Answer:
20m/s due east
Explanation:
Given parameters:
Displacement eastward = 200m
Time = 10s
Unknown:
Velocity = ?
Solution:
Velocity is the displacement divided by time;
Velocity = [tex]\frac{displacement}{time}[/tex]
Velocity = [tex]\frac{200}{10}[/tex] = 20m/s due east
Help Please! 5 questions for 25 points? seems fair? Thank you!
Answer:
1. where the skater turns and goes back in the opposite direction- point w
2. gravitational force of the object
3. point a
4. the bar representing sphere 4 should be twice as tall as the bar representing sphere 2
5. B; its mass is smaller (?)
yolo
Answer:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
Explanation:
2. A uniform rod of weight 5N and length 1m is pivoted at a point 20cm from one of its ends. A weight is hung from the other end so that the rod balances horizontally. What is the value of the weight?
Answer:
The weight is 7.5 N
Explanation:
Since the rod is uniform, its weight applies downwards at its middle (i.e 50 cm mark). The diagram attached to this answer shows the appropriate sketch.
Applying the principle of moment to the question, let the weight by represented by W.
Total clockwise moment = Total counterclockwise moment
[tex]F_{1}[/tex] x [tex]d_{1}[/tex] = [tex]F_{2}[/tex] x [tex]d_{2}[/tex]
5 x 0.3 = W x 0.2
1.5 = 0.2 W
W = [tex]\frac{1.5}{0.2}[/tex]
= 7.5 N
The value of the weight is 7.5 N.
Henry designs an experiment to find out why plants without flowers tend to be wind-pollinated and not animal-pollinated. He takes samples from a variety of plants and studies them in the field. He finds that the evidence supports his hypothesis. Which of these was the hypothesis Henry was testing? Choose the correct answer. Nonflowering plants make less pollen than flowering plants. Nonflowering plants lack the structures to attract animal pollinators. Nonflowering plants grow close to the ground and capture fewer pollinators. Nonflowering plants grow close to the ground because they have no pollen grains.
Answer:
option 2
Explanation:
you are very welcom
The driver of a 1.5 x 103 kg car is traveling east at 10 m/s and increases its speed to 30 m/s east over 15 seconds. What was the change in momentum of the car? Kgm/s
Answer:
30,000kgm/s
Explanation:
Change in momentum is expressed as;
Change in momentum = mass × change in velocity
∆M = m∆v
Mass m = 1.5×10³kg = 1500kg
∆v = 30-10 =20m/s
Substitute into the formula
Change in momentum = 1500(20)
Change in momentum = 30,000kgm/s
Metals are good conductors of heat because .
Answer:
They have the highest melting point so that mean that the temperature and the are a conductive to electricity.
Explanation:
A boat traveling across a river has a resultant velocity of 10 km/h and travels 34 degrees with respect to the shore. A) What is the boats velocity in m/s?
B) What is the velocity of the river in m/s?
Answer:
a) 1.55 m/s
b) 2.3 m/s
Explanation:
We know that the boat travels across the river, if we define the river as the x-axis, then the velocity of the boat is only on the y-axis.
Then we can write the velocity of the boat in still water as:
S = (0, B)
Now, when the boat is on the river, the velocity of the boat will be equal to the velocity of the boat in still water plus the velocity of the river.
The velocity of the river is:
v = (R, 0).
Then the velocity of the boat in that river is:
V' = (0, B) + (R, 0) = (R, B)
Now, we know that the velocity of the boat is 10km/h, and it travels at an angle of 34° with respect to the shore.
We can use the Pythagoreans theorem to write the components of this velocity as:
x-axis component = 10km/h*cos(34°) = 8.29 km/h
y-axis component = 10km/h*sin(34°) = 5.59 km/h
Then the velocity of the boat can be written in components as:
velocity = ( 8.29 km/h, 5.59 km/h)
And we knew that the velocity of the boat was written as (R, B)
Then we must have:
R = 8.29 km/h
B = 5.59 km/h
a) The speed of the boat in m/s:
We know that the speed of the boat is 5.59 km/h.
First, we know that:
1km = 1000m, then:
5.59 km/h = 5.59*(1000m)h = 5,590 m/h
And we know that:
1h = 3600s
Then we can write:
5,590 m/h = 5,590 m/(3600s) = 1.55 m/s
b) The speed of the river in m/s:
We know that the speed of the river is 8.29 km/h
Using the same reasoning as above, we can do the change of units as follows:
8.29 km/h = 8.29 (1000m)/(3600s) = 2.3 m/s
Which of the following statements is TRUE concerning forces?
A. Forces in the same direction are added together
B. Forces in the opposite direction are subtracted from one another
C. An overall net force must be present in order for movement to occur
D. All of the above
A vertical spring with a force constant of 26 N/m has a relaxed length of 35 cm. A 200 g mass is then
attached to the end of the spring and is allowed to come to rest. (a) Find the length of the stretched spring.
