In an RL series circuit, an inductor of 4.74 H and a resistor of 9.33 Ω are connected to a 26.4 V battery. The switch of the circuit is initially open. Next close the switch and wait for a long time. Eventually the current reaches its equilibrium value. At this time, what is the corresponding energy stored in the inductor? Answer in units of J.
Answer:
The energy is [tex]U = 18.98 \ J [/tex]
Explanation:
From the question we are told that
The inductor is [tex]L = 4.74 \ H[/tex]
The resistance of the resistor is [tex]R = 9.33 \ \Omega[/tex]
The voltage of the battery is [tex]V = 26.4 \ V[/tex]
Generally the current flowing in the circuit is mathematically represented as
[tex]I = \frac{V}{R}[/tex]
=> [tex]I = \frac{26.4}{9.33 }[/tex]
=> [tex]I = 2.83 \ A[/tex]
Generally the corresponding energy stored in the circuit is
[tex]U = \frac{1}{2} * L * I^2[/tex]
[tex]U = \frac{1}{2} * 4.74 * 2.83 ^2[/tex]
[tex]U = 18.98 \ J [/tex]
can humans be considered carbon sinks? If so,for how long
Answer:
Humans be considered carbon sinks. Not only do humans
have a lot of carbon in them, they also use a lot of carbon.
hope this helps
A man is passing barrels of water to another person from a height of 7 meters. The barrel is attached to a roof that is 10 meters above the ground. The rope holding the barrel is 8 meters long and will break if the tension exceeds 638 N. How many liters of water can the man put in the barrel without the rope breaking (assuming that the barrel is massless)? (The density of water = 1000 kg/m3 and 1 m3 = 1000 L. Density = mass/volume.)
PLS ANSWER WILL MARK BRANLIEST!!!!!!!!!!!!
Describe the life cycle of a star before it collapses into a black hole.
Describe the life cycle of a star before it becomes a black dwarf.
What is the likely outcome of our sun? *
The sun will supernova and become a black hole.
The sun will swell, encompassing the inner planets and collapses into a dwarf star.
The sun will become a pulsar.
How Do You Know?
P.S. the how do you know is only for the last question
1) describe the life cycle of a star before it collapses into a black hole.
1) describe the life cycle of a star before it collapses into a black hole.ans: A star's life cycle is determined by its mass. The larger its mass, the shorter its life cycle. A star's mass is determined by the amount of matter that is available in its nebula, the giant cloud of gas and dust from which it was born. Over time, the hydrogen gas in the nebula is pulled together by gravity and it begins to spin. As the gas spins faster, it heats up and becomes as a protostar. Eventually the temperature reaches 15,000,000 degrees and nuclear fusion occurs in the cloud's core. The cloud begins to glow brightly, contracts a little, and becomes stable. It is now a main sequence star and will remain in this stage, shining for millions to billions of years to come. This is the stage our Sun is at right now.
2) describe the life cycle of a star before it becomes a dwarf.
ans: The life cycle of a low mass star (left oval) and a high mass star (right oval). ... As the core collapses, the outer layers of the star are expelled. A planetary nebula is formed by the outer layers. The core remains as a white dwarf and eventually cools to become a black dwarf.
3) what is the likely outcome of our sun?
ans: All stars die, and eventually — in about 5 billion years — our sun will, too. Once its supply of hydrogen is exhausted, the final, dramatic stages of its life will unfold, as our host star expands to become a red giant and then tears its body to pieces to condense into a white dwarf.
***ECONOMICS***
A government that wants to increase its GDP would most likely take which
action?
A. Increase the money supply to make it easier to borrow money
Ο Ο
B. Decrease the money supply to slow the growth of inflation
C. Increase taxes on businesses that operate outside the country
O O
D. Decrease taxes on citizens who are poor or unemployed
Answer:
The correct answer is A. A government that wants to increase its GDP would most likely increase the money supply to make it easier to borrow money.
