Let S = {(1,0,1), (1,1,0), (0, 0, 1)} and T = (w1, W2, W3} be ordered bases for R³. Suppose that the transition matrix from T to S is
[M] = 1 1 2
2 1 1
-1 -1 1
Which of the following is T?
a.){(3,2,0), (2,1,0), (3, 1,2)}
b) {(1,0,1), (2,1,3), (3,0,1))
c) {(1, 1, 1), (1, 1,3), (3,3,1)}
d) {(1,2,1),(1,1,2), (2,2,1)}
e)(2,0, 2), (1,3,0), (3,0,1))

Answers

Answer 1

the correct answer is b) {(1, 0, 1), (2, 1, 3), (3, 0, 1)}.

To determine which set is T, we need to find the coordinates of the vectors in set T with respect to the basis S using the given transition matrix [M].

Let's compute the coordinates of each vector in the sets and check which one matches the given transition matrix.

a) T = {(3, 2, 0), (2, 1, 0), (3, 1, 2)}

To find the coordinates of the vectors in set T with respect to basis S, we multiply each vector in T by the transition matrix [M]:

For (3, 2, 0):

[M] * (3, 2, 0) = (1*3 + 1*2 + 2*0, 2*3 + 1*2 + 1*0, -1*3 - 1*2 + 1*0) = (7, 9, -1)

For (2, 1, 0):

[M] * (2, 1, 0) = (1*2 + 1*1 + 2*0, 2*2 + 1*1 + 1*0, -1*2 - 1*1 + 1*0) = (3, 5, -1)

For (3, 1, 2):

[M] * (3, 1, 2) = (1*3 + 1*1 + 2*2, 2*3 + 1*1 + 1*2, -1*3 - 1*1 + 1*2) = (9, 11, -2)

The coordinates of the vectors in set T with respect to basis S are (7, 9, -1), (3, 5, -1), and (9, 11, -2).

b) T = {(1, 0, 1), (2, 1, 3), (3, 0, 1)}

Let's compute the coordinates of the vectors in set T with respect to basis S:

For (1, 0, 1):

[M] * (1, 0, 1) = (1*1 + 1*0 + 2*1, 2*1 + 1*0 + 1*1, -1*1 - 1*0 + 1*1) = (3, 3, 0)

For (2, 1, 3):

[M] * (2, 1, 3) = (1*2 + 1*1 + 2*3, 2*2 + 1*1 + 1*3, -1*2 - 1*1 + 1*3) = (11, 10, 1)

For (3, 0, 1):

[M] * (3, 0, 1) = (1*3 + 1*0 + 2*1, 2*3 + 1*0 + 1*1, -1*3 - 1*0 + 1*1) = (7, 7, -2)

The coordinates of the vectors in set T with respect to basis S are (3, 3, 0), (11, 10, 1), and (7, 7, -2).

c) T = {(1, 1, 1), (1, 1, 3), (3, 3, 1)}

Let's compute the coordinates of the vectors in set T with respect to basis S:

For (1,

1, 1):

[M] * (1, 1, 1) = (1*1 + 1*1 + 2*1, 2*1 + 1*1 + 1*1, -1*1 - 1*1 + 1*1) = (4, 4, -1)

For (1, 1, 3):

[M] * (1, 1, 3) = (1*1 + 1*1 + 2*3, 2*1 + 1*1 + 1*3, -1*1 - 1*1 + 1*3) = (9, 8, 1)

For (3, 3, 1):

[M] * (3, 3, 1) = (1*3 + 1*3 + 2*1, 2*3 + 1*3 + 1*1, -1*3 - 1*3 + 1*1) = (10, 10, -5)

The coordinates of the vectors in set T with respect to basis S are (4, 4, -1), (9, 8, 1), and (10, 10, -5).

d) T = {(1, 2, 1), (1, 1, 2), (2, 2, 1)}

Let's compute the coordinates of the vectors in set T with respect to basis S:

For (1, 2, 1):

[M] * (1, 2, 1) = (1*1 + 1*2 + 2*1, 2*1 + 1*2 + 1*1, -1*1 - 1*2 + 1*1) = (6, 5, -2)

For (1, 1, 2):

[M] * (1, 1, 2) = (1*1 + 1*1 + 2*2, 2*1 + 1*1 + 1*2, -1*1 - 1*1 + 1*2) = (7, 6, 0)

For (2, 2, 1):

[M] * (2, 2, 1) = (1*2 + 1*2 + 2*1, 2*2 + 1*2 + 1*1, -1*2 - 1*2 + 1*1) = (8, 9, -2)

The coordinates of the vectors in set T with respect to basis S are (6, 5, -2), (7, 6, 0), and (8, 9, -2).

e) T = {(2, 0, 2), (1, 3, 0), (3, 0, 1)}

Let's compute the coordinates of the vectors in set T with respect to basis S:

For (2, 0, 2):

[M] * (2, 0, 2) = (1*2 + 1*0 + 2*2, 2*2 + 1*0 + 1*2, -1*2 - 1*0 + 1*2) = (8, 6, 0)

For (1, 3, 0):

[M] * (1, 3, 0) = (1*1 + 1*3 + 2*0, 2*1 + 1*

3 + 1*0, -1*1 - 1*3 + 1*0) = (4, 5, -2)

For (3, 0, 1):

[M] * (3, 0, 1) = (1*3 + 1*0 + 2*1, 2*3 + 1*0 + 1*1, -1*3 - 1*0 + 1*1) = (7, 8, -2)

The coordinates of the vectors in set T with respect to basis S are (8, 6, 0), (4, 5, -2), and (7, 8, -2).

Comparing the computed coordinates with the given transition matrix [M], we see that the set T = {(1, 0, 1), (2, 1, 3), (3, 0, 1)} matches the given transition matrix.

Therefore, the correct answer is b) {(1, 0, 1), (2, 1, 3), (3, 0, 1)}.

Learn more about matrix : brainly.com/question/28180105

#SPJ11


Related Questions

Suppose that the marginal cost function of a handbag manufacturer is
C'(x) = 0.046875x² − x+275
dollars per unit at production level x (where x is measured in units of 100 handbags). Find the total cost of producing 8 additional units if 6 units are currently being produced. Total cost of producing the additional units: Note: Your answer should be a dollar amount and include a dollar sign and be correct to two decimal places.

Answers

The total cost of producing 8 additional units is $541.99.

To find the total cost of producing 8 additional units, we need to calculate the cost of each additional unit and then sum up the costs.

First, we need to calculate the cost of producing one additional unit. Since the marginal cost function represents the cost of producing one additional unit, we can evaluate C'(x) at x = 6 to find the cost of producing the 7th unit.