(b) How much elastic potential energy is stored in the spring?
I just need the work please the answers is
(a) 45.2 J
(b) 0.0739
Answer:
(a) The length of the stretched string is approximately 42.53846 cm
(b) The elastic potential energy stored in the string is approximately 0.073877 Joules
Explanation:
(a) The given parameter are;
The force constant of the vertical spring, k = 26 N/m
The relaxed length of the spring, L = 35 cm = 0.35 m
The mass attached to the end of the spring, m = 200 g = 0.2 kg
By Hooke's law, we have;
F = k·x
Where;
F = The applied force on the sting = The weight of the attached mass, W
∴ F = W
The weight of the attached mass, W = m × g
Where;
g = The acceleration due to gravity ≈ 9.8 m/s²
Therefore, F = W = 0.2 kg × 9.8 m/s² = 1.96 N
From Hooke's law, we have;
x = F/k = 1.96 N/(26 N/m) ≈ 0.0753846 m
The extension of the stretched spring, x ≈ 0.0753846 m
The length of the stretched string, L[tex]_{stretched}[/tex] = L + x
∴ L[tex]_{stretched}[/tex] ≈ 0.35 m + 0.0753846 m ≈ 0.4253846 m
0.4253846 m = 42.53846 cm
The length of the stretched string ≈ 42.53846 cm
(b) The elastic potential energy stored in the string, U = 1/2·k·x²
By substituting the known values, we get;
U = 1/2 × 26 N/m × (0.0753849 m)² ≈ 0.073877 Joules
2. Arrange the following types of electromagnetic waves in order by wavelength, from longest to
shortest: Gamma rays, visible light, infrared radiation, ultraviolet radiation, microwaves, radio
waves, X-rays
Answer:
Radiowaves > microwaves> Infrared radiation > visible light > Ultraviolet radiation > x -rays > gamma rays
Explanation:
To solve this problem, we use the electromagnetic spectrum as a reference. On the electromagnetic spectrum, the lesser the wavelength, the higher the frequency and more energetic a wave is.
Therefore;
Radiowaves > microwaves> Infrared radiation > visible light > Ultraviolet radiation > x -rays > gamma rays
So, radiowaves have the longest wavelength and gamma rays have the shortest.
Answer:
Radio, microwave, infrared radiation, visible light, ultraviolet radiation, x-rays and gamma rays.
Explanation:
These electromagnetic waves are arranged from longest to shortest wavelengths.
Have an amazing day!
please answerrr asapp tyty Laura goes for cycle from her house to the post office 4km away how long did it take for Laura to reach the post office
Answer:
See the answer below
Explanation:
The time Laura took to reach the post office would depend on the speed of cycling.
We know that;
speed = [tex]\frac{distance}{time}[/tex]
hence,
time = [tex]\frac{distance}{speed}[/tex]
Since the distance from Laura's house to the post office is 4 km, the equation becomes;
time = [tex]\frac{4}{speed}[/tex]
Just ensure that the speed is in km per hour, minute, or seconds in order to obtain the time in hours, minutes, or seconds respectively.
[04.04] Which best describes the current atomic theory?
Two spheres have a gravitational force between
them of 45 N. If the distance between the masses
is increased to 4.0 times its original distance, what
is the new force?
Answer:
The new force is 2.8125 N
Explanation:
Newton’s Law of Universal Gravitation
Objects attract each other with a force that is proportional to their masses and inversely proportional to the square of the distance.
[tex]\displaystyle F=G{\frac {m_{1}m_{2}}{r^{2}}}[/tex]
Where:
m1 = mass of object 1
m2 = mass of object 2
r = distance between the objects' center of masses
G = gravitational constant: 6.67\cdot 10^{-11}~Nw*m^2/Kg^2
Suppose two spheres have a gravitational force between them of F = 45 N. Now increase the distance to r'=4r. The new force F' is:
[tex]\displaystyle F'=G{\frac {m_{1}m_{2}}{(4r)^{2}}}[/tex]
[tex]\displaystyle F'=G{\frac {m_{1}m_{2}}{16r^{2}}}[/tex]
[tex]\displaystyle F'=\frac{1}{16}\ G{\frac {m_{1}m_{2}}{r^{2}}}[/tex]
Substituting the original value of the force:
[tex]\displaystyle F'=\frac{1}{16}\ 45 N[/tex]
F' = 2.8125 N
The new force is 2.8125 N
Please help me this is worth allot
which wave carries the highest energy?
Answer:
Gamma rays
Explanation:
A wave that can travel through empty space?
A. electromagnetic wave
B. mechanical wave
C. compressional wave
D. transverse wave
Answer: B. Mechanical Waves
Explanation:
A 5.00 kg crate is on a 21.0° hill.