Explanation:
If the government wanted to increase its GDP, the most appropriate way to do so would be to increase the money supply both through issuance and through a reduction in bank reserve requirements, thereby increasing the circulating money in the hands of society.
This, in turn, would make citizens reinvest that money, increasing economic production and, therefore, the national GDP.
Answer: A. Increase the money supply to make it easier to borrow money
Explanation: I just took the test on Ap ex
How have the owners of the game reserve invested in the local community?
Answer:They have made community members shareholders so they get a share of the profits, which they use for schools and healthcare clinics
Explanation: Edmentum
Answer:
shareholders of the community get profits and that is used for schools and healthcare clinics. cs.
Explanation:
Forces are expressed in ________. (newtons or mass)
What are the three different types of muscle tissue?
Answer:
skeletal,cardiac,and smooth.
Explanation:
Answer:
Skeletal, smooth, and cardiac.
Explanation:
Skeletal Muscles:
Skeletal muscles are the most familiar type of muscles; they make up most of the muscle mass in the body. Flexible bands of connective tissue called tendons attach these muscles to the bones in the body. Skeletal muscles control voluntary movement in the body.
Smooth Muscles:
Smooth muscles are involuntary muscles that we don’t consciously control. They are found within the walls of many organs and control the movement of these organs. For example, they enable the movement of food through the digestive system.
Cardiac Muscles:
Cardiac muscles are a special type of involuntary muscle. Located in the heart, these muscles control the contractions of the heart.
can u give me brainliest???
The drawing shows two identical airplanes at an air show. The airplanes are flying at the same speed. Airplane W is flying 50 m higher than airplane X. Which statement best describes the energy of the two airplanes?
Answer:
Airplane X has more gravitational potential energy than Airplane W
Explanation:
Gravitational potential energy is defined as "the energy acquired by an object due to its positional change in presence of gravitational force."
That being said, gravitational potential energy depends on the height of an object above the ground. It also depends on the mass of the object and even further, the amount of gravitational force that is applied.
And if we take a look at the question again, we'd agree that the two airplanes are flying at different heights, this means their gravitational potential energy will be different. And as such, Airplane X has more gravitational potential energy than Airplane W
6. A cat walks 1.5km South and then 2.4km East. What is the total displacement of the cat?
7. A boy scout troop hikes 10.0 km East and then hikes an additional 7km North. What is the total displacement of the boy scout troop?
8. A go-kart is moving 23 m/s on the track. The track is 152m long. How long will take for the go-kart to reach the end of the track?
9. If a snail moves at a pace of .01m/s and it travels for 1 hr. How far does the snail get?
10. It takes 3 hr and 10 min to ride the tram to the top of Pike’s Peak in Colorado. The tram will travel a total distance of 14.32 km. What is the speed of the tram?
Answer:
6. 3.9 km SE
7. 17 km NE
8. 3496 seconds
9. 36 m
10. 13.27 km/m
Explanation:
6. and 7. added both numbers
8. multiplied both numbers
9. 60 x 60 = 3600
3600 x 0.01 = 36
10. 60 x 3 = 180
180 + 10 =190
190 / 14.32 = 13.27
Which of the following is a form of kinetic energy?
A. Electrical energy
B. Potential energy
C. Sound energy
D. Nuclear energy
HELP URGENT
Answer:
Electrical energy ⚡ Hope this helps you Stay happy and safe Do mark as brainliest ✌️Answer:
Potential Energy. It's wrong but it was worth a try
Wind eroding the rocks on a moutain is an example of the atmosphere interacting with the cryosphere
true or false
Answer:
False
Explanation:
The cryosphere is all the part of the earth where water is in solid form. Where wind interacts with rocks, it is an example of atmosphere - geosphere interaction.