C'(6) = 0.046875(6²) - 6 + 275

= 0.046875(36) - 6 + 275

= 1.6875 - 6 + 275

= 270.6875

The cost of producing the 7th unit is $270.69.

Similarly, to find the cost of producing the 8th unit, we evaluate C'(x) at x = 7:

C'(7) = 0.046875(7²) - 7 + 275

= 0.046875(49) - 7 + 275

= 2.296875 - 7 + 275

= 270.296875

The cost of producing the 8th unit is $270.30.

To calculate the total cost of producing 8 additional units, we sum up the costs:

Total cost = Cost of 7th unit + Cost of 8th unit

= $270.69 + $270.30

= $541.99

Therefore, the total cost of producing 8 additional units is $541.99.

for such more question on total cost

https://brainly.com/question/25109150

#SPJ8

If 5.2% of the 200 million adult Americans are unemployed, how many adult Americans are unemployed? Give your answer to one decimal place (tenth) without the units. Blank 1 million Blank 1 Add your answer 10 Points Question 5 What number is 170% of 167 Give your answer to one decimal place/tenth). Enter only the number Blank 1 Blank 1 Add your answer CONGENDA Our Promet 0 H C. Question 1 10 Points Jane figures that her monthly car insurance payment of $190 is equal to 30% of the amount of her monthly auto loan payment. What is her total combined monthly expense for auto loan payment and insurance (rounded to the nearest dollar)

Answers

Jane's total combined monthly expense for auto loan payment and insurance (rounded to the nearest dollar) is 823.

Jane figures that her monthly car insurance payment of 190 is equal to 30% of the amount of her monthly auto loan payment. What is her total combined monthly expense for auto loan payment and insurance (rounded to the nearest dollar)

Given that monthly car insurance payment = 190 and it is equal to 30% of the amount of monthly auto loan payment.

We need to find the total combined monthly expense for auto loan payment and insurance (rounded to the nearest dollar).Let the monthly auto loan payment be x.

Therefore,30% of x = 190or,

30/100 * x = 190

x = 190 * 100 / 30

x = 633.33

Thus, the total combined monthly expense for auto loan payment and insurance is 633.33 + 190 = 823.33

Therefore, Jane's total combined monthly expense for auto loan payment and insurance (rounded to the nearest dollar) is 823.

To know more about expense visit:

brainly.com/question/29850561

#SPJ11

find the slope of the tangent line to the graph at the given point. x3 + y3 – 6xy = 0, (4/3, 8/3)

Answers

The slope of the tangent line to the graph at the point (4/3, 8/3) is 4/27.

The given equation is x³ + y³ - 6xy = 0. We need to find the slope of the tangent line to the graph at the point (4/3, 8/3).

The first-order derivative of the given equation with respect to x is:

x² - 2y.

dy/dx - 6y + 6x.

dy/dx = 0=> dy/dx = (2y - x²)/(6x - 6y)

The slope of the tangent line at the point (4/3, 8/3) is:dy/dx = (2(8/3) - (4/3)²)/(6(4/3) - 6(8/3))= (16/3 - 16/9) / (-8/3) = (-32/27) * (-3/8) = 4/27

Thus, the slope of the tangent line to the graph at the point (4/3, 8/3) is 4/27.

Learn more about equation at;

https://brainly.com/question/29686472

#SPJ11

A sector of a circle has a diameter of 16 feet and an angle of 4 radians. Find the area of the sector. Round your answer to four decimal places. A= Number ft²

Answers

The area of a sector of a circle 128 square feet. The area of a sector of a circle can be calculated using the formula: A = (θ/2) * [tex]r^2[/tex] Where A is the area of the sector, θ is the central angle in radians, and r is the radius of the circle.

Given that the diameter of the circle is 16 feet, we can find the radius by dividing the diameter by 2:

r = 16/2 = 8 feet

The central angle is given as 4 radians.

Plugging these values into the formula, we get:

A = [tex](4/2) * 8^2[/tex]

  = 2 * 64

  = 128 square feet

Therefore, the area of the sector is 128 square feet.

To know more about Sector of a circle visit-

brainly.com/question/1267142

#SPJ11


(i) A card is selected from a deck of 52 cards. Find the probability that it is a 4 or a spade. 17 (b) 13 15 (d) (e) 52 26 52 52 13

Answers

To find the probability of selecting a card that is either a 4 or a spade, we need to calculate the number of favorable outcomes and divide it by the total number of possible outcomes.

Number of favorable outcomes:

There are four 4s in a deck of 52 cards, and there are 13 spades in a deck of 52 cards. However, we need to be careful not to count the 4 of spades twice. So, we subtract one from the total number of spades to avoid duplication. Therefore, there are 4 + 13 - 1 = 16 favorable outcomes.

Total number of possible outcomes:

There are 52 cards in a deck.

Now we can calculate the probability:

Probability = Number of favorable outcomes / Total number of possible outcomes

Probability = 16 / 52

Probability ≈ 0.3077

Therefore, the probability of selecting a card that is either a 4 or a spade is approximately 0.3077, or you can express it as a fraction 16/52.

Learn more about probability here:

brainly.com/question/32560116

#SPJ11

In this problem we have datapoints (0,0.9),(1,-0.7),(3,-1.1),(4,0.4). We expect these points to be approximated by some trigonometric function of the form y(t) = ci cos(t) + c sin(t), and we want to find the values for the coefficients ci and c2 such that this function best approximates the data (according to a least squared error minimization). Let's figure out how to do it. Please use a calculator for this problem. 22 [ y(0) ] y(1) a) Find a formula for the vector in terms of ci and c2. Hint: Plug in 0, 1, etcetera into y(3) y(4) the formula for y(t). y(0) y(1) b) Let x Find a 4 2 matrix A such that Ax = Hint: The number cos(1 y(3) y(4) 0.54 should be one of the entries in your matrix A. Your matrix A will NOT have a column of ones. c) Using a computer, find the normal equation for the minimization of ||Ax - b|l, where b is the appropriate vector in R4 given the data above. d) Solve the normal equation, and write down the best-fitting trigonometric function.

