Answer:
P = 100 lb
Explanation:
For an ideal machine:
[tex]Work\ In = Work\ Out\\(P)(L)=(W)(H)[/tex]
where,
P = Effort = Input Force = ?
L = Effort Arm = Length of inclined plane = 10 ft
W = Load to be lifted = 200 lb
H = Load Arm = Height = 5 ft
Therefore,
[tex]P(10\ ft) = (200\ lb)(5\ ft)\\\\P = \frac{(200\ lb)(5\ ft)}{10\ ft}[/tex]
P = 100 lb
How do the properties of the planets change as you move away from the sun?
Answer:
as we move away from the sun the velocity of the planet decreases
What is the average kinetic energy (temperature) of
sample A
What type of liquid would never freeze
Answer:
gas
Explanation:
gasoline will never freeze up
Answer:
Alcohol
Explanation: I'm not sure
HELP PLS
In the context of climate change, is “positive feedback” a good thing?
9. How is spring potential energy determined from a force versus position graph?
Answer: The potential energy associated with a mass attached to a spring depends on how much the spring is stretched or compressed. ... The gravitational force on the mass is −mg (“−” because the force points down). The force is the negative of the slope on the potential energy versus position graph.
Explanation:
:)
By getting the data from the graph of force versus displacement we can calculate the Potential energy of the spring.
What will be the potential energy?As we know that potential energy is defined as the energy possessed by the body due to its position with respect to other positions.
For an example the potential energy of an object if it is placed at height h will be due to the gravitational acceleration of the earth and is given by [tex]PE=mgh[/tex]
Similarly, for a spring-mass system, the potential energy will be due to the weight of the mass that will be the force exerted by the mass on the spring so there will be an extension in the spring.
So this extension will be found out by the force and displacement graph as the position of the mass attached to the spring goes down so the potential energy can be calculated as the
[tex]PE= F\times X[/tex]
[tex]F=mg[/tex] weight of the mass
X= deflection of the spring
Thus by getting the data from the graph of force versus displacement we can calculate the Potential energy of the spring.
To know more about potential energy follow
https://brainly.com/question/24933254
Which one of the following properties apply to both waves and particles?
A) Photoelectric Effect
B) Diffraction
C) Refraction
Answer:
b
Explanation:
sorry if im wrong
The Hubble Space Telescope has a mass of 1.16*10^ 4 kg and orbits the Earth at an altitude of 5.68 * 10 ^ 5 above Earth's surface. Relative to infinitydetermine the potential energy the telescope at this location. Would the formula be Ep=-Gm1m2/r or positive G since it’s relative to infinity
Answer:
[tex]E=8.13\times 10^{12}\ J[/tex]
Explanation:
Given that,
The mass of a Hubble Space Telescope, [tex]m_1=1.16\times 10^4\ kg[/tex]
It orbits the Earth at an altitude of [tex]5.68\times 10^5\ m[/tex]
We need to find the potential energy the telescope at this location. The formula for potential energy is given by :
[tex]E=\dfrac{Gm_1m_e}{r}[/tex]
Where
[tex]m_e[/tex] is the mass of Earth
Put all the values,
[tex]E=\dfrac{6.67\times 10^{-11}\times 1.16\times 10^4\times 5.97\times 10^{24}}{5.68\times 10^5}\\\\E=8.13\times 10^{12}\ J[/tex]
So, the potential energy of the telescope is [tex]8.13\times 10^{12}\ J[/tex].