Rocks are part of the geosphere The geosphere is the part of the earth made up of solid rocks. Wind erosion occurs when wind wears down part of the geosphere.Suppose the angle of incidence of a light ray is 42°.What is the angle of reflection?
Answer:
angle of reflection will be also 42°Explanation:
we know that ------------- angle of incidence=angle of reflectionun avión aterriza en la superficie de un portaaviones a 50 m/s y se detiene por completo en 120 metros, ¿cuál es la aceleración necesaria para detenerlo?
Answer:
La aceleración necesaria para detener el avión es - 10.42 m/s².
Explanation:
Un movimiento uniformemente acelerado (M.U.A) es aquél cuya aceleración es constante y la velocidad de un objeto cambia a medida que el movimiento evoluciona.
Siendo la aceleración "a" el cambio de velocidad al tiempo transcurrido en un punto A a B, la velocidad inicial la velocidad que tiene un cuerpo al iniciar su movimiento en un período de tiempo y la velocidad final la velocidad que tiene un cuerpo al finalizar su movimiento en un período de tiempo, entonces en M.U.A se cumple:
Vf² - Vo² = 2*a*d
donde:
Vf: Velocidad final Vo: Velocidad inicial a: Aceleración d: Distancia recorridaEn este caso:
Vf: 0 m/s, porque el avión se detieneVo: 50 m/sa: ?d: 120 mReemplazando:
(0 m/s)² - (50 m/s)² = 2*a*120 m
Resolviendo:
[tex]a=\frac{(0 m/s)^{2} -(50 m/s)^{2} }{2*120 m}[/tex]
a= - 10.42 m/s²
La aceleración necesaria para detener el avión es - 10.42 m/s².
A force is applied to a block sliding along a surface (Figure 2). The magnitude of the force is 15 N, and the horizontal component of the force is 4.5 N. At what angle (in degrees) above the horizontal is the force directed?
Answer:
Fy = 14.3 [N]
Explanation:
To be able to solve this problem we must know that the force is a vector and has magnitude and direction, therefore it can be decomposed into the force in the X & y components:
When we have the components on the horizontal and vertical axes we must use the Pythagorean theorem.
[tex]F = \sqrt{F_{x}^{2} +F_{y}^{2} }[/tex]
where:
F = 15 [N]
Fx = horizontal component = 4.5 [N]
Fy = vertical component [N]
[tex]15=\sqrt{4.5^{2}+F_{y}^{2}}\\ 15^{2}= (\sqrt{4.5^{2}+F_{y}^{2}})^{2} \\225 = 4.5^{2}+F_{y} ^{2}\\ F_{y}^{2} =225 -4.5^{2}\\ F_{y}^{2}=204.75\\F_{y}=\sqrt{204.75}\\ F_{y}=14.3 [N][/tex]
You are sitting on a Ferris wheel moving at a constant speed of 8 m/s. When you are at the bottom of the rotation, what is the normal force of the seat on you if you have a mass of 50 kg and the radius of the Ferris wheel is 10 m
Answer:
40NExplanation:
Formula for calculating normal force is expressed as:
[tex]F = ma\\since \ a = \frac{v^2}{r} \\F = \frac{mv^2}{r}[/tex]
m is the mass of the body = 50kg
v is the velocity of the Ferris wheel = 8m/s
r is the radius of the Ferris wheel
Substitute into the formula:
[tex]F = \frac{50 \times 8}{10}\\ F = \frac{400}{10}\\ F = 40N\\[/tex]
Hence the normal force of the seat is 40N
A cannon ball is shot horizontally off a 37.0 m cliff and lands a distance of 18.5 m
from the base of the cliff. Whall was the initial horizontal velocity of the cannon ball?
