Lee needs to score a total of 26 points in the next game to increase his mean score to 13 points.
Calculating the score in the next gameGiven that
Scores = 12,14,14,15,8,10,3,15
To increase his mean score to 13 points,
Lee needs to have a total of 13 x 9 = 117 points after the next game.
He has already scored a total of 12+14+14+15+8+10+3+15 = 91 points in the first 8 games.
Therefore, Lee needs to score a total of 117 - 91 = 26 points in the next game to increase his mean score to 13 points.
Read more about mean at
https://brainly.com/question/14532771
#SPJ1
Using the graph, determine the equation of the axis of symmetry.
Step-by-step explanation:
x = -4 ( the value of the x-coordinate of the vertex is the axis of symmetry for normal up or down opening parabolas)
Quadrilateral ABCD has vertices A = (2, 5), B = (2, 2), C = (4, 3) and D = (4, 6). Quadrilateral A'B'C'D' is formed when Quadrilateral ABCD is dilated by a scale factor of 2. Which statement is true? Select all that apply
Choose all that apply:
A) None of the answers apply
B) The angles of Quadrilateral ABCD and Quadrilateral A'B'C'D' are the same.
C) The side lengths of Quadrilateral ABCD and Quadrilateral A'B'C'D' are the same.
The statement which is true for the quadrilateral is B.
How to determine which statements are true for the quadrilateral?To dilate a figure by a scale factor of 2, each point of the original figure is multiplied by 2.
So the coordinates of each vertex of A'B'C'D' are twice the coordinates of the corresponding vertex of ABCD.
The coordinates of A' are (4,10), B' are (4,4), C' are (8,6), and D' are (8,12).
To determine which statements are true, we can compare the angles and side lengths of the two quadrilaterals:
A) None of the answers apply. This may be a valid answer, but we should check the other options before concluding that none of them apply.
B) The angles of Quadrilateral ABCD and Quadrilateral A'B'C'D' are the same. This is true because dilation does not change angles. The corresponding angles of the two quadrilaterals are congruent.
C) The side lengths of Quadrilateral ABCD and Quadrilateral A'B'C'D' are not the same. We can see this by calculating the length of each side of both quadrilaterals.
Therefore, the correct answer is B.
Learn more about Quadrilateral on:
https://brainly.com/question/23935806
#SPJ1
If you watch from ground level, a child riding on a merry-go-round will seem to be undergoing simple harmonic motion from side to side. Assume the merry-go-round is 10.6 feet across and the child completes 8 rotations in 120 seconds. Write a sine function that describes d, the child's apparent distance from the center of the merry-go-round, as a function of time t.
The sine function that describes the child's apparent distance from the center of the merry-go-round is d(t) = 5.3 sin(2π/15 * t)
How to write a sine function that describes the child's apparent distance?To write a sine function that describes the child's apparent distance from the center of the merry-go-round as a function of time t, we can start by finding the amplitude, period, and phase shift of the motion.
Amplitude:
The amplitude of the motion is half the diameter of the merry-go-round, which is 10.6/2 = 5.3 feet. This is because the child moves back and forth across the diameter of the merry-go-round.
Period:
The period of the motion is the time it takes for the child to complete one full cycle of back-and-forth motion, which is equal to the time it takes for the merry-go-round to complete one full rotation.
From the given information, the child completes 8 rotations in 120 seconds, so the period is T = 120/8 = 15 seconds.
Phase shift:
The phase shift of the motion is the amount of time by which the sine function is shifted horizontally (to the right or left).
In this case, the child starts at one end of the diameter and moves to the other end, so the sine function starts at its maximum value when t = 0. Thus, the phase shift is 0.
With these values, we can write the sine function that describes the child's apparent distance from the center of the merry-go-round as:
d(t) = 5.3 sin(2π/15 * t)
where d is the child's distance from the center of the merry-go-round in feet, and t is the time in seconds. The factor 2π/15 is the angular frequency of the motion, which is equal to 2π/T.
