Answer:
The answer is "[tex]\bold{7.56 \ Me\ V}[/tex]".
Explanation:
calculating the binding energy on per nucleon:
calculating number of proton and neutrons:
proton [tex]P_u=94[/tex]
neutron[tex]= 239-94=145[/tex]
calculating mass:
proton mass [tex]\ m_P=1.007825 \ amu\\\\[/tex]
neutron mass [tex]\ m_n=1.008665 \ amu\\\\[/tex]
neutral atom mass [tex]m = 239.05216 \ amu\\\\[/tex]
mass of prtons[tex]= 94 \times 1.007825 = 94.73555 \ amu\\\\[/tex]
mass of neutrons[tex]= 145 \times 1.008665= 146.256425 \ amu\\\\[/tex]
Total nucleons mass formula:
[tex]\to m_n = (P+n)[/tex]
[tex]= 94.73555+ 146.256425\\\\= 240.991975 \ amu[/tex]
calculating the mass of defect:
[tex]\to \Delta m= m_n-m\\\\[/tex]
[tex]= 240.991975 - 239.05216\\\\= 1.939815 \ amu\\\\[/tex]
calculating the total of the binding energy:
[tex]\to BE=\Delta m\times 931.5 \ mev[/tex]
[tex]= 1.939815 \times 931.5\\\\=1806.938 \ Me \ V\\\\[/tex]
BE in per nucleon [tex]=\frac{BE}{239}= 7.56 \ Me\ V[/tex]
what is the potential energy of a 30kg rock that falls 15 meters
Answer:
4500 JExplanation:
The potential energy of a body can be found by using the formula
PE = mgh
where
m is the mass
h is the height
g is the acceleration due to gravity which is 10 m/s²
From the question we have
PE = 30 × 10 × 15
We have the final answer as
4500 JHope this helps you
There is a bell at the top of a tower that is 45 m high. The bell weighs 190 N. The bell has ____________
energy.
Answer:
The bell has a potential energy of 8550 [J]
Explanation:
Since the belt is 45 [m] above ground level, only potential energy is available. And this energy can be calculated by means of the following equation.
[tex]E_{p}= W*h\\E_{p} = 190*45\\E_{p}=8550[J][/tex]
The fact that our preconceived ideas contribute to our ability to process new information best illustrates the importance of: the serial position effect. O repression iconic memory . semantic encoding . retroactive interference .
Answer:
It’s a
Explanation:
Don’t actually put that i needed the points mb
What is the magnitude of the centripetal force that must be applied in order for a 2kg ball on a 2.0 m string to spin with uniform circular motion at 5.0 m/s
The ball needs to accelerate with a magnitude a (pointed towards the center of the circle) of
a = (5.0 m/s)² / (2.0 m) = 12.5 m/s²
Then the required tension F in the string would need to be
F = (2 kg) (12.5 m/s²) = 25 N
A 65-cm segment of conducting wire carries a current of 0.35 A. The wire is placed in a uniform magnetic field that has a magnitude of 1.24 T. What is the angle between the wire segment and the magnetic field if the force on the wire is 0.26 N?
a. 37°.
b. 43°.
c. 23°.
d. 53°.
e. 67°.
Answer:
e) 67°
Explanation:
the force on the wire can be calculated using the expression below
F = BILsinФ
But we are looking for the angle between the wire segment and the magnetic field, then we can make Ф the subject of the formula from the above expresion, then we have,
Ф =sin⁻¹ (F/BIL)
The parameters is defined as
I =current that is been carried by the wire= 0.35 A
Ф = angle between the wire segment and the magnetic field, which is the unknown?