Answer:
vₓ = 6.73 m/s
Explanation:
Assuming no other external influences than gravity, in the horizontal direction (which we make to coincide with the x- axis) , speed is constant, so, applying the definition of average velocity, we can write the following equation:[tex]v_{x} = \frac{\Delta x}{\Delta t} (1)[/tex]
Now, in the vertical direction (coincident with the y- axis) , as both movements are independent each other, initial velocity is zero, so we can write the following equation for the vertical displacement:[tex]\Delta h = \frac{1}{2} * g * t^{2} (2)[/tex]
where Δh = -37.0 m , g = -9.8 m/s2Solving (2) for t, we get:[tex]t = \sqrt{\frac{2*\Delta h}{g} } =\sqrt{\frac{2*37.0m}{9.8m/s2}} = 2.75 s (3)[/tex]
Taking t₀ = 0, ⇒ Δt = tReplacing (3) in (1), we get:[tex]v_{x} = \frac{\Delta x}{\Delta t} = \frac{x}{t} = \frac{18.5m}{2.75s} = 6.73 m/s[/tex]
As the horizontal velocity is constant, the initial horizontal velocity is just the average one, i.e., 6.73 m/s.Question 1 of 15
All digits shown on the measuring device, plus one estimated digit, are
considered
Answer here
SUBMIT
Answer:
significant
Explanation:
The digits in a measurement that are considered significant are all of those digits that represent marked calibrations on the measuring device plus one additional digit to represent the estimated digit (tenths of the smallest calibration).
What is the ratio of the displacement amplitudes of two sound waves given that they are both5.0 kHz but have a 3.0 dB intensity level difference?
Answer:
The ratio of the displacement amplitudes of two sound waves is 1.16.
Explanation:
Given that,
Frequency = 5.0 kHz
Intensity level difference = 3.0 dB
We know that,
The sound intensity is inversely proportional to the square of distance.
[tex]I\propto\dfrac{1}{r^2}[/tex]
The sound intensity for first wave is
[tex]\beta_{1}=10\log\dfrac{I_{1}}{I_{0}}[/tex]...(I)
The sound intensity for second wave is
[tex]\beta_{2}=10\log\dfrac{I_{2}}{I_{0}}[/tex]...(II)
We need to calculate the ratio of intensity
From equation (I) and (II)
[tex]\beta_{2}-\beta_{1}=10\log\dfrac{I_{2}}{I_{0}}-10\log\dfrac{I_{1}}{I_{0}}[/tex]
[tex]\Delta \beta=10\log(\dfrac{I_{2}}{I_{1}})[/tex]
Put the value into the formula
[tex]3.0=10\log(\dfrac{I_{2}}{I_{1}})[/tex]
[tex]\dfrac{I_{2}}{I_{1}}=e^{\dfrac{3.0}{10}}[/tex]
[tex]\dfrac{I_{2}}{I_{1}}=1.34[/tex]
We need to calculate the ratio of the displacement
Using formula of displacement
[tex]\dfrac{r_{1}}{r_{2}}=\sqrt{\dfrac{I_{2}}{I_{1}}}[/tex]
Put the value into the formula
[tex]\dfrac{r_{1}}{r_{2}}=\sqrt{1.34}[/tex]
[tex]\dfrac{r_{1}}{r_{2}}=1.16[/tex]
Hence, The ratio of the displacement amplitudes of two sound waves is 1.16.
Which of the following is not true about taxes? A. Mandatory sum of money by government so that it can operate B. Due on April 15th C. largely collected to support private businesses D. Collected by the Internal Revenue Service (IRS)
Sally is on a large sailboat that comes to a stop a small distance from the dock. Since it is such a small distance, Sally decides to jump to the dock. She makes the jump, but the large sailboat moves away from her as she jumps. Since Sally is interested to see what happens on other boats, she makes the same jump from a rowboat that is much smaller than the large sailboat. Which boat will move away from Sally more slowly
Answer:
The rowboat will move away from sally more quickly because the rowboat because the sailboat is larger in mass
Explanation:
Gnerally the row boat will move away from her quicker than the sailboat this is because the mass of the sail boat is larger than the row boat , hence the frictional force that opposes motion will be greater in the sailboat than in the row boat.
