The area of a rectangle is given by multiplying its length by its width. So, we have: Therefore, the area of the rectangle is 256x²m¹⁰.
When calculating a rectangle's area, we multiply the length by the width of the rectangle. The perimeter of a shape is the space surrounding it. Space inside a form is measured by area. A closed figure's area is the portion of the plane that it occupys, whereas its perimeter is the space around it. The size of a plane or the area it encloses is expressed in square metres.
An example of a quadrilateral with equal and parallel opposite sides is a rectangle. It is a polygon with four sides and four angles that are each 90 degrees. A rectangle is a form with only two dimensions.
Area = length x width
Area = (8m³)² x (4x²m⁴)
Area = 64m⁶ x 4x²m⁴
Area = 256x²m¹⁰
Learn more about rectangle visit: brainly.com/question/25292087
#SPJ4
help me please please please
1) the mean, median, mode, and range of the set of data are given below.
What are the definition of the above terms?When considering a set of numbers, several measures can be used to describe the data. The mean, for example, is determined by adding all individual values together and dividing by the total number of elements in the set.
This value is representative of an average quantity among the group studied. On the other hand, if one were to arrange said values from smallest to largest, the median would represent the middle-most number in that list - or, if two middle numbers exist, their mean.
Range on the other hand is the variance between the largest and the smallest number in a data set.
Lastly but not least important is the mode, which indicates the most frequently appearing value within our dataset; or alternatively so noted as when there are multiple repetitions.
So here is the Mean, Median, Mode and Range for the given sets of data:
1)
Mean = (4.3 + 5.2 + 4.5 + 5.1 + 4.8 + 5.4 + 4.5 + 4.7 + 4.3 + 5.2 + 4.5 + 4.8 + 5.1) / 13
= 4.8
Mean ≈ 4.8
Median = when arranged in ascending order, the data se become:
4.3,4.3,4.5,4.5,4.5,4.7,4.8,4.8,5.1,5.1,5.2,5.2,5.4
Since there are 13 observation, 7th observation is the median.
4.3,4.3,4.5,4.5,4.5,4.7,| 4.8, | 4.8,5.1,5.1,5.2,5.2,5.4
hence median = 4.8
Note that where the number of data is even in number, the median become the average of the two middle numbers.
Mode - the number that occrs the highest is 4.5. It occurs thrice.
Range = Highest Data Value - Lowest Data Value
Range = 5.4 - 4.3
= 1.10
Using the above steps we derive the mean median, mode and range for the other data set:
2) 12.6, 12.8, 9.7, 10.4, 9.7, 10.8, 12.4, 12.8, 11.5, 10.4, 10.9, 12.8
Total of 12 number
Data in ascending order: 9.7,9.7,10.4,10.4,10.8,10.9,11.5,12.4,12.6,12.8,12.8,12.8
Mean = 11.4
Median = (10.9 +11.5)/2 = 11.2
Mode = 12.8
Range = 3.10
3)
-6, -13, -8, -3, -7, -10, 2, 0, -3, -5, 5, 7, -6, 2, 1, -6, -18
Data in ascending order; -12, -10, -8, -7, -4, -3, -2, -1, 0, 0, 0, 1, 2, 3, 4, 5, 7, 7
Mean = -1
Median = 0
Mode = 0
Range = 19
4) -6, -13, -8, -3, -7, -10, 2, o, -3, -5, 5, 7, -6, 2, 1, -6, -18
Data in ascending order: -18, -13, -10, -8, -7, -6, -6, -6, -5, -3, -3, 1, 2, 2, 5, 7
Mean = -4.25
Median = -5.5
Mode = -6
Range = 25
5) 0.24, 0.31, 0.43, 0.22, 0.34, 0.24, 0.35, 0.4, 0.18, 0.3, 0.29
Data in ascending order: 0.18, 0.22, 0.24, 0.24, 0.29, 0.3, 0.31, 0.34, 0.35, 0.4, 0.43
Mean = 0.3
Median = 0.3
Mode = 2.4
Range = 2.5
6) -0.6, 0.4, 0.2, -0.3, 0.1, -0.5, 0.2, 0.4, 1.1, -0.6, 0.7, o, 0.2, -1.3
Data in ascending order: -1.3, -0.6, -0.6, -0.5, -0.3, 0.1, 0.2, 0.2, 0.2, 0.4, 0.4, 0.7, 1.1
Mean = 0
Median = 0.2
Mode = 0.2
Range = 2.4
Learn more about median:
https://brainly.com/question/28060453
#SPJ1
Two widgets and five gadgets cost $57. One widget and three gadgets cost $32.70 How much does one gadget cost?
