + 18 = 18 A, B, S, Sy, S, 710 (b) Solve the problem using the graphical solution procedure. (A, 8) = (c) What are the values of the three slack variables at the optimal solution? 5,= S2 - S,

Answers

Optimal solution: (A, B) = (3, 3); Slack variables: S1 = 5, S2 = 0, S3 = 0.

Optimal solution and slack variables?

The given linear program can be rewritten in standard form as follows:

Maximize:

3A + 40B + 0S1 + 0S2 + 0S3

Subject to:

-1A + 2B + 0S1 + 0S2 + 0S3 = 9

14A + 0B + 20S1 + 0S2 + 0S3 = 11

2A + 0B + 0S1 + 18S2 + 0S3 = 18

0A + 0B + 0S1 + 0S2 + 0S3 = 0

Where A, B, S1, S2, and S3 represent the decision variables, and the slack variables.

To solve the problem using the graphical solution procedure, we can plot the feasible region determined by the given constraints on a graph and identify the corner points. The objective function can then be evaluated at each corner point to find the optimal solution. Since the inequalities in the given problem are all equalities, the feasible region will be a single point.

After solving the problem using the graphical method, the optimal solution is found to be at the point (A, B) = (3, 3). At this optimal solution, the values of the three slack variables are:

S1 = 5

S2 = 0

S3 = 0

In summary, the optimal solution to the given linear program using the graphical solution procedure is (A, B) = (3, 3), and the values of the slack variables are S1 = 5, S2 = 0, and S3 = 0.

Learn more about Optimization.

brainly.com/question/31913432

#SPJ11

7. A sample of 18 students worked an average of 20 hours per week, assuming normal distribution of population and a standard deviation of 5 hours. Find a 95% confidence interval.

Answers

The 95% confidence interval for the average number of hours worked per week is (17.516, 22.484) hours.

What is the 95% confidence interval for the hours worked?

Confidence Interval = sample mean ± (critical value * standard deviation / square root of sample size)

Given:

Sample mean (x) = 20 hours

Standard deviation (σ) = 5 hours

Sample size (n) = 18

First, we need to find the critical value corresponding to a 95% confidence level. Since the sample size is less than 30 and the population distribution is assumed to be normal, we can use the t-distribution.

The degrees of freedom (df) for a sample of size 18 is 18 - 1 = 17.

Looking up the critical value in the t-distribution table or using a statistical software, we find that the critical value for a 95% confidence level with 17 degrees of freedom is approximately 2.110.

Confidence Interval = 20 ± (2.110 * 5 / √18)

Confidence Interval ≈ 20 ± (2.110 * 5 / 4.242)

Confidence Interval ≈ 20 ± (10.55 / 4.242)

Confidence Interval ≈ 20 ± 2.484

Confidence Interval ≈ 17.516 or 22.48.

Read more about confidence interval

brainly.com/question/15712887

#SPJ4

Based on a study, the Lorenz curves for the distribution of incomes for bankers and actuaries are given respectively by the functions

f(x) = 1/10 x + 9/10 x^2

and

g(x) = 0.54x^3.5 +0.46x

(a) What percent of the total income do the richest 20% of bankers receive? Note: Round off to two decimal places if necessary.

(b) Compute for the Gini index of f(x) and g(x). What can be implied from the Gini indices of f(x) and g(x)?

Answers

To calculate the percentage of the total income that the richest 20% of bankers receive, we need to find the area under the Lorenz curve up to the 80th percentile.

(a) Let's start by finding the Lorenz curve for bankers:

f(x) = 1/10x + 9/10x^2

To find the 80th percentile, we need to find the x-value where 80% of the total income lies below that point.

Setting f(x) = 0.8 gives us:

[tex]0.8 = 1/10x + 9/10x^2[/tex]

Rearranging the equation to a quadratic form:

[tex]9x^2 + x - 8 = 0[/tex]

Solving this quadratic equation gives us two solutions, but we're only interested in the positive one since it represents the income distribution. The positive solution is x ≈ 0.416.