L = length of the wire=65 cm
B = magnetic field = 1.24
F= force on the wire = 0.26 N,
Ф =sin⁻¹ (F/BIL)
Ф =sin⁻¹ X .....................eqn(#)
Where X= (F/BIL)
We can calculate for X= (F/BIL), from eqn(#) by substituting value of Force, Lenght and
magnetic field
X=(F/BIL)= 0.26/(1.24×0.35×0.65)
= 0.26/0.2821
=0.922
Then substitute X into eqn (Ф =sin⁻¹ X)
Then
Ф =sin⁻¹ (0.922)
Ф=66.42°
Ф=67° approximately
Therefore, the angle between the wire segment and the magnetic field is 67°
Jadeen says that you can increase the resistance of a copper wire by hammering the wire to make it narrower and longer. Arnell says that you can increase its resistance by heating the wire. Which one, if either, is correct, and why?
1) Arnell, because the conductivity of the wire increases when it is heated.
2) Arnell, because the conductivity of the wire decreases when it is heated.
3) Jadeen, because the conductivity of a wire is directly proportional to its area and inversely proportional to its length.
4) Jadeen, because the conductivity of a copper wire does not increase and might decrease when it is hammered.
5) Both are correct because (b) and (d) are both correct.
Answer:
The answer is "Option 5".
Explanation:
Jadeen claims that only by hitting the wire to make it thinner and wider, it can improve a copper wire's strength, which is why a copper wire's permeability doesn't quite improve and can reduce once it is pounded. Arnell says so by heating its wire, it can improve its strength, and when it is heated, the wire's permeability reduces.
The effect of gravity on a falling object can be modeled by a ball dropped from different heights. What is a limitation of this model?
A. Not all objects bounce, even though balls do.
B. Some balls float in water, while others sink.
C. The ball can be dropped from varying heights.
D. Friction with air also affects the fall of the object.
Correct answer is D
Answer:
D.
Explanation:
try it.. *lil uzi vert's voice*
The limitation of the model of a ball dropped from different heights is that friction with air also affects the fall of the object. Hence, option (D) is correct.
What is Galileo's Leaning Tower of Pisa experiment?According to a biography written by Galileo's student Vincenzo Viviani in 1654 and published in 1717, between 1589 and 1592, the Italian scientist Galileo Galilei, who was then a professor of mathematics at the University of Pisa, is said to have dropped two spheres with the same volume but different masses from the Leaning Tower of Pisa to show that their time of descent was independent of their mass. A few decades previously, Italian experimenters had already proven the fundamental tenet.
Galileo, it is said, discovered through this experiment that the items fell with the same acceleration, confirming his prediction and refuting Aristotle's theory of gravity in the process (which states that objects fall at speed proportional to their mass). The majority of historians believe it to have been more of a thought experiment than a physical test.
Learn more about gravity here:
https://brainly.com/question/4014727
#SPJ2
A fluid of density rho = 900 kg/m3 flows along a pipe of constant diameter from point A to point B. Gauge pressure at point A is equal to zero, and absolute pressure at point B is 30% lower than pressure at point A. What is the height difference, Δh, between points A and B?
a. Δh = 8.09 m with point A above point B.
b. Δh = 344 m with point B above point A.
c. Δh = 303 m with point B above point A.
d. Δh = 3.44 m with point A above point B.
The height difference between points A and B is : ( B ) Δh = 3.44 m with point B above point A.
Given data :
fluid density = 900 kg/m³
Diameter of pipe = constant
Gauge pressure at Point A = 0
Gauge pressure at point B = 30% lower
Determine the height difference between points A and Bfirst step : determine absolute pressure
Pa (absolute pressure )= gauge pressure + atmospheric pressure
= 0 + patm
Therefore : Pa = Patm
Also;
Pressure at point B ( Pb ) = Pa - 30%Pa
= 0.7 Patm
Hence ; Pa - Pb = 0.3 Patm ----- ( 1 )
Final step : Determine the height difference
we will apply the formula below from equation ( 1 )
p *g * Δh = 0.3 * 1.013 * 10⁵ ( note : Patm = 1.013 * 10⁵ )
900 * 9.81 * Δh = 0.3 * 1.013 * 10⁵
therefore :
Δh = ( 0.3 * 1.013 * 10⁵ ) / ( 900 * 9.81 )
= 3.44 m
Hence we can conclude that The height difference between points A and B is Δh = 3.44 m with point B above point A.