Answer:
$8.40
Step-by-step explanation:
2w + 5g = 57
w + 3g = 32.7
w = 32.7 - 3g
2(32.7 - 3g) + 5g = 57
65.4 - 6g + 5g = 57
8.4 = g
Answer: $8.40
The polygon is composed of three rectangles. 4 ft 4 ft 2 ft 3 ft 4 ft 8 1 2 ft What is the area, in square feet, of the polygon?
For a polygon which is composed of three rectangles and dimensions are 4 ft× 2ft, 4 ft× 3 ft , 8 ft × 1.2ft. Area of polygon is 29.6 ft².
In geometry, a polygon is defined as the flat or plane surface, two-dimensional closed shape of boundaries. The sides of a polygon are also known as its edges. The points where two sides meet are called vertices (or corners) of a polygon. We have a polygon is composed of three rectangles.
The dimensions of rectangles are the following, 4 ft× 2ft, 4 ft× 3 ft , 8 ft × 1.2ft. We have to determine the area of polygon in square feet. The area of a polygon is defined as total space covered within the shape. The measurement is completed with square units. Rectangles are regular shape. The area of rectangle = length × width
Total area of polygon is equals to the sum of areas of three rectangles. So, area of polygon = 4 ft × 2 ft + 4 ft × 3 ft + 8 ft × 1.2 ft
= 8 ft² + 12 ft² + 9.6 ft²
= 29.6 ft²
Hence, required value is 29.6 ft².
For more information about polygon, visit:
https://brainly.com/question/26583264
#SPJ4
Find an equation of the tangent plane to the given surface at the specified point.z=2(x-1)^2 + 6(y+3)^2 +4, (3,-2,18)
The equation of the tangent plane to the given surface at the specified point (3, -2, 18) is z - 18 = 8(x - 3) - 12(y + 2).
To find the equation of the tangent plane to the given surface at the specified point (3,-2,18), we first need to find the partial derivatives of z with respect to x and y:
∂z/∂x = 4(x-1)
∂z/∂y = 12(y+3)
Then, we can evaluate these partial derivatives at the given point (3,-2,18):
∂z/∂x = 4(3-1) = 8
∂z/∂y = 12(-2+3) = -12
Next, we can use these partial derivatives and the point (3,-2,18) to write the equation of the tangent plane in point-normal form:
z - z0 = ∂z/∂x(x - x0) + ∂z/∂y(y - y0)
Plugging in the values we found:
z - 18 = 8(x - 3) - 12(y + 2)
Simplifying:
8x - 12y - z = -22
Therefore, the equation of the tangent plane to the given surface at the point (3,-2,18) is 8x - 12y - z = -22.
To find an equation of the tangent plane to the given surface z = 2(x - 1)^2 + 6(y + 3)^2 + 4 at the specified point (3, -2, 18), follow these steps:
1. Calculate the partial derivatives of the function with respect to x and y:
∂z/∂x = 4(x - 1)
∂z/∂y = 12(y + 3)
2. Evaluate the partial derivatives at the specified point (3, -2, 18):
∂z/∂x(3, -2) = 4(3 - 1) = 8
∂z/∂y(3, -2) = 12(-2 + 3) = -12
3. Use the tangent plane equation to find the tangent plane at the specified point:
z - z0 = ∂z/∂x(x - x0) + ∂z/∂y(y - y0)
where (x0, y0, z0) = (3, -2, 18)
4. Plug in the values and simplify the equation:
z - 18 = 8(x - 3) - 12(y + 2)
To learn more about tangent planes go to :
https://brainly.com/question/30589915#
#SPJ11
Multiply: 7/11 x 1 1/6
Answer:
1(1/2)
Step-by-step explanation:
how you use this is do 7 divided by 11 and 11 divided by 6 which is 1 and 1/2
Answer:
77/66 (simplified would equal 7/6)
Step-by-step explanation:
When multiplying fractions you simply just multiply the numerators together, making the new numerator, then multiply the denominators together, making the new denominator, and you have your answer.
EXTRA: To simplify the fraction to its simplest you find a number that both the numerator and the denominator can be divided into equally, in this case it would be 11, then divide the numerator and denominator by this number and that would be your answer. Example; 77/66, divide 77 and 66 by 11 and you get 7/6.
Hope this helps (:
What is the probability that either event will occur?
A
B
9
9
P(A or B) = P(A) + P(B) - P(A and B)
P(A or B) = [ ?]