To calculate the percentage of total income received by the richest 20% of bankers, we need to find the area under the Lorenz curve from 0 to 0.416 and multiply it by 100.

∫[0,0.416] f(x) dx = ∫[0,0.416] (1/10x + 9/10[tex]x^{2}[/tex]) dx

Evaluating the integral gives us approximately 0.086.

Therefore, the richest 20% of bankers receive approximately 8.6% of the total income.

(b) The Gini index is a measure of income inequality. To calculate the Gini index, we need to compare the area between the Lorenz curve and the line of perfect equality to the total area under the line of perfect equality.

For f(x), the line of perfect equality is the line y = x. We need to find the area between f(x) and y = x.

The Gini index for f(x) can be calculated as:

G(f) = 1 - 2∫[0,1] (x - f(x)) dx

Substituting the equation for f(x):

G(f) = 1 - 2∫[0,1] (x - (1/10x + 9/10[tex]x^{2}[/tex])) dx

Evaluating the integral gives us approximately 0.235.

For g(x), the line of perfect equality is also the line y = x. We need to find the area between g(x) and y = x.

The Gini index for g(x) can be calculated as:

G(g) = 1 - 2∫[0,1] (x - g(x)) dx

Substituting the equation for g(x):

G(g) = 1 - 2∫[0,1] (x - (0.54[tex]x^{3.5 }[/tex]+ 0.46x)) dx

Evaluating the integral gives us approximately 0.275.

Implications:

The Gini index ranges from 0 to 1, where 0 represents perfect equality, and 1 represents maximum inequality.

Comparing the Gini indices of f(x) and g(x), we see that G(g) (0.275) is larger than G(f) (0.235). This implies that the income distribution for actuaries (g(x)) is more unequal or exhibits higher income inequality compared to bankers (f(x)).

To learn more about Lorenz curve visit:

brainly.com/question/32353977

#SPJ11

is an eigenvalue for matrix a with eigenvector v, then u(t) eλtv is a solution to the differential du equation = a = au. dt select one:

Answers

Given a matrix a with eigenvector v and an eigenvalue λ, if u(t) eλtv is an eigenvector of a, then it is also a solution to the differential equation du/dt = au.

The given differential equation is given by: du/dt = au.The solution to the given differential equation is given by u(t) = ceλt where c is a constant of integration. Now, we have to show that u(t) eλtv is a solution to the given differential equation. For that, we have to calculate du/dt.u(t) eλtv = ceλt eλtv= c eλt+vNow, calculate the derivative of u(t) eλtv with respect to t:du/dt = ceλt+v × (λ eλtv)We know that a × v = λ × vwhere,λ is the eigenvalue and v is the eigenvector.So, a × v = λ v ... (1)Multiplying both sides by u(t) eλtv on both sides of equation (1), we get:a × (u(t) eλtv) = λ (u(t) eλtv)Multiplying a with u(t) gives: a × u(t) = au(t)Now, substituting u(t) = ceλt in the above equation, we get: a × (ceλt eλtv) = λ (ceλt eλtv)Simplifying the above equation, we get:du/dt = auHence, it is proven that if an eigenvalue λ is associated with a matrix a with eigenvector v, then u(t) eλtv is a solution to the differential equation du/dt = au.Main Answer:The differential equation given is du/dt = au.If the eigenvector v of the matrix a has an eigenvalue λ, then we have to show that u(t) eλtv is a solution to the given differential equation.Now, the solution to the given differential equation is given by u(t) = ceλt where c is a constant of integration.Now, we have to show that u(t) eλtv is a solution to the given differential equation.For that, we have to calculate du/dt.u(t) eλtv = ceλt eλtv= c eλt+vNow, calculate the derivative of u(t) eλtv with respect to t:du/dt = ceλt+v × (λ eλtv)We know that a × v = λ × vwhere,λ is the eigenvalue and v is the eigenvector.So, a × v = λ v ... (1)Multiplying both sides by u(t) eλtv on both sides of equation (1), we get:a × (u(t) eλtv) = λ (u(t) eλtv)Multiplying a with u(t) gives: a × u(t) = au(t)Now, substituting u(t) = ceλt in the above equation, we get: a × (ceλt eλtv) = λ (ceλt eλtv)Simplifying the above equation, we get:du/dt = auConclusion:If an eigenvalue λ is associated with a matrix a with eigenvector v, then u(t) eλtv is a solution to the differential equation du/dt = au.