Learn more about sine function on:
https://brainly.com/question/30243373
#SPJ1
I don’t know what to write for the equation.
fraction wise, a whole is always simplified to 1, so
[tex]\cfrac{4}{4}\implies \cfrac{1000}{1000}\implies \cfrac{9999}{9999}\implies \cfrac{17}{17}\implies \text{\LARGE 1} ~~ whole[/tex]
so, we can say the whole of the players, namely all of them, expressed in fourth is well, 4/4, that's the whole lot, and we also know that 3/4 of that is 12, the guys who chose the bottle of water
[tex]\begin{array}{ccll} fraction&value\\ \cline{1-2} \frac{4}{4}&p\\[1em] \frac{3}{4}&12 \end{array}\implies \cfrac{~~ \frac{4 }{4 } ~~}{\frac{3}{4}}~~ = ~~\cfrac{p}{12}\implies \cfrac{~~ 1 ~~}{\frac{3}{4}} = \cfrac{p}{12}\implies \cfrac{4}{3}=\cfrac{p}{12} \\\\\\ (4)(12)=3p\implies \cfrac{(4)(12)}{3}=p\implies 16=p[/tex]
The lengths of two sides of a triangle are 5.2 inches and 3.1 inches. Which lengths, in inches, could be the length of the third side?
The length of the third side between 2.1 inches and 8.3 inches (exclusive) could be a valid length for the third side of the triangle.
Triangle Inequality Theorem:In a triangle, the length of any side must be less than the sum of the lengths of the other two sides and greater than the difference between the lengths of the other two sides.
We can apply this rule to find the possible lengths of the third side of the triangle, given that the lengths of the two sides are 5.2 inches and 3.1 inches.
Here we have
The lengths of two sides of a triangle are 5.2 inches and 3.1 inches
Let's denote the length of the third side as x. Then, we have:
3.1 + 5.2 > x > 5.2 - 3.1
8.3 > x > 2.1
Therefore, the length of the third side x must be greater than 2.1 inches and less than 8.3 inches.
We can write this as an inequality:
2.1 < x < 8.3
Therefore,
The length of the third side between 2.1 inches and 8.3 inches (exclusive) could be a valid length for the third side of the triangle.
Learn more about Triangles at
https://brainly.com/question/12943336
#SPJ1
justin developed the below hypothesis. h1: younger adults (18-28 years old) spend more time on social media than the middle-aged (29-65 years old) group and older adults (older than 65 years old). what statistical test should he use to test his hypothesis?
To verify if older adults and middles ages people spend less time on social media, Justin can use the Analysis of variance (ANOVA) test.
ANOVA is used to compare means across two or more groups. Justin can use this test on the different category of younger adults, middle-aged and older adult. This test is done when there is statistically significant difference between the group of samples.
Justin can utilize post-hoc tests (such as Tukey's HSD and Bonferroni) to identify whether particular groups are statistically different from one another if an ANOVA shows a significant difference.
To know more about ANOVA test, visit,
https://brainly.com/question/30127764
#SPJ4
write an integral that quantifies the change in the area of the surface of a cube when its side length quadruples from s unit to 4s units.
Answer:
Step-by-step explanation:
Let A be the area of the surface of the cube.
When the side length changes from s to 4s, the new area A' can be calculated as:
A' = 6(4s)^2 = 96s^2
The change in area is then:
ΔA = A' - A = 96s^2 - 6s^2 = 90s^2
To find the integral that quantifies the change in area, we can integrate the expression for ΔA with respect to s, from s to 4s:
∫(90s^2)ds from s to 4s
= [30s^3] from s to 4s
= 30(4s)^3 - 30s^3
= 1920s^3 - 30s^3
= 1890s^3
Therefore, the integral that quantifies the change in area of the surface of a cube when its side length quadruples from s units to 4s units is:
∫(90s^2)ds from s to 4s
= 1890s^3 from s to 4s
= 1890(4s)^3 - 1890s^3
= 477,840s^3 - 1890s^3
Find the measures of angle a and B. Round to the
nearest degree.
The measure of angle A and B is 29° and 61° respectively
What is trigonometric ratio?Trigonometric Ratios are defined as the values of all the trigonometric functions based on the value of the ratio of sides in a right-angled triangle.
sin(tetha) = opp/hyp
tan(tetha) = opp/adj
cos(tetha) = adj/hyp
The opposite is 6 and the adjascent = 11
Therefore tan (tetha) = 11/6 = 1.833
tetha = tan^-1( 1.833)
= 61°( nearest degree)
The sum of angle in a triangle is 180°
therefore,
angle A = 180-( 61+90)
= 180-151
= 29°
therefore the measure of angle A and B is 29° and 61° respectively.
learn more about trigonometric ratio from
https://brainly.com/question/24349828
#SPJ1
If f(x) = 5x - 6, which of these is the inverse of f(x)?