Learn more about height difference in fluids : https://brainly.com/question/17200230
A projectile is fired horizontally from a height of 10 m above level ground. The projectile lands a horizontal distance of 15 m from where it was launched.
-Find the hang time for the projectile.
-Find the initial speed of a projectile.
-What are the x and y components of the projectile’s velocity the moment before it strikes the ground?
-At what speed will the projectile strike the ground?
Answer:
a)t = 1,43 s
b) V = 10,49 m/s
c) V₀ₓ = 10,49 m/s ; V₀y = 14,01 m/s
d) Vf = 17,5 m/s
Explanation:
According to the problem statement
V₀ = V₀ₓ and V₀y = 0
And at the end of the movement t = ? the distance y = 10 m
Therefore as
h = V₀y - (1/2)*g*t²
Vertical distance y = h = 10 = V₀y*t - 0,5 (-9,8)*t²
10 = 4,9*t²
t² = 10/4,9 ⇒ t² = 2,04 s
t = 1,43 s
a) 1,43 s is the time of movement
b) V₀ = V₀ₓ V₀y = 0 and V₀ₓ = Vₓ ( constant )
Just before touching the ground, the horizontal distance is
hd = 15 = Vₓ * t
Then 15 /1,43 = Vₓ = V₀ₓ
Vₓ = 10,49 m/s
Then initial speed is V = 10,49 m/s since V₀y = 0
Vf² = Vₓ² + Vy²
Vyf = V₀y - g*t
Vyf = 0 - 9,8 *1,43
Vyf = - 14,01 m/s
And finally the speed when the projectile strike the ground is:
Vf² = Vₓ² + Vy²
Vf = √ (10,49)² + (14,01)²
Vf = 17,50 m/s
A rocket falls from the apogee (0 meters per second) until it hits the ground with a speed of 10 meters per second. Gravity pulled it down with an acceleration of 9.8m/s^2. The time during which the ball is in free fall is approximately what time?
Answer:
Approximately 1.02 seconds
Explanation:
Use the final velocity (vf) formula for a uniformly accelerated movement under "g" (acceleration of gravity):
[tex]v_f=v_i+g\,*\,t[/tex]
in our case:
[tex]10=0+9.8\,*\,t\\t=10/9.8\\t\approx 1.02\,\,sec[/tex]
Which of the following is not an example of work being done on an object?
Pushing on a rock that will not move
Paddeling a canoe down a river
Lifting a bag of groceries
Throwing a ball across a field
Answer:
Lifting a bag of groceries
Answer:
paddeling a canoe down a river :D or throwing a ball across a field
Explanation:
What is the error in this representation of the steps involved in gene therapy?
Answer:
a
Explanation:
An object with a mass of 32 kg has an initial energy of 500). At the end of the experimentthe velocity of the object is recorded as 5.1 m/s . the object travelled 50 m to get to this point, what was the average force of friction on object during the tripAssume no potential energy Show all work
Answer:
F = 1.68 N
Explanation:
Let's solve this exercise in parts.
Let's use the concept of conservation of the mechanical nerve
initial
Em₀ = 500 J
The energy is totally kinetic
Em₀ = K = ½ m v₀²
v₀ = [tex]\sqrt{\frac{2 Em_{o} }{m} }[/tex]
v₀ = √ (2 500/32)
v₀ = 5.59 m / s
now with kinematics we can find a space
v² = v₀² - 2 a x
the negative sign is because the body is stopping
a =[tex]( \frac{v_{o}^{2} - v^{2} }{2x} )[/tex]
let's calculate
a = (5.59² - 5.1²) / 2 50
a = 0.0524 m / s²
Finally let's use Newton's second law
F = ma
F = 32 0.0524
F = 1.68 N
find the base area of a cylinder with diameter 1m
Answer:
AB=0.79
Explanation:
hope this helped
Galaxy B moves away from galaxy A at 0.577 times the speed of light. Galaxy C moves away from galaxy B in the same direction at 0.731 times the speed of light. How fast does galaxy C recede from galaxy A?