To know more about eigenvector visit:

brainly.com/question/31306935

#SPJ11

The statement is true, [tex]u(t) = \lambda e^\lambda^t v[/tex] is a solution to the differential equation du/dt = Au

The differential equation du/dt = Au, where A is the matrix.

Let's substitute [tex]u(t) = e^(^\lambda ^t^)v[/tex] into the differential equation:

[tex]du/dt = d/dt (e^(^\lambda ^t^)v)[/tex]

Using the chain rule, we have:

[tex]du/dt = \lambda e^(^ \lambda^t^)v[/tex]

Now let's compute Au:

[tex]Au = A(e^(^\lambda ^t^)v)[/tex]

Since λ is an eigenvalue for A with eigenvector v, we have:

Au = λv

Comparing the expressions for du/dt and Au, we can see that they are equal:

[tex]\lambda e^\lambda^t v=\lambda v[/tex]

This confirms that [tex]u(t) = \lambda e^\lambda^t v[/tex] is a solution to the differential equation du/dt = Au.

Therefore, the statement is true.

To learn more on Differentiation click:

https://brainly.com/question/24898810

#SPJ4








Time left In an experiment of rolling a die two times, the probability of having sum at most 5 is

Answers

Time left In an experiment of rolling a die two times, the probability of having sum at most 5 is The probability is approximately 0.3056 or 30.56%.

To calculate the probability of obtaining a sum at most 5 when rolling a die two times, we can consider all the possible outcomes and count the favorable ones.

Let's denote the outcomes of rolling the die as pairs (a, b), where 'a' represents the result of the first roll and 'b' represents the result of the second roll.

The possible outcomes for rolling a die are:

(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6),

(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6),

(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6),

(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6),

(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6),

(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6).

Out of these 36 possible outcomes, the favorable outcomes (pairs with a sum at most 5) are:

(1, 1), (1, 2), (1, 3),

(2, 1), (2, 2), (2, 3),

(3, 1), (3, 2), (3, 3),

(4, 1), (4, 2),

(5, 1).

There are 11 favorable outcomes out of 36 possible outcomes.

Therefore, the probability of obtaining a sum at most 5 when rolling a die two times is:

P(sum ≤ 5) = favorable outcomes / possible outcomes = 11/36 ≈ 0.3056.

To know more about probability prefer here:

https://brainly.com/question/31828911#

#SPJ11

PLEASE HELP!! Graph the transformation on the graph picture, no need to show work or explain.

Answers

A graph of the polygon after applying a rotation of 90° clockwise about the origin is shown below.

What is a rotation?

In Mathematics and Geometry, a rotation is a type of transformation which moves every point of the object through a number of degrees around a given point, which can either be clockwise or counterclockwise (anticlockwise) direction.

Next, we would apply a rotation of 90° clockwise about the origin to the coordinate of this polygon in order to determine the coordinate of its image;

(x, y)                →            (y, -x)

A = (-4, -2)          →     A' (-2, 4)

B = (-3, -2)          →     B' (-2, 3)

C = (-3, -3)          →     C' (-3, 3)

D = (-2, -3)          →     D' (-3, 2)

E = (-2, -5)          →     E' (-5, 2)

F = (-3, -5)          →     F' (-5, 3)

G = (-3, -4)          →     G' (-4, 3)

H = (-5, -4)          →     H' (-4, 5)

I = (-5, -3)          →       I' (-3, 5)

J = (-4, -3)          →      J' (-3, 4)

Read more on rotation here: brainly.com/question/28854313

#SPJ1

Draw the morphological structure trees for the words unrelatable and distrustful. Your structures should match the interpretation of each word illustrated by the sentences below. a. I can't relate to this story at all, and I don't think anyone else can either. It's completely unrelatable! b. My friend had a bad experience with dogs as a child, and now she feels distrustful of them.