Determine the acceleration that results when a 12 N net force is applied to a 3 kg object.
a. 4 m/s 2
b. 6 m/s 2
c. 12 m/s 2
d. 36 m/s 2
Answer:
4m/s^2 ( A)
Explanation:
The solution is in the attached file
1. Which of these is not a natural fibre?
a. leather
b. jute
C.Wool
d. cotton
Answer:
leather
Explanation:
plz mark as brainliest......hope it helps
Answer:
a. leather
Explanation:
Hello friend!!!!
a. leather is the correct option because jute, wool and cotton are all natural fibres whereas leather is a synthetic fibre.
Hope this helps
plz mark as brainliest!!!!!!
An airline employee tosses two suitcases in rapid succession with a horizontal velocity of 7.2 ft/s onto a 50-lb baggage carrier which is initially at rest. Problem 14.003.a Conservation of momentum: two colliding suitcases Knowing that the final velocity of the baggage carrier is 4.8 ft/s and that the first suitcase the employee tosses onto the carrier has a weight of 30 lb, determine the weight of the other suitcase. (You must provide an answer before moving on to the next part.) The weight of the other suitcase is lb.
Answer:
m₁ = 70 lb
Explanation:
Here we will use the law of conservation of momentum:
m₁u₁ + m₂u₂ + m₃u₃ = m₁v₁ + m₂v₂ + m₃v₃
where,
m₁ = mass of first suitcase = ?
m₂ = mass of second suitcase = 30 lb
m₃ = mass of baggage carrier = 50 lb
u₁ = initial speed of first suitcase = 7.2 ft/s
u₂ = initial speed of second suitcase = 7.2 ft/s
u₃ = initial speed of baggage carrier = 0 ft/s
v₁ = Final speed of first suitcase = 4.8 ft/s
v₂ = Final speed of second suitcase = 4.8 ft/s
v₃ = Final speed of baggage carrier = 4.8 ft/s
because after collision all three will have same speed
Therefore,
(m₁)(7.2 ft/s) + (30 lb)(7.2 ft/s) + (50 lb)(0 ft/s) = (m₁)(4.8 ft/s) + (30 lb)(4.8 ft/s) + (50 lb)(4.8 ft/s)
(m₁)(7.2 ft/s) + (216 lb ft/s) + (0 lb ft/s) = (m₁)(4.8 ft/s) + (144 lb ft/s) + (240 lb ft/s)
(m₁)(7.2 ft/s) - (m₁)(4.8 ft/s) = 168 lb ft/s
m₁ = (168 lb ft/s)/(2.4 ft/s)
m₁ = 70 lb
what is a proper way and a safe way to dispose batteries
Answer:
throw them away............
A stone is released from rest from the edge of a building roof 190 m above the ground. Neglecting air resistance, the speed of the stone, just before striking the ground, is:___________.
Answer:
61 m/s
Explanation:
If the stone is realeased from rest, this means that its initial velocity is 0.As tha stone is only influenced by gravity, and the acceleration due to it is constant (near the surface of the Earth), we can apply the following kinematic equation:[tex]v_{f}^{2} - v_{o}^ {2} = 2* g* h (1)[/tex]
Replacing by the values of g=9.8 m/s², and h=190 m, rearranging and solving for vf, we get:vf = √2*g*h =√2*9.8 m/s²*190 m = 61 m/s (assuming that the downward direction is the positive one).A cat chases a mouse for a distance of 9.0 m over 16 s before getting tired. What is the cats average speed?