Answer:
The value is [tex]p = 0.7556 c[/tex]
Explanation:
From the question we are told that
The speed at which galaxy B moves away from galaxy A is [tex]v = 0.577c[/tex]
Here c is the speed of light with value [tex]c = 3.0 *10^{8} \ m/s[/tex]
The speed at which galaxy C moves away from galaxy B is [tex]u = 0.731 c[/tex]
Generally from the equation of relative speed we have that
[tex]u = \frac{p - v}{ 1 - \frac{ p * v}{c^2} }[/tex]
Here p is the velocity at which galaxy C recede from galaxy A so
[tex]0.731c = \frac{p - 0.577c }{ 1 - \frac{ p * 0.577c}{c^2} }[/tex]
=> [tex]0.731c [1 - \frac{ p * 0.577}{c}] = p - 0.577c[/tex]
=> [tex]0.731c - 0.4218 p = p - 0.577c[/tex]
=> [tex]0.731c + 0.577c = p + 0.4218 p[/tex]
=> [tex]1.308 c = 1.731 p[/tex]
=> [tex]p = 0.7556 c[/tex]
Hello! How do you answer a question? I will give you 25 points if you answer it. :)
Answer:
press add answer and it will let you answer the question
Explanation:
Answer:
you click on the question, then you click answer, then type what you want, and click the green button on the top right saying dd your answer
Explanation:
If two exactly the same cars are driving down a road, which one would have the most kinetic energy. The one that is moving faster, the one that is moving downhill, the one that is moving uphill, or the one that is moving slower.
Answer: the car that is moving downhill
Explanation:
The free-body diagram below shows the forces acting on a bicycle as the
rider pedals to the right. The vectors are not drawn to scale. The bicycle has a
weight of 800 N and a pedaling force of 250 N. As it moves, it encounters 75
N of air resistance. What is the net force on the bicycle in the x-direction?
Answer:
175 N to the right
Explanation:
I am taking the quiz and this is the correct answer. The pedaling force if 250 N but when it encounters 75 N of air resistance, it reduces to 175 N. This is because the air resistance is going opposite of you.
The weight of the bike and the cyclist are a force that the Earth applies to both of them and that acts vertically and downward, causing an action on the ground. The pedal-pushing force is transmitted from the crank arm to the chainring axis via the transmission forces.
What forces acting on a moving bicycle?When we press the pedals, the force travels to the back wheel, which then applies pressure to the ground. Strength of action. The pavement responds by exerting a force in the opposite direction but in the same direction on the back wheel. Hence, always move forward.
Therefore, Walking and biking are made possible through la friction. The friction created by the tire's pressure on the ground, It prevents the tire from rotating and keeps the lowest part of the wheel on the ground. The wheel is driven by this force, which is transferred to the wheel axle.
Learn more about forces here:
https://brainly.com/question/13191643
#SPJ2
A circuit can only light up a lightbulb if there is a ______ path for electricity to travel from one end of the energy source to the other end.
Answer:
Continuous
Explanation:
A circuit can only light up a lightbulb if there is a continuous path for electricity to travel from one end of the energy source to the other end.
Answer:
continuios
Explanation:
If the magnitude of the electric field of an electromagnetic wave is 3x10^3 V/m, what is the the magntude of the magnetic field?
a. 1.1 x 10^-12 T
b. 9 x 10^11 T
c. 10^5 T
d. 10^-5 T
e. 3 x 10^3 T
Answer:
The value of the magnetic field is [tex]B = 1.0*10^{-5} \ T[/tex]
The correct option is d
Explanation:
From the question we are told that
The magnitude of the electric field is [tex]E = 3*10^{3} \ V/m[/tex]
Generally the magnitude of the magnetic field is mathematically represented as
[tex]B = \frac{E}{c}[/tex]
Here c is the speed of light [tex]c = 3.0*10^{8} \ m/s[/tex]
=> [tex]B = \frac{E}{c}[/tex]
=> [tex]B = \frac{3.0*10^{3}}{ 3.0*10^{8}}[/tex]
=> [tex]B = 1.0*10^{-5} \ T[/tex]
A circuit component that is a composed of a semiconductor layer sandwiched between two other semiconductor layers is a(n)?