Answers

The morphological structure trees for the words unrelatable and distrustful:

Here are the morphological structure trees for the words unrelatable and distrustful:

1. unrelatable: The sentence is "I can't relate to this story at all, and I don't think anyone else can either.

It's completely unrelatable!" The morphological structure tree for unrelatable is shown below:

Explanation: unrelatable is an adjective made up of the prefix un-, which means not, and the word relatable.

2. distrustful: The sentence is "My friend had a bad experience with dogs as a child, and now she feels distrustful of them.

"The morphological structure tree for distrustful is shown below:

Explanation: distrustful is an adjective made up of the prefix dis-, which means not, and the word trustful.

To know more about Trustful, visit

https://brainly.com/question/31940330

#SPJ11


Consider the following difference equation
4xy′′ + 2y ′ − y = 0
Use the Fr¨obenius method to find the two fundamental solutions
of the equation,
expressing them as power series centered at x

Answers

The two fundamental solutions of the differential equation are

y₁(x) = x[-1 + √5]/2Σ arxᵣ, where a₀ = 0 and a₁ = (√5 - 3)/4y₂(x) = x[-1 - √5]/2Σ arxᵣ, where a₀ = 0 and a₁ = (3 + √5)/4.

The difference equation to consider is

4xy'' + 2y' - y = 0

Using the Fr¨obenius method to find the two fundamental solutions of the above equation, we express the solution in the form: y(x) = Σ ar(x - x₀)r

Using this, let's assume that the solution is given by

y(x) = xᵐΣ arxᵣ,

Where r is a non-negative integer; m is a constant to be determined; x₀ is a singularity point of the equation and aₙ is a constant to be determined. We will differentiate y(x) with respect to x two times to obtain:

y'(x) = Σ arxᵣ+m; and y''(x) = Σ ar(r + m)(r + m - 1) xr+m - 2

Let's substitute these back into the given differential equation to get:

4xΣ ar(r + m)(r + m - 1) xr+m - 1 + 2Σ ar(r + m) xr+m - 1 - xᵐΣ arxᵣ= 0

On simplification, we get:

The indicial equation is therefore given by:

m(m - 1) + 2m - 1 = 0m² + m - 1 = 0

Solving the above quadratic equation using the quadratic formula gives:m = [-1 ± √5] / 2

We take the value of m = [-1 + √5] / 2 as the negative solution makes the series diverge.

Let's put m = [-1 + √5] / 2 and r = 0 in the series

y₁(x) = x[-1 + √5]/2Σ arxᵣ

Let's solve for a₀ and a₁ as follows:

Substituting r = 0, m = [-1 + √5] / 2 and y₁(x) = x[-1 + √5]/2Σ arxᵣ in the equation 4xy'' + 2y' - y = 0 gives:

-x[-1 + √5]/2 Σ a₀ + 2x[-1 + √5]/2 Σ a₁ = 0

Comparing like terms gives the following relations: a₀ = 0;a₁ = -a₀ / 2(1)(1 + [1 - √5]/2)a₁ = -a₁[1 + (1 - √5)/2]a₁² = -a₁(3 - √5)/4 or a₁(√5 - 3)/4

For the second solution, let's take m = [-1 - √5] / 2 and r = 0 in the series

y₂(x) = x[-1 - √5]/2Σ arxᵣ

Let's solve for a₀ and a₁ as follows:

Substituting r = 0, m = [-1 - √5] / 2 and y₂(x) = x[-1 - √5]/2Σ arxᵣ in the equation 4xy'' + 2y' - y = 0 gives:

-x[-1 - √5]/2 Σ a₀ + 2x[-1 - √5]/2 Σ a₁ = 0

Comparing like terms gives the following relations: a₀ = 0;a₁ = -a₀ / 2(1)(1 + [1 + √5]/2)a₁ = -a₁[1 + (1 + √5)/2]a₁² = -a₁(3 + √5)/4 or a₁(3 + √5)/4

Therefore, the two fundamental solutions of the differential equation are

y₁(x) = x[-1 + √5]/2Σ arxᵣ, where a₀ = 0 and a₁ = (√5 - 3)/4y₂(x) = x[-1 - √5]/2Σ arxᵣ, where a₀ = 0 and a₁ = (3 + √5)/4.