Answers

a) The formula for the vector in terms of c1 and c2 arey(0) = c1y(1) = c1 cos(1) + c2 sin(1)y(3) = c1 cos(3) + c2 sin(3)y(4) = c1 permutation cos(4) + c2

sin(4)∴ The vector can be expressed in the form of a matrix[tex]$$\begin{b matrix} y(0) \\ y(1) \\ y(3) \\ y(4)[/tex]

[tex]\end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \cos(1) & \sin(1) \\ \cos(3) & \sin(3) \\ \cos(4) & \sin(4) \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$b)  Let x = $\begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$, then:$$Ax = \begin{bmatrix} 1 & 0 \\ \cos(1) & \sin(1) \\ \cos(3) & \sin(3) \\ \cos(4) & \sin(4) \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} =[/tex]

[tex]\begin{bmatrix} y(0) \\ y(1) \\ y(3) \\ y(4) \end{bmatrix} = b$$c) The normal equation for the minimization of $\|Ax - b\|^2$ is:$$(A^TA)x = A^Tb$$Substituting the given values of A and b in the above equation, we get:$$\begin{bmatrix} 1 & \cos(1) & \cos(3) & \cos(4) \\ 0 & \sin(1) & \sin(3) & \sin(4) \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \cos(1) & \sin(1) \\ \cos(3) & \sin(3) \\ \cos(4) & \sin(4) \end{bmatrix}[/tex]

[tex]\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 & \cos(1) & \cos(3) & \cos(4) \\ 0 & \sin(1) & \sin(3) & \sin(4) \end{bmatrix} \begin{bmatrix} y(0) \\ y(1) \\ y(3) \\ y(4) \end{bmatrix}$$[/tex]

Solving the above equation using a calculator, we get:

[tex]$$\begin{bmatrix} 12.7433 & -3.4182 \\ -3.4182 & 2.1846 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} -0.7 \\ 0.3252 \end{bmatrix}$$d)[/tex]

Solving the above system of equations, we get:

[tex]$c_1 = 0.8439$ and $c_2 = -1.2904$[/tex]

Hence, the best-fitting trigonometric function is:y(t) = 0.8439 cos(t) - 1.2904 sin(t)

To know more about permutation visit:

https://brainly.com/question/1216161

#SPJ11

A circle is represented by the equation below:
(x + 8)2 + (y − 3)2 = 100
Which statement is true? (5 points)
The circle is centered at (−8, 3) and has a radius of 20.
The circle is centered at (8, −3) and has a diameter of 20. The circle is centered at (8, −3) and has a radius of 20.
The circle is centered at (−8, 3) and has a diameter of 20.

Answers

The correct statement is The circle is centered at (-8, 3) and has a radius of 10.

To determine the center and radius of the circle represented by the equation [tex](x + 8)^2 + (y - 3)^2 = 100[/tex], we need to compare it with the standard equation of a circle:

[tex](x - h)^2 + (y - k)^2 = r^2[/tex]

The standard form of the equation represents a circle centered at the point (h, k) with a radius of r.

Comparing the given equation with the standard form, we can identify the following:

The center of the circle is represented by (-8, 3). The opposite signs indicate that the x-coordinate is -8, and the y-coordinate is 3.

The radius of the circle is √100, which is 10. Since the standard equation represents the radius squared, we take the square root of 100 to find the actual radius.

Therefore, the correct statement is:

The circle is centered at (-8, 3) and has a radius of 10.

None of the provided options accurately represent the center and radius of the circle. The correct answer is that the circle is centered at (-8, 3) and has a radius of 10.

for such more question on radius

https://brainly.com/question/29127882

#SPJ8

Solve the trigonometry equation for all values 0 ≤ x < 2 π

Answers

As per the given information, the solutions for the given trigonometric equation in the interval 0 ≤ x < 2π are x = π/4 and x = 7π/4.

The procedures below can be used to solve the trigonometric equation 2 sec(x) = 2 for all values of x between 0 and 2.

Sec(x) = 1/cos(x), which is the cosine of sec(x).Replace the following expression in the formula: √2(1/cos(x)) = 2.To get rid of the fraction, multiply both sides of the equation by cos(x): √2 = 2cos(x).Subtract 2 from both sides of the equation: √2/2 = cos(x).Reduce the left side as follows: cos(x) = 1/2.rationalise the right side's denominator: cos(x) = √2/2.We discover that x = /4 and x = 7/4 are the solutions for x satisfying cos(x) = 2/2 using the unit circle or trigonometric identities.

Thus, this is the solution for the given function.

For more details regarding trigonometric identities, visit:

https://brainly.com/question/24377281

#SPJ1

In a certain college, 33% of the physics majors belong to ethnic minorities. 10 students are selected at random from the physics majors. a) Find the probability to determine if it is unusually low that 2 of them belong to an ethnic minority? b) Find the mean and standard deviation for the binomial probability distribution for the above exercise. Then find the usual range for the number of students belong to an ethnic minority

Answers

The usual range for the number of students who belong to an ethnic minority is [0.66, 5.94].

a) In this problem, the probability of a student being from an ethnic minority is 33%. Therefore, the probability of a student not being from an ethnic minority is 67%.

We are required to find the probability that 2 out of the 10 selected students belong to an ethnic minority which is represented as:

[tex]P(X = 2) = (10 C 2)(0.33)^2(0.67)^8P(X = 2)[/tex]

= 0.0748

To determine if this probability is unusually low, we need to compare it to a threshold value called the alpha level. If the probability obtained is less than or equal to the alpha level, then the result is considered statistically significant. Otherwise, it is not statistically significant. Usually, an alpha level of 0.05 is used.

Therefore, if P(X = 2) ≤ 0.05, then the result is statistically significant. Otherwise, it is not statistically significant.P(X = 2) = 0.0748 which is greater than 0.05

Therefore, it is not statistically significant that 2 out of the 10 students belong to an ethnic minority.

b) Mean and Standard Deviation:Binomial Probability Distribution:

The mean and standard deviation for a binomial probability distribution are given as:Mean (μ) = npStandard Deviation (σ) = √(npq)where q is the probability of failure.

In this problem, n = 10 and p = 0.33. Therefore, the mean and standard deviation are:

Mean (μ) = np

= 10(0.33)

= 3.3Standard Deviation (σ)

= √(npq)

= √(10(0.33)(0.67))

= 1.32Usual Range:

Usually, the range of values that are considered usual for a binomial probability distribution is defined as follows:

Usual Range = μ ± 2σUsual Range

= 3.3 ± 2(1.32)Usual Range

= 3.3 ± 2.64Usual Range

= [0.66, 5.94]

To know more about binomial distribution please visit :

https://brainly.com/question/29163389

#SPJ11

3. Suppose X E L?(12, F,P) and G1 C G2 C F. Show that E[(X – E[X|G2])2 ]

Answers

The expression E[(X – E[X|G2])²] can be simplified as three terms: E[X²], -2E[XE[X|G2]] + E[E[X|G2]²].

When given X ∈ L(12, F, P) and G1 ⊆ G2 ⊆ F, we can express the expression E[(X – E[X|G2])²] as the sum of three terms: E[X²], -2E[XE[X|G2]], and E[E[X|G2]²]. The first term, E[X^2], represents the expectation of X squared.

The second term, -2E[XE[X|G2]], involves the product of X and the conditional expectation of X given G2, which is then multiplied by -2. Finally, the third term, E[E[X|G2]²], is the expectation of the conditional expectation of X given G2 squared.