A. f^-¹(x) = x/5 +6
B. f^-¹(x) = x/5 -6
C. f^-¹(x) = x+6/5
D. F^-¹(x) = x-6/5
To find the inverse of a function, we need to swap the positions of x and y and then solve for y. In other words, we replace f(x) with y and then solve for x.
So, let's start by swapping x and y in the function f(x) = 5x - 6:x = 5y - 6
Next, we'll solve this equation for y:
x + 6 = 5y
y = (x + 6)/5
Therefore, the inverse of f(x) is f^-1(x) = (x + 6)/5, which is option C.21st term: 3,8,13,18 What is the indicated term
The 21st term of the sequence 3, 8, 13, 18, .. is 103
To find the indicated term in the sequence, we first need to identify the pattern followed by the sequence. It appears that each term is obtained by adding 5 to the previous term. So, we can write the general formula for the nth term of the arithmetic sequence as
a(n) = a(1) + (n-1)d
where a(1) is the first term of the sequence, d is the common difference, and n is the term number.
In this case, we have:
a(1) = 3 (the first term)
d = 5 (the common difference)
To find the 21st term, we substitute n = 21 in the formula:
a(21) = a(1) + (21-1)d
a(21) = 3 + 20(5)
a(21) = 103
Learn more about arithmetic sequence here
brainly.com/question/16671654
#SPJ4
it is believed that 5% of all people requesting travel brochures for transatlantic cruises actually take the cruise within 1 year of the request. an experienced travel agent believes this is wrong. of 100 people requesting one of these brochures, only 3 have taken the cruise within 1 year. we want to test the travel agent's theory with a hypothesis test. if you used a significance level of 0.05, what is your decision?
Based on the given information, we can set up the following hypotheses for the hypothesis test:
Null Hypothesis (H0): The actual proportion of people taking the cruise within 1 year is equal to the believed proportion of 5%.
Alternative Hypothesis (H1): The actual proportion of people taking the cruise within 1 year is not equal to the believed proportion of 5%.
Let p be the proportion of people taking the cruise within 1 year. We can use the sample proportion, denoted as p-hat, which is calculated as the ratio of the number of people who took the cruise within 1 year (3 in this case) to the total number of people who requested the brochures (100 in this case).
Given that the significance level is 0.05, we can use a z-test to compare the sample proportion with the believed proportion of 5%. The z-test statistic is calculated as:
z = (p-hat - p) / sqrt(p * (1 - p) / n)
where n is the sample size, which is 100 in this case.
Now we can calculate the z-test statistic and compare it with the critical value for a two-tailed test at a significance level of 0.05. If the calculated z-test statistic falls outside the critical value, we would reject the null hypothesis; otherwise, we would fail to reject the null hypothesis.
Since the sample proportion p-hat is 3/100 = 0.03, and the believed proportion p is 0.05, we can substitute these values into the z-test formula:
z = (0.03 - 0.05) / sqrt(0.05 * (1 - 0.05) / 100)
Calculating the above expression, we get the value of z. We can then compare this value with the critical value for a two-tailed test at a significance level of 0.05 from a standard normal distribution table or using a statistical calculator.
If the calculated z-test statistic falls outside the critical value, we would reject the null hypothesis and conclude that the actual proportion of people taking the cruise within 1 year is different from the believed proportion of 5%. If the calculated z-test statistic falls within the critical value, we would fail to reject the null hypothesis and not conclude that the actual proportion is different from the believed proportion.
Without the actual values of the calculated z-test statistic and the critical value, we cannot provide a specific decision for this hypothesis test. Please note that hypothesis testing requires careful consideration of the sample size, significance level, and other relevant factors, and should be conducted with caution and in consultation with a qualified statistician or expert in statistical analysis.
Three machines are used to produce nails. The table displays the total number of nails produced by the 3 machines
over different lengths of time.
Nail Production with 3 Machines
Time (minutes)
Number of Nails
(thousands)
15
16
45
48
55
593
ON
If each machine produces nails at the same rate, how many nails can 1 machine produce in 1 hour?
nails
One machine can produce 600,000 nails in one hour.