To know more about differential visit:

https://brainly.com/question/13958985

#SPJ11

1. Which of the following can invalidate the results of a statistical study? a) a small sample size b) inappropriate sampling methods c) the presence of outliers d) all of the above
2. Which is not an appropriate question to ask in critical analysis?
a. Were the question free of bias?
b. Are there any outliers that could influence the results?
c. Are there any unusual patterns that suggest the presence of a hidden variable?
d. What were the questions that were asked in the survey?

Answers

d) all of the above can invalidate the results of a statistical study.

A small sample size can lead to unreliable and imprecise estimates, as the findings may not accurately represent the larger population. Inappropriate sampling methods can introduce bias and affect the representativeness of the sample, leading to skewed results that do not generalize well. The presence of outliers, extreme data points that differ significantly from the rest of the data, can distort the results and impact the validity of statistical analyses. All three factors - small sample size, inappropriate sampling methods, and outliers - can individually or collectively undermine the reliability and validity of statistical study results. Researchers must carefully consider these factors to ensure accurate and meaningful findings.

Learn more about  statistical study here : brainly.com/question/30480059
#SPJ11

Question 2
0/3 pts 32 Details
As soon as you started working, you started a retirement account. (Good thinking!) When you retire, you want to be able to withdraw $1,800 each month for 20 years. Your account earns 2.5% annual interest compounded monthly.
a) How much do you need in your account at the beginning of your retirement?
b) How much total money will you pull out of the account?
c) How much of that money will be interest?

Answers

a) You would need $386,122.55 in your account at the beginning of your retirement.

b) The total amount of money you would pull out of the account is $432,000.

c) The amount of money that will be interest is $45,877.45.


The formula for the present value of an annuity is as follows:

[tex]A = P[(1 - (1 + r)^-^n)/r][/tex], where A represents the annuity, P represents the principal, r represents the monthly interest rate, and n represents the number of months. Using this formula, we can calculate that the present value of your retirement account should be $386,122.55.

The total amount of money that you will pull out of the account can be calculated by multiplying the monthly withdrawal amount by the number of months in the withdrawal period. Thus, $1,800 x 240 = $432,000 is the total amount of money you would pull out of the account.

The amount of money that will be interest can be calculated by subtracting the principal amount from the total amount of money you would pull out of the account. Thus, $432,000 - $386,122.55 = $45,877.45 is the amount of money that will be interest.

Learn more about interest rate here:

https://brainly.com/question/30462006

#SPJ11

Details In a survey, 23 people were asked how much they spent on their child's last birthday gift. The results were roughly bell- shaped with a mean of $30 and standard deviation of $5. Construct a confidence interval at a 80% confidence level. Give your answers to one decimal place. Interpret your confidence interval in the context of this problem.

Answers

The confidence interval is: Confidence Interval = (30 - 1.836, 30 + 1.836) = (28.2, 31.8)

Answers to the questions

To construct a confidence interval at an 80% confidence level for the mean amount spent on a child's last birthday gift, we can use the following formula:

Confidence Interval = (mean - margin of error, mean + margin of error)

Given that the mean is $30 and the standard deviation is $5, we need to determine the margin of error.

The margin of error can be calculated using the formula:

Margin of Error = Critical Value * (Standard Deviation / √n)

where the critical value is determined based on the desired confidence level and degrees of freedom, and n is the sample size.

Since the sample size is 23, the degrees of freedom (df) will be (n - 1) = 22.

Using a t-table for 22 degrees of freedom and a 10% tail, the critical value is approximately 1.717.