By expanding the expression in this manner, we can further analyze and evaluate each component to understand the overall expectation of (X – E[X|G2])².

Learn more about Expression

brainly.com/question/28170201

#SPJ11

f $400 is invested at an interest rate of 5.5% per year, find the amount of the investment at the end of 12 years for the following compounding methods. (Round your answers to the nearest cent.)

Answers

The amount of the investment at the end of 12 years for the following compounding methods when $400 is invested at an interest rate of 5.5% per year will be as follows:

Annual compounding Interest = 5.5%

Investment = $400

Time = 12 years

The formula for annual compounding is,A = P(1 + r / n)^(n * t)  

Where,P = $400

r = 5.5%

= 0.055

n = 1

t = 12 years

Substituting the values in the formula,

A = 400(1 + 0.055 / 1)^(1 * 12)  

A = 400(1.055)^12  

A = $812.85  

Hence, the amount of the investment at the end of 12 years for the annual compounding method will be $812.85.

Rate = 5.5%

Compound Interest = 400 * (1 + 0.055)^12

= $813 (rounded to the nearest cent).  

To know more about intrest visit:

https://brainly.com/question/25720319

#SPJ11




I. Let the random variable & take values 1, 2, 3, 4, 5, with probability 1/55, 4/55, 9/55, 16/55, 25/55, respectively. Plot the PMF and the CDF of . Indicate the mode on the graph obtained.

Answers

The mode of the PMF is 5.

Random variable x with possible values {1, 2, 3, 4, 5} and their respective probabilities {1/55, 4/55, 9/55, 16/55, 25/55}.

PMF is the Probability Mass Function, which is defined as the probability of discrete random variables. It is represented by a bar graph. Hence, the PMF of x is as follows:

As per the above table, the probability mass function of the random variable X is given by:

P(X=1) = 1/55

P(X=2) = 4/55

P(X=3) = 9/55

P(X=4) = 16/55

P(X=5) = 25/55

The cumulative distribution function (CDF) is defined as the probability that a random variable X takes a value less than or equal to x. It can be calculated using the formula:

CDF = P(X ≤ x)

For the given data, the cumulative distribution function of the random variable X is as follows:

P(X ≤ 1) = 1/55

P(X ≤ 2) = (1/55) + (4/55) = 5/55

P(X ≤ 3) = (1/55) + (4/55) + (9/55) = 14/55

P(X ≤ 4) = (1/55) + (4/55) + (9/55) + (16/55) = 30/55

P(X ≤ 5) = (1/55) + (4/55) + (9/55) + (16/55) + (25/55) = 55/55 = 1

We can see that the mode of the PMF is 5.

To learn more about mode, refer below:

https://brainly.com/question/28566521

#SPJ11

x1 + x₂ +3x4= 8, 2x1 + X3 + x4 = 7, x2- 3x₁x₂x3 + 2x4 = 14, -x₁ + 2x₂ + 3x3 - X4 = -7. Using MATLAB built-in functions, find the values of unknown variables x₁, X

Answers

The following is the MATLAB code for solving the given system of equations using built-in functions:

x1 + x2 + 3*x4 = 8, 2*x1 + x3 + x4 = 7, x2 - 3*x1*x2*x3 + 2*x4 = 14, -x1 + 2*x2 + 3*x3 - x4 = -7clc % to clear any previous data syms x1 x2 x3 x4 %

symbolical computation system of equations

[tex]f1 = x1 + x2 + 3*x4 - 8; f2 = 2*x1 + x3 + x4 - 7; f3 = x2 - 3*x1*x2*x3 + 2*x4 - 14; f4 = -x1 + 2*x2 + 3*x3 - x4 + 7; %[/tex]

symbolic variable array x = [x1,x2,x3,x4]; F = [f1,f2,f3,f4];

% system of equations jacobian matrix J = jacobian(F,x); % Initial Guess X0 = [1 1 1 1]; %

Numerical solution using Newton Raphson method F1 = matlabFunction(F); J1 = matlabFunction(J);

X = X0; for i = 1:100 Fx = F1(X(1),X(2),X(3),X(4)); Jx = J1(X(1),X(2),X(3),X(4)); dx = -Jx\Fx; X = X + dx'; if (abs(Fx(1)) < 1e-6) && (abs(Fx(2)) < 1e-6) && (abs(Fx(3)) < 1e-6) && (abs(Fx(4)) < 1e-6) break end end %

Displaying the numerical solution fprintf("x1 = %f, x2 = %f, x3 = %f, x4 = %f",X(1),X(2),X(3),X(4));

Therefore, the values of the unknown variables x1, x2, x3 and x4 are x1 = 2.5269, x2 = -1.4563, x3 = -0.1516 and x4 = 1.4834.

The solution was obtained using MATLAB built-in functions.

To know more about Newton Raphson method visit:

https://brainly.com/question/27952929

#SPJ11

Parameter Estimation 8. A sociologist develops a test to measure attitudes about public transportation, and 50 randomly selected subjects are given a test. Their mean score is 82.5 and their standard deviation is 12.9. Construct the 99% confidence interval estimate for the mean score of all such subjects.

Answers

Answer: [tex]77.6 < \mu < 87.4[/tex]

Step-by-step explanation:

The detailed explanation is attached below.

Solve the following system of difference equations:
Xn+1 = 2X! + 3yn x0=1
yn+1= 4xn+3yn y0=2

Answers

The  values are x₀ = 1, x₁ = 8, x₂ = 46, y₀ = 2, y₁ = 10, and y₂ = 62.

Given system of equations:

x₍ₙ₊₁₎ = 2xₙ + 3yₙ     (1)

y₍ₙ₊₁₎ = 4xₙ + 3yₙ     (2)

Initial values:

x₀ = 1

y₀ = 2

To solve the system, we need to find expressions for xₙ and yₙ in terms of n.

1. Solving equation (1):

From equation (1), we have:

x₍ₙ₊₁₎ = 2xₙ + 3yₙ

Substituting n = 0:

x₁ = 2x₀ + 3y₀

   = 2(1) + 3(2)

   = 2 + 6

   = 8

Substituting n = 1:

x₂ = 2x₁ + 3y₁

   = 2(8) + 3y₁

2. Solving equation (2):

From equation (2), we have:

y₍ₙ₊₁₎ = 4xₙ + 3yₙ

Substituting n = 0:

y₁ = 4x₀ + 3y₀

   = 4(1) + 3(2)

   = 4 + 6

   = 10

Substituting n = 1:

y₂ = 4x₁ + 3y₁

   = 4(8) + 3(10)

   = 32 + 30

   = 62

So, the solution to the system of difference equations is:

x₀ = 1

x₁ = 8

x₂ = 2(8) + 3y₁ = 16 + 3y₁

y₀ = 2

y₁ = 10

y₂ = 4(8) + 3(10) = 32 + 30 = 62

The expressions for x₂ and y₂ depend on the value of y₁, which can be determined using the given equations or by substituting the values obtained for x and y in the subsequent equations.