Using X-Y axes tilted down the
plane, what is the y-component
of the weight?
(Unit = N)
Answer:
17.56 N
Explanation:
Given that,
Mass of a crate, m = 5 kg
It is on a 21.0° hill
We need to find the y component of the weight.
y component = mgsinθ
Put all the values,
y-component = 5×9.8×sin(21)
= 49×sin(21)
= 17.56 N
So, the y-component of the weight is 17.56 N.
Answer:
-45.745
Explanation:
it is negative because it is downwards.
The image shows landforms in Monument Valley, Utah.
Which correctly lists the three features shown in the photo?
folds, strike-slip faults, and anticlines
anticlines, synclines, and folds
synclines, normal faults, and strike-slip faults
normal faults, folds, and anticlines
The correctly lists the three features shown in the photo is folds, strike-slip faults, and anticlines.
What is the difference between folds and failures?Modern folds are those that emerged recently (on the scale of geological periods), that is, in the Tertiary Period (between 65 million and 2.5 million years ago). Faults are geological structures that originate from vertical (top-down) or inclined internal forces.
The transcurrent fault – also called horizontal fault – occurs when there is displacement in the horizontal plane between the two blocks, being more common in zones where two tectonic plates meet, when these also move horizontally.
See more about transcurrent fault at brainly.com/question/2387953
#SPJ2
Answer: folds, strike-slip faults, and anticlines. (A)
Explanation: Got it right on my exam on Edge.
Which two life functions of animals help maintain the water cycle by recycling water back into the environment?
Answer:
Respiration and excretion
Explanation:
Respiration. When animals breathe, their lungs release water vapour to the atmosphere.
Animals excrete water by respiration and by passing urine.
You blow up a balloon but don't tie it. When you let it go, it flies around the room.
Which of Newton's Laws does the scenario describe?
1st Law
2nd Law
3rd Law
Answer:
3rd law beacuse there a flies
How many moons are in our solar system?
Please help I’ll give you brain
Answer:
Explanation:
distance (km)
a) As near as I can tell from the graph, the distance travelled was 4km
b) I would answer 40 minutes, but don't be surprised if your instructor says 30 minutes.
c) The average speed is 4 km/40 minutes = 0.1 km/minute
A student is leaving the lesson and walking to Maths at a speed of 1m/s. He notices that he is late for the lesson and speeds up to 3 m/s. It takes him 4 seconds to speed up. Calculate his acceleration.
Answer:
Acceleration = 0.5 m/s²
Explanation:
Given the following data;
Initial velocity, u = 1m/s
Final velocity, v = 3m/s
Time, t = 4 seconds
To find acceleration;
In physics, acceleration can be defined as the rate of change of the velocity of an object with respect to time.
This simply means that, acceleration is given by the subtraction of initial velocity from the final velocity all over time.
Hence, if we subtract the initial velocity from the final velocity and divide that by the time, we can calculate an object’s acceleration.
Mathematically, acceleration is given by the equation;
[tex]Acceleration (a) = \frac{final \; velocity - initial \; velocity}{time}[/tex]
[tex]a = \frac{v - u}{t}[/tex]
Substituting into the equation, we have;
Acceleration = (3 - 1)/4
Acceleration = 2/4
Acceleration = 0.5 m/s²
If a 1000 kg car is traveling at 3
meters per second, what is its
kinetic energy?
How high did a worker lift a 25 kg bag of sand if it now has 2940 of gravitational potential energy
Answer:
12 m
Explanation:
From the question given above, the following data were obtained:
Mass (m) of bag = 25 kg
Potential energy (PE) = 2940 J
Height (h) =?
Objects carried to a particular height will always experience an acceleration due to gravity of 9.8 m/s².
With the above in mind, we can obtain the height to which the load is lifted to as shown below:
Mass (m) of bag = 25 kg
Potential energy (PE) = 2940 J
Acceleration due to gravity (g) = 9.8 m/s².
Height (h) =?
PE = mgh
2940 = 25 × 9.8 × h
2940 = 245 × h
Divide both side by 245
h = 2940 / 245
h = 12 m
Therefore, the worker lifts the load to a height of 12 m.
ANSWER QUICK 30 POINTS
What force controls the movement of the planets around the sun, holds together stars grouped in galaxies, and galaxies grouped in clusters? Thoroughly explain your answer, making sure to include an example and describe how this force keeps planets in orbit. Make sure to write at least 3-5 sentences and proper conventions (spelling, grammar, punctuation, etc.) to respond. Put all answers in your own words
Answer:
Gravity controls the movement of the planets around the sun, holds together stars grouped in galaxies, and galaxies grouped in clusters. The Universal Law of Gravitation depends on two things. First it depends on mass of each object and the second factor is the distance between two objects. If the mass of one object is Larger, the gravitational pull towards it will be larger and the smaller distance, the larger the gravitational pull will be between the objects. Therefore the Larger planets have more moon and the inner planets have less.