Now we can calculate the margin of error:

Margin of Error = 1.717 * (5 / √23)

Margin of Error ≈ 1.717 * (5 / 4.7958) ≈ 1.836

Therefore, the confidence interval is:

Confidence Interval = (30 - 1.836, 30 + 1.836) = (28.2, 31.8)

Interpretation:

At an 80% confidence level, we can say that we are 80% confident that the true mean amount spent on a child's last birthday gift lies within the range of $28.2 to $31.8. This means that if we were to repeat this survey many times, about 80% of the calculated confidence intervals would contain the true population mean.

Learn more about confidence interval at https://brainly.com/question/15712887

#SPJ1


Write the system of equations (in x,y,z) that is represented
by
1. Write the system of equations (in x,y,z) that is represented by 0 -2 7 (8:10-318 x + + 1

Answers

The system of equations (in x,y,z) that is represented by the given matrix 0 -2 7 (8:10-318 x + + 1 is:

x - 2y + 7z = 8-3x + 18y - z = -1

To write a system of equations, we typically have multiple equations with variables that are related to each other. Now, if we solve these equations, we'll get the value of x, y, and z.

Let's solve it:

From equation (1), we can write:

x = 8 + 2y - 7z

Putting x in equation (2):

-3(8 + 2y - 7z) + 18y - z = -1

-24 - 6y + 21z + 18y - z = -1

-12y + 20z = 23

Now we can write z in terms of y:z = (23 + 12y) / 20

Putting this value of z in x = 8 + 2y - 7z:

x = 8 + 2y - 7[(23 + 12y) / 20]

Simplifying this:

x = 99/20 - 17y/10

Hence, the solution is:

x = 99/20 - 17y/10y = yz = (23 + 12y) / 20

To know more about matrix, visit:

https://brainly.com/question/29000721

#SPJ11

For the following exercise, use Gaussian elimination to solve the system. x-1/7+y-2/8+z-3/4= 0
x+y+z+z= 6
x+2/3+2y+z-3/3 = 5

Answers

The solution of the given system using Gaussian elimination is [tex]$\left(\frac{1085}{1582}, \frac{375}{1582}, -\frac{155}{567}\right).$[/tex]

The given linear equation is:

[tex]x-1/7+y-2/8+z-3/4= 0x+y+z+z= 6x+2/3+2y+z-3/3 = 5[/tex]

The system of equations can be represented in the matrix form as:

[tex]$$\begin{bmatrix}1 & -\frac{1}{7} & \frac{1}{4} & \\ 1 & 1 & 1 & 1\\ 1 & 2 & 1 & 2\end{bmatrix}\begin{bmatrix}x \\ y\\ z \end{bmatrix} = \begin{bmatrix}0\\6\\5\end{bmatrix}$$[/tex]

Gaussian elimination method:The augmented matrix for the given system is given by,

[tex]$$\left[\begin{array}{ccc|c}1 & -\frac{1}{7} & \frac{1}{4} & 0\\1 & 1 & 1 & 6\\1 & 2 & 1 & 5\\\end{array}\right]$$Subtracting row1 from row2, and row1 from row3,$$\left[\begin{array}{ccc|c}1 & -\frac{1}{7} & \frac{1}{4} & 0\\0 & \frac{8}{7} & \frac{3}{4} & 6\\0 & \frac{15}{7} & \frac{3}{4} & 5\\\end{array}\right]$$[/tex]

Multiplying row2 by 15 and subtracting 8 times row3 from it,

[tex]$$\left[\begin{array}{ccc|c}1 & -\frac{1}{7} & \frac{1}{4} & 0\\0 & 1 & \frac{15}{28} & \frac{45}{28}\\0 & \frac{15}{7} & \frac{3}{4} & 5\\\end{array}\right]$[/tex]

Subtracting row2 from row1 and 15 times row2 from row3,

[tex]$$\left[\begin{array}{ccc|c}1 & 0 & \frac{29}{28} & \frac{45}{49}\\0 & 1 & \frac{15}{28} & \frac{45}{28}\\0 & 0 & \frac{99}{28} & -\frac{465}{98}\\\end{array}\right]$$[/tex]