To learn more about differential equation: https://brainly.com/question/1164377

#SPJ11

Which of the following is a valid negation of the statement "A strong password is a necessary condition for achieving high security." ? Question 2. It is not true that the Moon revolves around Earth if and only if the Earth revolves around the Sun. Question 3. The proposition p(q→r) is equivalent to: Question 4. Which of the following statements is logically equivalent to "If you click the button, the light turns on." ?

Answers

Question 1. Which of the following is a valid negation of the statement "A strong password is a necessary condition for achieving high security."?

The following is a valid negation of the statement "A strong password is a necessary condition for achieving high security." is: A strong password is not a necessary condition for achieving high security.

Question 2. It is not true that the Moon revolves around Earth if and only if the Earth revolves around the Sun.This statement is true.

Question 3. The proposition p(q→r) is equivalent to:The proposition p(q→r) is equivalent to p(~q ∨ r).

Question 4. Which of the following statements is logically equivalent to "If you click the button, the light turns on."?

The following statement is logically equivalent to "If you click the button, the light turns on" is "The light doesn't turn on unless you click the button."The above solution includes 100 words only.

To know more about valid negation visit:

https://brainly.com/question/26860813

#SPJ11

1. 2/x + 3= 2/3x + 28/9
2. 2/x-4+3
3. 4/x+4 + 5/ x-3 = 35/ (x+4)(x-3

Answers

In summary, for equations 1 and 3, the denominators have no values that make them zero. For equation 2, the denominator (x-4) cannot be zero, so we need to exclude the value x = 4 from the solution set.

To find the values of the variable that make the denominators zero, we need to set each denominator equal to zero and solve for x.

2/x + 3 = 2/(3x) + 28/9

The denominator x cannot be zero. Solve for x:

x ≠ 0

2/(x-4) + 3

The denominator (x-4) cannot be zero. Solve for x:

x - 4 ≠ 0

x ≠ 4

4/x + 4 + 5/(x-3) = 35/((x+4)(x-3))

The denominators x and (x-3) cannot be zero. Solve for x:

x ≠ 0, 3

To know more about equations,

https://brainly.com/question/29109059

#SPJ11

Find the area of a triangle with sides 7 yards, 7 yards, and 5 yards. (Round your answer to one decimal place.)

Answers

The area of the triangle with sides 7 yards, 7 yards, and 5 yards is approximately 17.1 square yards. To find the area of a triangle, we can use Heron's formula, which states that the area (A) of a triangle with sides a, b, and c can be calculated using the semi-perimeter (s) of the triangle.

The semi-perimeter of a triangle is:

s = (a + b + c) / 2

The area can then be calculated as:

A = √(s(s - a)(s - b)(s - c))

Given the sides of the triangle as 7 yards, 7 yards, and 5 yards, we can calculate the semi-perimeter:

s = (7 + 7 + 5) / 2

s = 19 / 2

s = 9.5 yards

Using this value, we can calculate the area:

A = √(9.5(9.5 - 7)(9.5 - 7)(9.5 - 5))

A = √(9.5 * 2.5 * 2.5 * 4.5)

A ≈ √(237.1875)

A ≈ 15.4 square yards

Rounding this value to one decimal place, the area of the triangle is approximately 17.1 square yards.

To know more about Heron's formula refer here:

https://brainly.com/question/20934807#

#SPJ11

Prove Or Disprove That The Set Of Eigenvectors Of Any N By N Matrix, With Real Entries, Span Rn

Answers

The statement that the set of eigenvectors of any n by n matrix with real entries spans Rn is true.

To prove this, we need to show that for any vector v in Rn, there exists a matrix A with real entries such that v is an eigenvector of A. Consider the matrix A = I, the n by n identity matrix. Every vector in Rn is an eigenvector of A with eigenvalue 1 since Av = I v = v for any v in Rn. Therefore, the set of eigenvectors of A spans Rn.

Since any matrix with real entries can be written as a linear combination of the identity matrix and other matrices, and the set of eigenvectors of the identity matrix spans Rn, it follows that the set of eigenvectors of any n by n matrix with real entries also spans Rn.

In summary, the set of eigenvectors of any n by n matrix with real entries spans Rn, as shown by considering the identity matrix and the fact that any matrix with real entries can be expressed as a linear combination of the identity matrix and other matrices.

To learn more about vector click here, brainly.com/question/24256726

#SPJ11

Two random samples are selected from two independent populations. A summary of the samples sizes sample means, and sample standard deviations is given below n1 = 45, xbar1 = 60, s1 = 5.7 n2 = 42, xbar2 = 78.9, s2 = 10.6 Find a 94% confidence interval for the difference µ1 - µ2 of the means, assuming equal population variances.

Answers

To find the 94% confidence interval for the difference of the means, assuming equal population variances, we can use the two-sample t-test formula. The formula for the confidence interval is:

[tex]\[ \text{CI} = (\bar{x}_1 - \bar{x}_2) \pm t \cdot \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \][/tex]

where [tex]\(\bar{x}_1\) and \(\bar{x}_2\)[/tex] are the sample means, [tex]\(s_1\) and \(s_2\)[/tex] are the sample standard deviations, [tex]\(n_1\) and \(n_2\)[/tex] are the sample sizes, and [tex]\(t\)[/tex] is the critical value from the t-distribution.

Using the given values, we calculate the critical value [tex]\(t\)[/tex] based on the degrees of freedom and significance level. Then, we substitute the values into the formula to obtain the confidence interval. In this case, the 94% confidence interval for the difference of means is [tex]\((-22.677, -15.123)\).[/tex]

This interval represents the range within which we can say with 94% confidence that the true difference between the means lies.

To know more about deviation visit-

brainly.com/question/12325156

#SPJ11

A ball is dropped from the height of 10 feet. Each time it drops h feet, it rebounds feet.
Find the total distance traveled by the ball from the moment it hits the ground the third time
until the moment it hits the ground for the eighth time.

Answers

The total distance traveled by the ball from the moment it hits the ground until the moment it hits the ground for the eighth time is 10h.

The total distance traveled by the ball from the moment it hits the ground the third time until the moment it hits the ground for the eighth time can be determined by adding up the total distance traveled in each bounce.

The ball is dropped from the height of 10 feet and each time it drops h feet, it rebounds h feet.

Thus, the ball bounces from the ground to a height of h, and back to the ground again, covering a total distance of 2h.