Answer:
The answer is 0.56 m/sExplanation:
The speed of the cat can be found by using the formula
[tex]v = \frac{d}{t} \\ [/tex]
d is the distance
t is the time taken
From the question we have
[tex]v = \frac{9}{16} = \\ = 0.5625[/tex]
We have the final answer as
0.56 m/sHope this helps you
During a testing process, a worker in a factory mounts a bicycle wheel on a stationary stand and applies a tangential resistive force of 115 N to the tire's rim. The mass of the wheel is 1.80 kg and, for the purpose of this problem, assume that all of this mass is concentrated on the outside radius of the wheel. The diameter of the wheel is 50.0 cm. A chain passes over a sprocket that has a diameter of 8.50 cm. In order for the wheel to have an angular acceleration of 4.30 rad/s2, what force, in Newtons, must be applied to the chain
Answer:
The force is [tex] F_c = 789.03 \ N [/tex]
Explanation:
From the question we are told that
The tangential resistive force is [tex]F_t = 115 \ N[/tex]
The mass of the wheel is m = 1.80 kg
The diameter of the wheel is [tex]d = 50.0 cm = 0.5 \ m[/tex]
The diameter of the sprocket is [tex]d_c = 8.50 \ cm =0.085 \ m[/tex]
The angular acceleration considered is [tex]\alpha = 4.30\ rad/s^2[/tex]
Generally the radius of the wheel is
[tex]r = \frac{d}{2}[/tex]
=> [tex]r = \frac{0.5}{2}[/tex]
=> [tex]r = 0.25 \ m [/tex]
Generally the radius of the sprocket is
[tex]r_c = \frac{d_c}{2}[/tex]
=> [tex]r_c = \frac{0.085}{2}[/tex]
=> [tex]r_c = 0.0425 \ m [/tex]
Generally the moment of inertia of the wheel is mathematically represented as
[tex]I = m * r^2[/tex]
=> [tex]I = 1.80 * 0.25^2[/tex]
=> [tex]I = 1.1125 \ kg \cdot m^2[/tex]
Generally the torque experienced by the wheel due to the forces acting on it is mathematically represented as
[tex]\tau = F_c * r_c - F_t * r [/tex]
Here [tex]F_c[/tex] is the force acting on the sprocket
So
[tex]\tau = F_c * 0.0425 - 115 * 0.25 [/tex]
[tex]\tau = 0.0425F_c - 28.75 [/tex]
Generally the torques that will cause the wheel to move with [tex]\alpha = 4.30\ rad/s^2[/tex] is mathematically represented as
[tex]\tau = I * \alpha[/tex]
So
[tex] 0.0425F_c - 28.75 = I * \alpha [/tex]
[tex] 0.0425F_c - 28.75 = 1.1125 *4.30 [/tex]
[tex] 0.0425F_c - 28.75 = 1.1125 *4.30 [/tex]
[tex] F_c = 789.03 \ N [/tex]
In the figure below, a block of 1.67 slides on a track with different levels, which has friction only at the highest point where the kinetic coefficient of friction is uk = 0.35. If the block has an initial speed V0 = 7.5m/s and the highest point of the track is at ℎ = 2.1 above the initial position of the block, calculate the distance where the friction force for the block is.
Answer:
2.0 m
Explanation:
Energy is conserved.
Initial KE = Final PE + Work done by friction
½ mv² = mgh + Fd
½ mv² = mgh + mgμd
½ v² = gh + gμd
½ v² − gh = gμd
d = (½ v² − gh) / (gμ)
d = (½ (7.5 m/s)² − (10 m/s²) (2.1 m)) / ((10 m/s²) (0.35))
d = 2.0 m
The name for this type of energy is
A.potential energy
B.motion
C.position
D.kinetic energy
Explanation:
[tex]kinetic \: energy \: is \: the \: energy \: of \: a \: body \: in \: motion. \\ that \: is \: energy \: of \: a \: body \: that \: is \: moving.\\ while \\ potential \: energy \: is \: the \: energy \: of \: a \: body \: by \: the \: virtue \: of \: its \: position \: \\ that \: is \: energy \: of \: a \: body \: that \: is \: not \: moving.[/tex]
♨Rage♨