Finding the total number of nails produced by the three machines in a minute and dividing that number by three to obtain the number of nails produced by a single machine in a minute are the first two steps in the solution to this problem.
The number of nails produced by a single machine in an hour can then be calculated by multiplying that number by 60.
Now, we add up the total number of nails produced during :
(15 + 16 + 45 + 48 + 55 + 59 + 3) / 7 = 30
To find the number of nails produced by one machine in one hour, we multiply by 60: 10,000 x 60 = 600,000
To know more about multiplying, here
brainly.com/question/30875464
#SPJ4
2. Tyler leaves his house at 7:00 a.m. to go to school. He walks for 20 minutes until he reaches his school, 1 mile from his house. The function d gives the distance d(t), in miles, of Tyler from his house t minutes after 7:00 a.m. a. Explain what d(5) = 0.25 means in this context. b. On snowy days, Tyler's school has a 2 hour delayed start time (120 minutes). The function is gives Tyler's distance s(t), in miles, from home t minutes after 7:00 a.m. with a 120 minute delayed start time. If d(5) = 0.25, then what is the corresponding point on the function s? c. Write an expression for s in terms of d. A new function, n, is defined as n(t) = d(t +60) explain what this means in terms of Tyler's distance from school.
Answer: a. In this context, d(5) = 0.25 means that 5 minutes after 7:00 a.m., Tyler is 0.25 miles away from his house. This is because the function d(t) gives the distance of Tyler from his house t minutes after 7:00 a.m.
b. If d(5) = 0.25, then we know that 5 minutes after 7:00 a.m., Tyler is 0.25 miles away from his house. If there is a 120-minute delayed start time, then Tyler will walk for 20 + 120 = 140 minutes to reach his school. We want to find the corresponding point on the function s, which gives Tyler's distance from home t minutes after 7:00 a.m. with a 120-minute delayed start time. Since Tyler walks the same distance regardless of the delayed start time, we can use the same function for s as we did for d. Therefore, s(145) = 1.25, since Tyler is 1 mile away from his house after walking for 140 minutes and then an additional 5 minutes to account for the delayed start time.
c. Since Tyler walks the same distance regardless of the delayed start time, we can express s(t) in terms of d(t) by adding 120 minutes to the time t. Therefore, s(t) = d(t + 120).
d. The function n(t) = d(t + 60) gives Tyler's distance from his house t minutes after 8:00 a.m. This is because adding 60 minutes to t corresponds to adding one hour to the time, which means that Tyler leaves his house at 8:00 a.m. instead of 7:00 a.m. Therefore, n(t) gives Tyler's distance from school one hour after he leaves his house.
Step-by-step explanation:
102, 107, 99, 102, 111, 95, 91
Mean
Mode
Median
Range
Answer:
mean: 101 (add all the numbers then divide by 7)
mode: 102 (the most frequent number in the set)
median: 102 (the number in the middle of the set)
range: 20 (the difference between the largest and smallest number)
Mean = 101
Mode = 102
Median = 102
Range = 20
MEAN: Add up all the numbers, then divide by how many numbers there are.
102 + 107 + 99 + 102 + 111 + 95 + 91 = 707
707 ÷ 7 = 101
MODE: Arrange all numbers in order from lowest to highest or highest to lowest and then count how many times each number appears in the set. The one that appears the most is the mode.
91,95,99,102,102,107,111
MEDIAN: Arrange the numbers from smallest to largest. If the amount of numbers is odd, the median is the middle number. If it is even, the median is the average of the two middle numbers in the list.
91,95,99,102,102,107,111
RANGE: Subtract the lowest number from the highest number
111 - 91 = 20
Solve Triangle
Because I Need Answer My Assignment:-)
Good Perfect Complete=Brainlist
Copy Wrong Incomplete=Report
Good Luck Answer Brainly Users:-)
Answer:
x = 4√5 ≈ 8.94 (2 d.p.)
y = 8√5 ≈ 17.89 (2 d.p.)
Step-by-step explanation:
To find the values of x and y, use the Geometric Mean Theorem (Leg Rule).