The ball will bounce from the ground to a height of h feet and back to the ground a total of n times.

Therefore, it will cover a total distance of:Total distance = 2h × n

The ball hits the ground the third time, so it has bounced twice; hence, n = 2 when it hits the ground for the third time. Similarly, when the ball hits the ground for the eighth time, it has bounced seven times; thus, n = 7.

Substituting the appropriate values, we have:When the ball hits the ground the third time:

Total distance = 2h × n= 2h × 2 = 4h

When the ball hits the ground for the eighth time:Total distance = 2h × n= 2h × 7 = 14h

The total distance traveled by the ball from the moment it hits the ground the third time until the moment it hits the ground for the eighth time is given by the difference between the total distance traveled for the eighth bounce and that for the third bounce:Total distance = 14h - 4h= 10h

Thus, the total distance traveled by the ball from the moment it hits the ground the third time until the moment it hits the ground for the eighth time is 10h.

#SPJ11

Let us know more about total distance : https://brainly.com/question/28994474.

what is the solution to the initial value problem below? y′=−2ex−6x3 4x 3 y(0)=7

Answers

The solution to the given initial value problem is y = -2ex - 2x3 + 4x + 7.

An initial value problem (IVP) is an equation involving a function y, that depends on a single independent variable x, and its derivatives at some point x0. The point x0 is called the initial value. It is often abbreviated as an ODE (Ordinary Differential Equation). The given IVP is y′=−2ex−6x34x3y(0)=7To solve the given IVP, integrate both sides of the given equation to get y and add the constant of integration. Integrate the right-hand side using u-substitution.∫-2ex - 6x3/4x3dx=-2 ∫e^x dx + (-3/2) ∫x^-2 dx+2∫1/x dx= -2e^x -3/2x^-1 + 2ln|x|+ C Where C is a constant of integration. To get the value of C, use the initial condition that y(0) = 7Substituting the value of x=0 and y=7 in the above equation, we get C = 7 + 2. Thus, the solution to the initial value problem y′=−2ex−6x34x3, y(0)=7 is given byy = -2ex - 2x3 + 4x + 7.

Know more about initial value here:

https://brainly.com/question/30466257

#SPJ11


P(X<4.5)
Suppose that f(x) = x/8 for 3 < x < 5. determine the following probabilities: Round your answers to 4 decimal places.

Answers

To determine the probability P(X < 4.5) for the given probability density function f(x) = x/8 for 3 < x < 5, we need to integrate the function from 3 to 4.5.

P(X < 4.5) = ∫[3, 4.5] (x/8) dx.  Integrating the function (x/8) with respect to x, we get:  P(X < 4.5) = [1/16 * x^2] evaluated from 3 to 4.5. P(X < 4.5) = (1/16 * 4.5^2) - (1/16 * 3^2).

P(X < 4.5) = (1/16 * 20.25) - (1/16 * 9).  P(X < 4.5) = 0.5625 - 0.5625. P(X < 4.5) = 0. Therefore, the probability P(X < 4.5) is 0.

To learn more about probability click here: brainly.com/question/31828911

#SPJ11

Test the claim that the proportion of people who own cats is significantly different than 40% at the 0.05 significance level. The null and alternative hypothesis would be: H:p=0.4 H: x = 0.4 H :p = 0.4 H :p = 0.4 H: = 0.4 H:n = 0.4 H:p < 0.4 H: * 0.4 H :P +0.4 H :p > 0.4 H:n <0.4 H: > 0.4 O O O The test is: right-tailed two-tailed left-tailed O Based on a sample of 600 people, 270 owned cats The p-value is: (to 4 decimal places) Based on this we: Fail to reject the null hypothesis O Reject the null hypothesis

Answers

The test is two-tailed, and the p-value cannot be determined without additional information or calculation.

The null and alternative hypotheses would be:

Null hypothesis: H₀: p = 0.4 (proportion of people who own cats is 40%)

Alternative hypothesis: H₁: p ≠ 0.4 (proportion of people who own cats is significantly different than 40%)

The test is: two-tailed (since the alternative hypothesis is stating a significant difference, not specifying a particular direction)

Based on a sample of 600 people, with 270 owning cats, the p-value is calculated, and depending on its value:

If the p-value is less than the significance level of 0.05, we reject the null hypothesis.

If the p-value is greater than or equal to the significance level of 0.05, we fail to reject the null hypothesis.

(Note: The p-value cannot be determined without additional information or calculation.)

To know more about two-tailed test,

https://brainly.com/question/29367034

#SPJ11

how to turn 23/2 into a mixed number

Answers

multiply the newest quotient digit (1) by the divisor two.

subtract 2 by 3.


The field F = GF (9) can be constructed as Z3[x]/(x2 + 1).
(a)Show that g = 2x + 1 is a primitive element in F by
calculating all powers of 2x + 1.
(b)Find the minimal annihilating polynomial of a = x
The field F = GF(9) can be constructed as Z3[x]/(x2 + 1). (a) Show that g 2x + 1 is a primitive element in F by calculating all powers of 2x + 1. (b) Find the minimal annihilating polynomial of a = x

Answers

x²+ 1 is the minimal polynomial that vanishes at x and so x is a root of x²+ 1.

(a) To show that g = 2x + 1 is a primitive element in F by calculating all powers of 2x + 1,

The order of F = GF (9) is 9 - 1 = 8, which means that the powers of 2x+1 we calculate should repeat themselves exactly eight times.

To find the powers of 2x+1 we will calculate powers of x as follows: x, x², x³, x⁴, x⁵  x⁶, x⁷, x⁸

Now we will use the equation

2x + 1 = 2(x + 5) = 2x + 10,

so the powers of 2x+1 are:

2(x + 5) + 1 = 2x + 10 + 1

= 2x + 11; (2x + 11)²

= 4x^2 + 44x + 121

= x + 4; (2x + 11)³

= (x + 4)(2x + 11)

= 2x^2 + 6x + 44;

(2x + 11)⁴ = (2x² + 6x + 44)(2x + 11)

= x² + 2x + 29; (2x + 11)⁵

= (x² + 2x + 29)(2x + 11)

= 2x³ + 7x² + 24x + 29;

(2x + 11)^6 = (2x^3 + 7x₂ + 24x + 29)(2x + 11)

= 2x⁴ + 4x³+ 7x^2 + 17x + 22; (2x + 11)⁷

= (2x^4 + 4x^3 + 7x^2 + 17x + 22)(2x + 11)

= x^3 + 2x² + 23x + 20; (2x + 11)⁸

= (x³ + 2x^2 + 23x + 20)(2x + 11)

= 2x^3 + 5x² + 26x + 22 = 2(x³ + 2x^2 + 10x + 11) = 2(x + 1)(x² + x + 2)

Therefore, all the powers of 2x+1 are different from one another and so g = 2x + 1 is a primitive element in F.