Explanation:
It's a transistor. Hope that helps!
Answer:
D. Transistor
Explanation:
Edge 2021
How was the Periodic Table of Elements developed and how are the elements arranged on it?
Answer:
In 1869 Russian chemist Dimitri Mendeleev started the development of the periodic table, arranging chemical elements by atomic mass. He predicted the discovery of other elements, and left spaces open in his periodic table for them.
Explanation:
Answer: Mendeleev first published a table of elements arranged according to increasing atomic masses. He noticed that some elements near each other had differing properties, but elements in vertical columns had similar properties. Moseley then rearranged the table according to atomic numbers and this eliminated the discrepancies found in Mendeleev’s attempt. Today’s version of the periodic table displays elements in order based on their atomic number; the atomic number indicates the number of protons within the atoms of a particular element. Rows are called periods and columns are called groups. Elements in the same group have similar properties. Elements are grouped into nine categories: noble gases, halogens, nonmetals, alkali metals, alkaline earth metals, transition metals, other metals, metalloids, and rare earth elements.
The Steamboat Geyser in Yellowstone National Park shoots water into the air at 48.0 m/s. How
high will the water spray into the air?
Answer:
The maximum height reached by the water is 117.55 m.
Explanation:
Given;
initial velocity of the water, u = 48 m/s
at maximum height the final velocity will be zero, v = 0
the water is going upwards, i.e in the negative direction of gravity, g = -9.8 m/s².
The maximum height reached by the water is calculated as follows;
v² = u² + 2gh
where;
h is the maximum height reached by the water
0 = u² + 2gh
0 = (48)² + ( 2 x -9.8 x h)
0 = 2304 - 19.6h
19.6h = 2304
h = 2304 / 19.6
h = 117.55 m
Therefore, the maximum height reached by the water is 117.55 m.
Answer:
The maximum height reached by the water is 117.55 m.
Explanation:
Collision Lab
This activity will help you meet these educational goals:
You will explain or predict phenomena by exploring qualitative relationships between variables.
You will use positive and negative numbers to represent quantities in real-world contexts.
Directions
Read the instructions for this self-checked activity. Type in your response to each question, and check your answers. At the end of the activity, write a brief evaluation of your work.
Activity
Open this collision simulator and click Introduction. You’ll use the simulator to explore and compare elastic collisions and inelastic collisions. The mass and starting velocity of the colliding objects are kept constant. Follow the instructions in each part, and then answer the questions that follow. Use the math review if you need help with adding and subtracting negative numbers.
Question 1: Elastic Collisions
In this question, you will investigate elastic (bouncy) collisions. Be sure that the slider is to the extreme right (elasticity 100%).
Part A
Click Show Values in the upper-right corner. Study the boxes on the screen. What are the mass and initial velocity of ball 1 and ball 2?
I NEED HELP!
Part B
Part B
Click Play, and watch the balls collide. Then click Pause. What are the final velocities of ball 1 and ball 2?
The number line shows the starting and ending velocities for ball 1. What’s the change in velocity of ball 1? Calculate the value mathematically, and check it using the number line.
a number line showing an ending velocity of -0.50 meter/second and a starting velocity of 1.00 meter/second
Answer:
Ball 1 has a mass of 0.5 kilogram and an initial velocity of 1.00 meter/second. Ball 2 has a mass of 1.5 kg and an initial velocity of 0.00 meters/second.
Explanation:
Ball 1 has a mass of 0.5 kilogram and an initial velocity of 1.00 meter/second. Ball 2 has a mass of 1.5 kg and an initial velocity of 0.00 meters/second.
What is Collision?
A collision is any situation in which two or more bodies quickly exert forces on one another. Despite the fact that the most common usage of the word "collision" refers to situations in which two or more objects clash violently, the scientific usage of the word makes no such assumptions.
The following are a few instances of physical encounters that scientists might classify as collisions. Legs of an insect are said to collide with a leaf when it falls on one.