Geometric Mean Theorem (Leg Rule)The altitude drawn from the vertex of the right angle perpendicular to the hypotenuse separates the hypotenuse into two segments. The ratio of the hypotenuse to one leg is equal to the ratio of the same leg and the segment directly opposite the leg.
[tex]\boxed{\sf \dfrac{Hypotenuse}{Leg\:1}=\dfrac{Leg\:1}{Segment\;1}}\quad \sf and \quad \boxed{\sf \dfrac{Hypotenuse}{Leg\:2}=\dfrac{Leg\:2}{Segment\;2}}[/tex]
From inspection of the given right triangle RST:
Altitude = SVHypotenuse = RT = 20Leg 1 = RS = ySegment 1 = RV = 16Leg 2 = ST = xSegment 2 = VT = 4Substitute the values into the formulas:
[tex]\boxed{\dfrac{20}{y}=\dfrac{y}{16}}\quad \sf and \quad \boxed{\dfrac{20}{x}=\dfrac{x}{4}}[/tex]
Solve the equation for x:
[tex]\implies \dfrac{20}{x}=\dfrac{x}{4}[/tex]
[tex]\implies 4x \cdot \dfrac{20}{x}=4x \cdot \dfrac{x}{4}[/tex]
[tex]\implies 80=x^2[/tex]
[tex]\implies \sqrt{x^2}=\sqrt{80}[/tex]
[tex]\implies x=\sqrt{80}[/tex]
[tex]\implies x=\sqrt{4^2\cdot 5}[/tex]
[tex]\implies x=\sqrt{4^2}\sqrt{5}[/tex]
[tex]\implies x=4\sqrt{5}[/tex]
Solve the equation for y:
[tex]\implies \dfrac{20}{y}=\dfrac{y}{16}[/tex]
[tex]\implies 16y \cdot \dfrac{20}{y}=16y \cdot \dfrac{y}{16}[/tex]
[tex]\implies 320=y^2[/tex]
[tex]\implies \sqrt{y^2}=\sqrt{320}[/tex]
[tex]\implies y=\sqrt{320}[/tex]
[tex]\implies y=\sqrt{8^2\cdot 5}[/tex]
[tex]\implies y=\sqrt{8^2}\sqrt{5}[/tex]
[tex]\implies y=8\sqrt{5}[/tex]
Maggie spent $18. 00 Of $30. 00 In her wallet which decimal represents the fraction of the $30. 00 Maggie spent
The decimal that represents the fraction of the $30.00 Maggie spent is 0.6.
Now, let's talk about decimals. Decimals are a way of expressing parts of a whole number in a fraction of 10. For example, 0.5 is the same as 1/2. In your situation, Maggie spent $18.00 out of $30.00. To figure out what decimal represents the fraction of the $30.00 Maggie spent, we need to divide the amount she spent by the total amount she had.
So, we can write this as a fraction:
$18.00 / $30.00
To turn this fraction into a decimal, we divide the numerator (top number) by the denominator (bottom number) using long division or a calculator.
$18.00 / $30.00 = 0.6
Another way to say this is that Maggie spent 60% of the money she had in her wallet.
To know more about decimal here
https://brainly.com/question/9543292
#SPJ4
find the smallest which 108 must be multiplied to get a perfect square
Answer:
The answer is 3
Step-by-step explanation:
x×108=y
x×2²×3³=y
3×108=324
Charlie made the following table to record the height of each person in his family.
If Cheyenne and Hannah lay end to end, how far will they reach?
A. 9
B. 9, 1/2
C. 10
D. 8
Number 7. I don’t understand, what’s the fraction? How do you get fraction and the + a number.
Answer:
A
Step-by-step explanation:
Equation of a line is: y = mx + b where m = slope b = y axis intercept
To find the slope between any two of the given points :
say 18, 100 and 27, 85
m = slope = (y1-y2) / (x1-x2) = (85-100) / ( 27-18) = -15/12 = -5/3
so now you have
y = - 5/3 x + b we still need to find the value of b
use any point to calculate b
say 15, 106
106 = - 5/3 (15) + b
b = ~ 131
the equation is then y = - 5/3 x + 131 closest to answer 'A'
Alfred buys a car for £13960 which depreciates in value at a rate of 0.75% per year.
Work out how much Alfred's car will be worth in 12 years.