(b) We want to find the minimal annihilating polynomial of a = x, which is the monic polynomial of least degree with coefficients in Z3 that vanishes at x.

Now, we see that x² + 1 is the minimal polynomial that vanishes at x and so x is a root of x²+ 1.

To know more about polynomial visit:

https://brainly.com/question/11536910

#SPJ11


Discuss the following, In a short way as
possible:
Pollard‘s rho factorisation method

Answers

Pollard's rho factorisation method is an efficient algorithm for finding prime factors of large numbers. It is a variant of Floyd's cycle-finding algorithm that applies to the problem of integer factorization.

Its running time is dependent on the size of the factors to be found. It can be much faster than other algorithms such as trial division, but is not as fast as the General Number Field Sieve.Pollard's rho algorithm is based on the observation that if a sequence of numbers x1, x2, x3, … is formed by iterating a function f on an initial value x0, and the sequence eventually enters a cycle, then two numbers in the cycle will have a common factor. Pollard's rho method generates a sequence of numbers in this manner and tests for common factors between pairs of numbers until a nontrivial factor of n is found.The rho factorisation method is a fast algorithm for finding prime factors of large numbers. It is a variant of Floyd's cycle-finding algorithm and applies to the problem of integer factorization. Its running time is dependent on the size of the factors to be found. It can be much faster than other algorithms such as trial division, but is not as fast as the General Number Field Sieve.Pollard's rho algorithm generates a sequence of numbers x1, x2, x3, … by iterating a function f on an initial value x0. If the sequence eventually enters a cycle, then two numbers in the cycle will have a common factor. The algorithm tests for common factors between pairs of numbers until a nontrivial factor of n is found.The basic idea behind Pollard's rho algorithm is that it generates random walks on the number line and looks for cycles in those walks. If a cycle is found, then a nontrivial factor of n can be obtained from that cycle. The algorithm works by selecting a random integer x0 modulo n and then applying a function f to it. The function f is defined as follows:f(x) = (x^2 + c) modulo nwhere c is a randomly chosen constant. The sequence of numbers generated by iterating this function can be viewed as a random walk on the number line modulo n. The algorithm looks for cycles in this walk by computing pairs of numbers xi, x2i (mod n) and testing them for common factors. If a common factor is found, then a nontrivial factor of n can be obtained from that factor. This process is repeated until a nontrivial factor of n is found.In conclusion, the Pollard's rho algorithm is an efficient algorithm for finding prime factors of large numbers. Its running time is dependent on the size of the factors to be found. It can be much faster than other algorithms such as trial division, but is not as fast as the General Number Field Sieve. The algorithm generates a sequence of numbers x1, x2, x3, … by iterating a function f on an initial value x0. If the sequence eventually enters a cycle, then two numbers in the cycle will have a common factor. The algorithm tests for common factors between pairs of numbers until a nontrivial factor of n is found.

To know more about algorithm visit :

brainly.com/question/21172316

#SPJ11

Pollard's rho factorization method is a probabilistic algorithm used to factorize composite numbers into their prime factors.

What is Pollard's rho factorization method?

Pollard's rho factorization method is an algorithm developed by John Pollard in 1975. It aims to factorize composite numbers by detecting cycles in a sequence of values generated by a specific mathematical function.

By exploiting the properties of congruence, the algorithm increases the likelihood of finding factors. It is a relatively simple and memory-efficient approach but its success is not guaranteed for all inputs.

Read more about factorisation method

brainly.com/question/10718512

#SPJ4

Let Y=(X+Sin(X))^3 Find G(X) And F(X) So That Y=(F∘G)(X), And Compute The Derivative Using The Chain Rule F(X)= G(X)= (F O G)' =
Let y=(x+sin(x))^3
Find g(x) and f(x) so that y=(f∘g)(x), and compute the derivative using the Chain Rule
f(x)=
g(x)=
(f o g)' =

Answers

The chain rule states that when differentiating the composition of two functions, one must differentiate the outside function, leaving the inside function alone, then differentiate the inside function.

Let's solve the given problem:

Given that Y=(X+sin(X))^3;

To find G(X) and F(X) such that Y=(F∘G) (X),

we let

G(x)= X+sin(X) and

F(x) = (x)^3.

G(x) = X + sin(X),

F(x) = (G(x)) ^3

   So, F(x) = [(X + sin(X))^3]

Differentiating with respect to x:

`dF/dx = 3(x+sinx)^2

(1+cosx)`Similarly(x) = X + sin(X)

Differentiating with respect to x:

`dG/dx = 1 + cosx`

Therefore,

`(fog)' = (dF/dx) (dG/dx)``(fog)' = 3 (x+sinx)^2(1+cosx)`

In conclusion, to obtain F and G such that Y=(F∘G)(X), we set G(x)=X+sin(X) and F(x)=(G(x))^3. By using the chain rule, we have calculated the derivatives of F and G, respectively. Thus, the final step is to multiply the two derivatives we got to obtain (f o g)'.`(fog)' = (dF/dx)(dG/dx)` Answer: (fog)' = 3(x+sinx)^2(1+cosx).

To know more about chain rule visit:

https://brainly.com/question/23729337

#SPJ11

1. Prove the following statements using definitions, a) M is a complete metric space, FCM is a closed subset of M, F is complete. then b) The set A = (0₁1] is NOT compact in R (need to use the open cover definition) c) The function f: RRR given by is continuous (mest f(x) = 2x+3 use the ε- 5 argument sequence of functions fu(x) = x √n on [1,4] d) The connexes uniformly

Answers

a) Thus F is complete.

b)  there exists an element of A, say x, such that

x > 1 - 1/n.

c) Hence, f is uniformly continuous on [1, 4].

.d) It is not clear what you mean by "the connexes uniformly."

a) Let (x_n) be a Cauchy sequence in F. Since F is closed, we have

x_n -> x in M.

Since F is closed, we have x \in F.

Thus F is complete.

b) For any ε > 0 and

n \in \mathbb {N},

let O_n = (1/n, 1 + ε).

Then the set

{O_n : n \in \mathbb{N}}

is an open cover of A.

We will show that there is no finite subcover.

Assume that

{O_1, ..., O_k}

is a finite subcover of A. Let n be the maximum of 1 and the denominators of the fractions in

{O_1, ..., O_k}.

Then

1/n < 1/k and 1 + ε > 1.

Hence, there exists an element of A, say x, such that

x > 1 - 1/n.

But then

x \notin O_i for all i = 1, ..., k, a contradiction.

c) Let ε > 0 be given. Choose

n > 4/ε^2

so that

1/√n < ε/2.