Explanation:
At the height of 800 meters, a skydiver falls from an airplane flying horizontally at 40 m/sec. What is the horizontal distance of the skydivers travel before they "hit" the ground?
Answer:
The horizontal distance traveled by the skydiver is 510.8 m.
Explanation:
Given;
height of fall, h = 800 m
initial velocity of the airplane, u = 40 m/s
The time to fall to the ground is calculated as;
[tex]t = \sqrt{\frac{2h}{g} } \\\\t = \sqrt{\frac{2 \times 800}{9.81} }\\\\t = 12.77 \ s[/tex]
The horizontal distance or range of the motion is calculated as;
R = ut
R = 40 m/s x 12.77 s
R = 510.8 m
Therefore, the horizontal distance traveled by the skydiver is 510.8 m.
Question 17 of 25
A sound wave from a brass bell passes through the air with a
wavelength of 3.5 m. When the sound wave originated in the
brass bell, its wavelength was 47 m. If the sound wave has a
constant frequency of 100 Hz, what was its speed as it
traveled through the brass bell? (The equation for wave speed
is v= f*1.)
A. 3,500 m/s
B. 4,700 m/s
C. 350 m/s
D. 470 m/s
Answer:
The speed of the wave as it travelled through the brass bell is;
B. 4,700 m/s
Explanation:
The given parameters are;
The wavelength of the sound wave produced from the brass bell, [tex]\lambda _{(air)}[/tex] = 3.5 m
The wavelength of the wave in the brass bell, [tex]\lambda _{(brass \ bell)}[/tex] = 47 m
The frequency of the wave in the brass bell, f = 100 Hz
The given equation for wave speed, v = f × λ
Therefore, the speed of the wave as it travelled through the brass bell, [tex]v _{(brass \ bell)}[/tex], is given as follows;
[tex]v _{(brass \ bell)}[/tex] = f × [tex]\lambda _{(brass \ bell)}[/tex] = 100 Hz × 47 m = 4,700 m/s
The speed of the wave as it travelled through the brass bell = [tex]v _{(brass \ bell)}[/tex] = 4,700 m/s
Answer:
B.) 4700 m/s
Explanation:
What is the volume of a liquid in a 50 mL cup?
A. 50mL
B. 10mL
C. There is not enough information to answer this question.
Answer:
there is not enough information
On Earth, a spring stretches by 5.0 cm when a mass of 3.0 kg is suspended from one end.
The gravitational field strength on the Moon is
1/6 of that on Earth.
Which mass, on the Moon, would stretch the spring by the same extension?
Reasons too :(
igcse physics
Answer:
Mass = 18.0 kg
Explanation:
From Hooke's law,
F = ke
where: F is the force, k is the spring constant and e is the extension.
But, F = mg
So that,
mg = ke
On the Earth, let the gravitational force be 10 m/[tex]s^{2}[/tex].
3.0 x 10 = k x 5.0
30 = 5k
⇒ k = [tex]\frac{30}{5}[/tex] ................ 1
On the Moon, the gravitational force is [tex]\frac{1}{6}[/tex] of that on the Earth.
m x [tex]\frac{10}{6}[/tex] = k x 5.0
[tex]\frac{10m}{6}[/tex] = 5k
⇒ k = [tex]\frac{10m}{30}[/tex] ............. 2
Equating 1 and 2, we have;
[tex]\frac{30}{5}[/tex] = [tex]\frac{10m}{30}[/tex]
m = [tex]\frac{900}{50}[/tex]
= 18.0
m = 18.0 kg
The mass required to produce the same extension on the Moon is 18 kg.
Answer:
18 kg
Explanation:
weight (N) = mass (kg) × gravitational acceleration (m/s²)force (N) = k (spring constant) × extension (m)On Earth, acceleration of gravity is 10 m/s²
weight = 3.0 (kg) × 10 (m/s²)weight = 30 (N)Since weight is a force, the force is 30 N. The value of spring constant is unknown
30 (N) = k × 5 (m)k = 6 (m/N)Spring constant is 6. Now let's find the mass on the Moon
mass (kg) × gravitational acceleration (m/s²) = k (spring constant) × extension (m)Gravitational acceleration of the moon is 1/6 of that on Earth. Earth's g = 10, so Moon's g = 10/6
m × 10/6 = 6 × 5m = 30/(10/6)m = 18The mass is 18 kg
A wave has frequency of 50 Hz and a wavelength of 10 m. What is the speed of the wave? Group of answer choices
Explanation:
hehshehebdbajahwwdszsjshshs shsbw