Answer:
£12063.57
Step-by-step explanation:
The value of Alfred’s car after 12 years can be calculated using the formula for exponential decay: Final Value = Initial Value * (1 - rate of depreciation)^(number of years). Plugging in the values we get: Final Value = 13960 * (1 - 0.0075)^12. Therefore, after 12 years, Alfred’s car will be worth approximately £12063.57.
A rock of radioactive material has 500 atoms in it. The number of atoms decreases at a rate of 11% a day. Write an exponential function that models this situation. f(x) type your answer... (1 choose your answer... choose your answer... ✓)^x
Answer:
[tex]f(x) = 500( {.89}^{x} )[/tex]
5 × (10 + 7) = (5 × 10) + (5 ×7)
Answer:
Same equation just using the assocaitive property
Step-by-step explanation:
For example, 8 + (2 + 3) = (8 + 2) + 3 = 13
Hope this helps! =D
the anova procedure is a statistical approach for determining whether the means of . a. more than two samples are equal b. two or more populations are equal c. two samples are equal d. two or more samples are equal
The means of two or more populations being equal is determined by a statistical approach for the ANOVA procedure. Option B is correct.
The ANOVA (Analysis of Variance) procedure is a statistical method used to determine whether there is a significant difference between the means of two or more groups. To statistically test the equality of means ANOVA uses F-tests.
The repeated-measures ANOVA is a two-stage process that is described as an analysis of dependencies. This test is used to prove an assumed cause-effect relationship between variables. The conditions that must be met for the results of an ANOVA are Independence, Random Sampling, Large Sample Size, and Normality.
To learn more about the ANOVA :
https://brainly.com/question/30127764
#SPJ4
Any help? Please. Whoever answer it first gets brainliest!
Answer:
[tex]c + 15 > 24[/tex]
[tex]c > 9[/tex]
The additional amount will be more than $9.
When x is 2, what is the value of the expression 124+3(8−x)12
12
4
+
3
(
8
−
x
)
12
?
When x is 2, the value of the expression is 9.
Describe Algebraic Expression?An algebraic expression is a mathematical phrase that contains one or more variables, constants, and mathematical operations such as addition, subtraction, multiplication, and division. It can also contain exponents, roots, and trigonometric functions.
Algebraic expressions are used to represent mathematical relationships and solve problems in a wide range of fields, including physics, engineering, finance, and statistics. They can be used to model real-world phenomena and to make predictions based on data.
Algebraic expressions can be simplified by combining like terms and using mathematical rules and properties. They can also be evaluated by substituting values for the variables and simplifying the expression. Solving equations involving algebraic expressions often involves manipulating the expression to isolate a variable and find its value.
When x is 2, the value of the expression 12/4+3(8−x)-12 can be found by substituting 2 for x and simplifying the expression:
12/4 + 3(8 - 2) - 12
= 3 + 3(6) - 12
= 3 + 18 - 12
= 9
Therefore, when x is 2, the value of the expression is 9.
To know more about expression visit:
https://brainly.com/question/15813344
#SPJ1
The complete question is :
When x is 2, what is the value of the expression 12/4+3(8−x)-12?
Find the distance, d, of AB.
The distance between A and B is approximately 8.06 units.
In order to find the distance, d, of AB, we need to use the distance formula. The distance formula gives us the distance between two points in a coordinate plane. It is given as:$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$ where (x1, y1) and (x2, y2) are the coordinates of the two points in question.
In this case, A and B are the two points for which we need to find the distance. Let's assume that the coordinates of A are (x1, y1) and the coordinates of B are (x2, y2).
Then the distance formula becomes:
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
$$d = \sqrt{((8 + 4) - 2)^2 + ((5 - 1) - 3)^2}$$
$$d = \sqrt{(10 - 2)^2 + (4 - 3)^2}$$
$$d = \sqrt{(8)^2 + (1)^2}$$
$$d = \sqrt{64 + 1}$$
$$d \approx \sqrt{65}$$
$$d \approx 8.06$$
Therefore, the distance between A and B is approximately 8.06 units.
For more such questions on distance, click on:
https://brainly.com/question/26550516
#SPJ8
which combination of factors would definitely cause the confidence interval to become wider? group of answer choices none of these will definitely reduce the width of a confidence interval. use a smaller sample and decrease the level of confidence use a larger sample and increase the level of confidence use a larger sample and decrease the level of confidence use a smaller sample and increase the level of confidence
To reduce the width of a confidence interval, you can use a smaller sample size and decrease the level of confidence, or use a larger sample size and decrease the level of confidence.