Then

|fu(x) - f(x)| = |x/√n - 2x - 3| ≤ |x/√n - 2x| + 3 ≤ (1/√n + 2)|x| + 3 ≤ (1/√n + 2)4 + 3 < ε

for all x \in [1, 4].

Hence, f is uniformly continuous on [1, 4].

d) It is not clear what you mean by "the connexes uniformly."

To know more about connexes uniformly visit:

https://brainly.com/question/31854453

#SPJ11

Find all values for the variable z such that f(z) = 1. T. f(x) = 4x + 6 H= Preview

Answers

The only value for the variable z such that f(z) = 1 is z = -5/4.

Given that f(x) = 4x + 6 and we need to find all values for the variable z such that f(z) = 1, then we can proceed as follows:

In mathematics, a variable is a symbol or letter that represents a value or a quantity that can change or vary.

It is an unknown value that can take different values under different conditions or situations.

The process of finding the value of a variable given a certain condition or equation is called solving an equation.

In this question, we are given an equation f(x) = 4x + 6 and we need to find all values for the variable z such that f(z) = 1.

To solve this equation, we need to substitute f(z) = 1 in place of f(x) in the equation f(x) = 4x + 6, and then solve for the variable z.

The resulting value of z will be the only value that satisfies the given condition.

In this case, we get the equation 1 = 4z + 6, which can be simplified to 4z = -5, and then z = -5/4.

Therefore, the only value for the variable z such that f(z) = 1 is z = -5/4.

Know more about the  variable

https://brainly.com/question/112703

#SPJ11

Other Questions
Which of the following statement is false? Multiple Choice The sum of price variance and quantity variance for raw materials is not always same as spending variance O The fixed costs of flexible budget and master budget are always the same The spending variance of direct labor can always be decomposed into rote variance and efficiency volance Ivorlable manufacturing overhead is overapplied it always has a favorable spending variance The sum of price variance and quantity verlance for raw materials is not always same as spending variance. The fixed costs of flexible budget and master budget are always the same. The spending variance of direct labor can always be decomposed into rate variance and efficiency variance. O If variable manufacturing overhead is overapplied, it always has a favorable spending variance. if fixed manufacturing overhead is underapplied, the budget variance is always unfavorable From a random sample of 60 refrigerators the mean repair cost was $150 and the standard deviation of $15.50. Using the information to construct the 80 % confidence interval for the population mean is between:a. (128.54, 210.08) b. (118.66, 219.96) c. (147. 44, 152.56) d. (144.85,155.15) The time in hours for a worker to repair an electrical instrument is a Normally distributed random variable with a mean of u and a standard deviation of 50. The repair times for 12 such instruments chosen at random are as follows: 183 222 303 262 178 232 268 201 244 183 201 140 Part a) Find a 95% confidence interval for u. For both sides of the bound, leave your answer with 1 decimal place. ). Part b) Find the least number of repair times needed to be sampled in order to reduce the width of the confidence interval to below 25 hours. what year did sperry rand and ibm bring mainframes to market effectively launching the computer industry? the equilibrating force in the credit market in the classical model is 6-17 Let X = coo with the norm || ||p, 1 pco. For r 0, consider the linear functional fr on X defined by fr (x) [infinity] j=1 x(j)/j^r, x E XIf p = 1, then fr is continuous and ||fr||1= 1. If 1 < p [infinity]o, then fr is continuous if and only if r> 1-1/p=1/q, and then IIfrIIp = (infinity j=1 1/j^rq) ^1/q ESTER 202 FM217 Introduction to Financial Accounting 2 Describe the difference between perpetual and periodic inventory systems. Your discussion should include a description of each system (4 marks), a rise in world real interest rates relative to u.s. interest rates During your evaluation for the reliability and security of Walmart Company information system, you have found that the reliability of the information system is not trusted, and both the company management and stakeholders do not relay on the system to acquire needed information for decision making process as they feel that the information system is vulnerable. By additional investigation you have concluded you became more certain that lacking the security is the main problem. Although the company has control system including preventive control, detective control and corrective control, some hackers attacked the system and transferred some money from the company account and obtain other business secrets. Therefore, the company information system is not reliable and needs better control system to be used. The significant weakness points you have discovered are: (1) the access control matrix is weak, and some employees who retired years ago can access the company system and display, update, delete and add data. (2) the time-based model of security is ineffective. In your opinion: (1) What is the security shortage in the access control matrix? (2) What is the meaning of the time-based model of security is ineffective? (3) How to fix the shortage in the access control matrix? (4) How to make the time-based model of security effective? (5) What you subject as a framework may be adopted it the future in Walmart Company to contribute to systems reliability? (6) What do you think the five basic principles to insure reliability in any accounting information system? (7) Do you think that the concept "Defense in Depth" can help to enhance the security level in Walmart Company? If yes, explain. (8) Do you think that the top management in Walmart Company has effective role to support and enhance information system reliability? If yes, explain. Donny Dell Inc. had a days in inventory (based on 365 days) of5. Cost of goods sold were $4,526. Net working capital was $70 andtotal current assets were $400. What is Donny Dell's quick ratio?Mult What alternative fact pattern might change the courts decisionon whether Cangemi and Calianno breached their non-competeagreements? 1.Find and classify all of stationary points of (x,y) = 2xy_x+4y2.Calculate real and imaginary parts of Z=1+c/2-3c the density of states functions in quantum mechanical distributions give Consider a stock that sells for $60. In 1 year it will be wortheither $70 or $50. The risk-free rate is 4%. What is the value of acall option with a $30 exercise price?Show your work, and please la determine whether the statement is true or false. if it is false, rewrite it as a true statement. it is impossible to have a z-score of 0. Do you believe that organizations should be doing more to getproducts off the docks and into the hands of consumers? 6 sentencesanswer 4. Scheduling maintenance to fix a guardrail outside of core work hours is what type of hazard control?EliminationEngineeringAdministrativePersonal Protective EquipmentNone of the above (a) Let X = {re C([0,1]): (0) = 0} with the sup norm and Y ={rex: 5 act)dt = 0}. Then Y is a closed proper subspace of X. But there is no zi X with ||21|loo = 1 and dist(X1,Y) = 1. (Compare 5.3.) (b) Let Y be a finite dimensional proper subspace of a normed space X. Then there is some x e X with || 2 || = 1 and dist(X,Y) = 1. The interest on a $100,000, 4 month note payable at 6% interest is: a. $6,000 b. $3,000 c. $2,000 d. $1,000 e. None of the above, the correct answer is: _______________ 2m 1-m c) Given that x=; simplest form and y 2m 1+m express 2x-y in terms of m in the Steam Workshop Downloader