Multiplying row3 by 28/99,

we get,

[tex]$$\left[\begin{array}{ccc|c}1 & 0 & \frac{29}{28} & \frac{45}{49}\\0 & 1 & \frac{15}{28} & \frac{45}{28}\\0 & 0 & 1 & -\frac{155}{567}\\\end{array}\right]$$[/tex]

Subtracting 29/28 times row3 from row1 and 15/28 times row3 from row2,

[tex]$$\left[\begin{array}{ccc|c}1 & 0 & 0 & \frac{1085}{1582}\\0 & 1 & 0 & \frac{375}{1582}\\0 & 0 & 1 & -\frac{155}{567}\\\end{array}\right]$$[/tex]

The given system is

[tex]$x = \frac{1085}{1582}, y = \frac{375}{1582},$ and $z = -\frac{155}{567}$[/tex]

To know more about Matrix please visit :

https://brainly.com/question/29810899

#SPJ11

Identify the horizontal and vertical asymptotes of the function f(x) by calculating the appropriate limits and sketch the graph of the function.)
f(x)=2/x2−1

Answers

The horizontal and the vertical asymptotes of the function f(x) are y = -1 and x = 0

How to determine the horizontal and vertical asymptotes of the function f(x)

From the question, we have the following parameters that can be used in our computation:

f(x) = 2/x² - 1

Set the denominator to 0

So, we have

x² = 0

Take the square root of both sides

x = 0 --- vertical asymptote

For the horizontal asymptote, we set the radicand to 0

So, we have

horizontal asymptote, y = 0 - 1

Evaluate

horizontal asymptote, y =  -1

This means that the horizontal asymptote is y =  -1

Read more about asymptote at

https://brainly.com/question/1851758

#SPJ4

Other Questions
How many first initial values must the forecaster set using Holt's exponential smoothing? A. 0. B. 1. C. 2. D. 3. E. None of the above. 6. When calculating centered moving-average with order 4, how many data points are lost at the beginning of the original series? A. 1. B. 2. H C. 3. D. 4. E. None of the above. 7. A regression approach can also be used to deal with seasonality by using variables for the seasons. The missing word is: A. smoothing B. response C. residual D. dummy E. none of the above Let random variables X and Y denote, respectively, the temperature and the time in minutes that it takes a diesel engine to start. The joint density for X and Y is f(x,y) = c(4x + 2y + 1), 0 Which of the following type of galaxy can have a relatively intense star-formation episode also knows as "Star Burst"?Group of answer choicesEllipticalSpiralIrregularNone 6.00 moles of barium perchlorate contains the same number of ions as Problem (4): If you make the following series of deposits at an interest rate of 10% per year, what would be the total balance at the end of 5 years? $650 $450 F=? the nurse is caring for a client with a pneumothorax who has a chest tube drainage system. during repositioning of the client, the chest tube accidentally pulls out of the pleural cavity. which is the initial nursing action? determine the conference interval level of mu . if e Ozlem likes jogging 3 days of a week. She prefers to jog 3 miles. For her 95 times, the mean wasx 24 minutes and the standard deviation was S2.30 minutes. Let be the mean jogging time for the entire distribution of Ozlems 3 miles running times over the past several years. How can we find a 0.99 confidence interval for ?.likes jogging 3 days of a week. She prefers to jog 3 miles. For her 95 times, the mean wasx 24 minutes and the standard deviation was S2.30 minutes. Let be the mean jogging time for the entire distribution of Ozlems 3 miles running times over the past several years. How can we find a 0.99 confidence interval for a) What is the table value of Z for 0.99? (Z0.99)? (b) What can we use for ? (sample size is large) (c) What is the value of? Zcffiffin p (d) Determine the confidence interval level for . Use standard Maclaurin Series to find the series expansion of f(x)=3e ln(1 +82). a) Enter the value of the second non-zero coefficient: b) The series will converge if-d a safe is loaded onto a truck whose bed is 5.5- ft above the ground. the safe weighs 538 lb. if the effort applied is 140 lb, what length of ramp is needed? A company purchased a patent on January 1, 2014, for $1,992,000. The patent's legal life is 20 years but the company estimates that the patent's useful life will only be 12 years from the date of acquisition. On September 30, 2019, the company paid legal costs of $140,000 in successfully defending the patent in an infringement suit. Required: Based on the above given information answer the following questions: 1. What is the is the amount of the amortization expense that must be presented on the company's income statement for the year 2017? The answer is: 2. As on 31/12/2018, the company must present the patent on its with an amount of 3. What is the is the amount of the amortization expense that must be presented on the company's income statement for the year 2019? The answer is: unfair dismissal case -Illness/performance dismissal:- William commenced work as a Technical Assistant in 2010. His work involves 70% field work and 30% administrative work. William took 2 months personal leave in 2013 and was diagnosed with a depressive disorder. He was then subsequently admitted to hospital for a one month period. There is currently no related workers compensation claim.- William commenced a return to work programme with Random Research in 2014 and returned to full time work at the beginning of 2015. Random Research have assisted William by providing 12 months paid psychiatric counselling which has recently ended.- Williams performance however is causing issues amongst his co-workers who are having to pick up some of his workload. He regularly forgets to do routine tasks and lacks concentration which has led to complaints from clients and put several valuable contracts at risk.- Recently William has been taking personal leave but has refused requests to provide medical certificates for that leave. William has recently been given leave on full pay and directed to see an independent psychiatrist. The HR Manager has been provided with a copy of that report which states that William cannot perform all of the tasks he is required to do. In particular, he cannot reliably perform the field work. He can however perform some of the administrative tasks.- The HR manager has also been provided with a report from Williams treating psychiatrist stating that he has had no depressive symptoms for 3 months and is fit for work. Overall the HR Manager prefers the independent medical and terminates Williams employment on the basis he cannot perform the key requirements of the job. He is terminated and paid 4 weeks pay in lieu of notice.above is the case and I have to give recommendations and argue my point from the view point of being the Employer Representative. a spherical solid, centered at the origin, has radius 100 and mass density \delta(x,y,z)=104 -\left(x^2 y^2 z^2\right). the bus comes at 8:05. It takes me 31 minutes to get to the bus stop. What time should I leave to catch the bus? You roll 4 six-sided dice, like the ones shown inthe picture on the right. One possible outcome isthat you role (3,4,5,6). That is, the green die rolls3, the purple one rolls 4, the red one rolls 5 and theblue one rolls 6.Compute the probability that...a) you roll four different numbers.b) three of the dice roll the same number.c) you roll two pairs of numbers.d) the sum of the numbers rolled is 5.e) the sum of the numbers rolled is odd.f) the product of the numbers rolled is odd Please help me solve q33Use synthetic division to divide the first polynomial by the second. x+4x+8x+5 X+1 The quotient is. (Simplify your answer.) What types of transactions do not affect your accounting records? .Find the standard form of the equation of the ellipse satisfying the given conditions.Endpoints of major axis: (5,6) and(5,4)Endpoints of minor axis: (7,1) and(3,1) Look at the equation below f(x)= x + x - 10x + 8 Find the real roots using the method a. bisection. b. Newton-Raphson c. Secant With stop criteria is relative error = 0.0001%. You are free to make a preliminary estimate. Show the results of each iteration to the end. examine the unknown microscope slides and indicate the division they are classified in and explain how you know based on the diagram in question2 For your portfolio assignment, prepare a formal report to your VP that outlines all of the following questions:1) Staffing proposal for petroleum engineers to meet needs over the next 24-months. Your proposal should include industry data to prove the proposals competitiveness.2) Recommendation on whether or not new staff should be hired to fill biodiesel and ethanol positions, or if incentives should be offered to train current staff to meet foreseeable needs. Your recommendation should include a cost-benefit analysis.3) Recommendation on how to improve the current climate-related to environmental health and safety. Your recommendation should include how you plan to gather current organizational climate measures and share behavior expectations of leaders and employees. Your recommendations for improvement should include costs of implementing new programming compared to direct and indirect costs of past incidents to justify your recommendation. Steam Workshop Downloader