What are the factors?
what are factorsIn mathematics, a factor is a number that divides another number without leaving a remainder.
The combination of factors that would definitely cause the confidence interval to become wider is to use a larger sample and increase the level of confidence or to use a smaller sample and increase the level of confidence.
When using a larger sample size, the standard error of the mean decreases, and the interval will become narrower. Conversely, when using a smaller sample size, the standard error of the mean increases, and the interval will become wider. However, increasing the level of confidence will also increase the width of the interval as a wider interval is required to capture the true population parameter with a higher level of confidence.
Therefore, to reduce the width of a confidence interval, you can use a smaller sample size and decrease the level of confidence, or use a larger sample size and decrease the level of confidence.
To learn more about factors from the given link:
brainly.com/question/14209188
#SPJ1
If anyone is reading this, rn i would be so flipping happy if u got this for me ive been waiting for so long and got nothing please answer correctly please
Answer: The answer is A.
Step-by-step explanation: Because I am smart don't underestimate me.
Answer:
C
Step-by-step explanation: (look at attachment)
3x + 4 = -2x -2
By looking at the y-intercepts, you automatically know the answer is C.
The y-intercept of the pink line is 4 because of 3x + 4.
The y-intercept of the blue line is -2, because of -2x - 2.
how many 6 card hands are there (from a standard deck) with at least 3 kings? (enter an integer without commas)
There are 73,701 different 6-card hands (from a standard deck) with at least 3 kings.
To calculate the number of 6-card hands with at least 3 K's, the problem can be divided into:
Case 1:
Exactly 3 Kings
There are 4 ways to choose 3 kings to put in the hand, then there are 48 cards left to choose the remaining 3 cards (because we used 3 cards in a 52-card deck). Therefore, the number of 6-card hands with exactly 3 kings is:
4 * (48 choose 3) = 4 * 17,296 = 69,184
Case 2:
Exactly 4 Kings
There are 4 ways to choose 4 kings to put in the hand, then there are 48 cards left to choose the remaining 2 cards. Therefore, the number of 6-card hands with exactly 4 kings is:
4 * (48 choose 2) = 4 * 1.128 = 4.512
Case 3:
Exactly 5 kings
There are 4 ways to choose the 5 kings in the hand, then there is only one card left to choose from (because we used 5 of the 52 cards in the deck of cards). Therefore, the number of 6-card hands with exactly 5 kings is:
4*1=4
Case 4:
6 cards are king
There is only one way to choose all 6 cards as king.
Therefore, the total number of 6-card hands with at least 3 kings is:
69,184 + 4,512 + 4 + 1 = 73.701
So there are 73,701 different 6-card hands with at least 3 kings.
learn more about the deck of cards
brainly.com/question/30519560
#SPJ4
given: weight a: 140 pounds at 17 inches aft of datum weight b: 120 pounds at 110 inches aft of datum weight c: 85 pounds at 210 inches aft of datum based on this information, the cg would be located how far aft of datum?
The center of gravity is located 96.7 inches aft of the datum.
To determine the location of the center of gravity (CG) of the system, we need to calculate the moment of each weight about the datum, and then divide the sum of the moments by the total weight of the system.
The moment of each weight is equal to its weight multiplied by its distance from the datum. In this case:
Moment of weight a = 140 pounds x 17 inches = 2,380 inch-pounds
Moment of weight b = 120 pounds x 110 inches = 13,200 inch-pounds
Moment of weight c = 85 pounds x 210 inches = 17,850 inch-pounds
The total weight of the system is:
Total weight = weight a + weight b + weight c = 140 + 120 + 85 = 345 pounds
Therefore, the location of the CG can be calculated as follows:
CG location = (Moment of weight a + Moment of weight b + Moment of weight c) / Total weight
CG location = (2,380 + 13,200 + 17,850) / 345
CG location = 33,430 / 345
CG location = 96.7 inches aft of datum
As a result, the center of gravity is 96.7 inches aft of the datum.
To know more about the Datum, here
https://brainly.com/question/15138411
#SPJ4