Every contact of a cat's paws with the ground while it strides across a lawn is seen as a collision, as is every brush of its fur with a blade of grass.
Therefore, Ball 1 has a mass of 0.5 kilogram and an initial velocity of 1.00 meter/second. Ball 2 has a mass of 1.5 kg and an initial velocity of 0.00 meters/second.
To learn more about collision, refer to the link:
https://brainly.com/question/13138178
#SPJ2
What is the acceleration of the the object during the first 4 seconds?
Answer:
Velocity (m/s) over time (s) graph
Velocity (m/s) over time (s) graph
We could write out our average acceleration as:
a = Δv/ Δta=Δv/Δta, equals, Δ, v, slash, Δ, t
a = (15 m/s - 0 m/s) / 0.2 seconds
a = 15 m/s / 0.2 seconds
a = 75 m/s / second
Explanation:
What this formula is telling us is that if we know the acceleration of an object, and the ... we can plug in our acceleration of 12.5 m/s2 for a, and 4 seconds for t.
Velocity (m/s) over time (s) graph
Velocity (m/s) over time (s) graph
We could write out our average acceleration as:
a = Δv/ Δta=Δv/Δta, equals, Δ, v, slash, Δ, t
a = (15 m/s - 0 m/s) / 0.2 seconds
a = 15 m/s / 0.2 seconds
a = 75 m/s / second
convert 100 Newton into dyne
Answer:10000000
Explanation:
How much more efficient is organic farming than "regular" farming?
Answer:
Organic systems used 45% less energy overall than conventional systems. Production efficiency was 28% higher in the organic systems, with the conventional no-till system being the least efficient in terms of energy usage.
Answer: 65%
Explanation: i took the quiz
The force of gravity between any two ordinary objects on the earth is.......
A) stronger when closer to the earth
B) stronger if the objects are closer to each other C) always downward
D) stronger than the force of gravity from the earth
Answer:
c
Explanation: beacuse newtons law of phisics says ''what goes up must come down''
The force of gravity between any two ordinary objects on the earth is stronger if the objects are closer to each other.
The force of gravity between two object on the earth surface is given Newton's law of universal gravitation;
[tex]F= \frac{Gm_1m_2}{r^2}[/tex]
where;
G is gravitational constantm₁ and m₂ are the masses of the two objectsr is the distance between the two objectsThe distance between the object is inversely proportional to the force of gravity between the objects. The smaller the distance between the two objects, the greater the force of gravity and vice versa.
Thus, we can conclude that the force of gravity between any two ordinary objects on the earth is stronger if the objects are closer to each other.
Learn more here:https://brainly.com/question/10609143
A fish swims to a depth of 50.00 meters in the ocean. Assuming the density of sea water is 1.0251.025 g·cm^{-3}g⋅cm −3 , calculate how much water pressure the fish is experiencing at this depth in units of kPa.
Answer:
The fish is experiencing a water pressure of 502.8 kPa.
Explanation:
The water pressure the fish is experiencing can be found as follows:
[tex]P = \rho gh[/tex] (1)
Where:
g: is the gravity = 9.81 m/s²
h: is the height (depth) = 50.0 m
ρ: is the seawater's density = 1.025 g/cm³
By replacing the above values into equation (1) we have:
[tex] P = \rho gh = 1.025 \frac{g}{cm^{3}}*\frac{1 kg}{1000 g}*\frac{(100cm)^{3}}{1 m^{3}}*9.81 m/s^{2}*50.0 m = 502.8 kPa [/tex]
Therefore, the fish is experiencing a water pressure of 502.8 kPa.
I hope it helps you!
The voltage provided by the battery of a circuit was 12 V, if the total
resistance in the circuit was 6 ohms, calculate the total current present.
options:
72 A
2A
0.5 A
7.2 A
Answer:
2 Amps
which agrees with the second option in the list of answers
Explanation:
Use Ohm's law:
V = R * I
which with the information given to us becomes:
12 = 6 * I
then solving for I we get:
I = 12 V / 6 Ω = 2 Amps