Enter as a decimal rounded to the nearest hundredth.
The probability that either event will occur is given as follows:
P(A or B) = 0.75.
How to calculate the probability?The formula used to calculate the probability is given as follows:
P(A or B) = P(A) + P(B) - P(A and B).
The total number of events from the Venn's diagram is given as follows:
4 x 9 = 36.
Hence the probability of each outcome is given as follows:
P(A) = (9 + 9)/36 = 0.5.P(B) = (9 + 9)/36 = 0.5.P(A and B) = 9/36 = 0.25.Hence the or probability is given as follows:
P(A or B) = P(A) + P(B) - P(A and B).
P(A or B) = 0.5 + 0.5 - 0.25
P(A or B) = 0.75.
More can be learned about probability at https://brainly.com/question/24756209
#SPJ1
You are getting ready to retire and are currently making $79,000/year. According to financial experts quoted In the lesson, what is the minimum that you should have saved in retirement accounts if this is your salary? Show all your work
According to Financial experts you should save between 10% to 15% of your annual income for retirement. For a salary of $79,000/year, the minimum saved should be between $790,000 to $948,000.
Financial experts generally recommend that you should aim to save between 10% to 15% of your income each year for retirement. For a salary of $79,000 per year, this means saving between $7,900 to $11,850 annually.
Assuming you have been saving for retirement throughout your working years and are ready to retire, financial experts suggest that you should have saved at least 10 to 12 times your current annual income to maintain your pre-retirement standard of living. Therefore, the minimum you should have saved in retirement accounts is
$79,000 x 10 = $790,000 (using the conservative end of the range)
or
$79,000 x 12 = $948,000 (using the more aggressive end of the range)
Therefore, the minimum you should have saved in retirement accounts if you are currently making $79,000/year is between $790,000 to $948,000, depending on the end of the range you choose to follow.
To know more about retirement accounts:
https://brainly.com/question/30738662
#SPJ1
exercise 1.3 introduces a study where researchers collected data to examine the relationship between air pollutants and preterm births in southern california. during the study air pollution levels were measured by air quality monitoring stations. length of gestation data were collected on 143,196 births between the years 1989 and 1993, and air pollution exposure during gestation was calculated for each birth. (a) identify the population of interest and the sample in this study. (b) comment on whether or not the results of the study can be generalized to the population, and if the findings of the study can be used to establish causal relationships.
The population of interest in this study is all births in southern California between the years 1989 and 1993. The sample in this study is 143,196 births for which length of gestation data and air pollution exposure during gestation were collected.
The results of this study cannot be generalized to the entire population of births in southern California beyond the years 1989 to 1993. However, the findings of the study can still provide valuable insights into the relationship between air pollutants and preterm births in this specific population and time period. It is also important to note that this study alone cannot establish causal relationships between air pollutants and preterm births, as other factors may contribute to preterm births that were not measured or accounted for in this study. Further research and analysis would be needed to establish causal relationships.
Know more about gestation data here:
https://brainly.com/question/29563113
#SPJ11
Seven playing cards are drawn from a deck without replacement. A success is recorded each time a card that shows a diamond is drawn. Check all that apply. 1. The outcome of each trial is independent of those of other trials. 2. There is a fixed number of n trials. 3. The probability of each possible outcome in any trial is the same from trial to trial. 4. Each trial has only two possible (mutually exclusive) outcomes. This example _________ a binomial experiment.
This example does not qualify as a binomial experiment because the conditions of a binomial experiment are not all met.
While there are only two possible outcomes (drawing a diamond or not), the other conditions are not satisfied. Specifically, the outcome of each trial is not independent of those of other trials because cards are drawn without replacement, and there is not a fixed number of n trials as the number of trials depends on how many cards are drawn until seven diamonds are obtained. Additionally, the probability of each possible outcome in any trial is not the same from trial to trial because the number of cards in the deck changes as cards are drawn.
Learn more about binomial experiment here:
brainly.com/question/30851182
#SPJ11
Two concentric circles form a target. The radii of the two circles measure 8 cm and 4 cm. The inner circle is the bullseye of the target. A point on the target is randomly selected.
What is the probability that the randomly selected point is in the bullseye?
Enter your answer as a simplified fraction in the boxes.
Answer:
1/4
Step-by-step explanation:
it came to me in a dream.
1/4 or 25% is the probability that the randomly selected point is in the bullseye.
What is probability?Probability is a number that expresses the likelihood or chance that a specific event will take place. Both proportions ranging from 0 to 1 and percentages ranging from 0% to 100% can be used to describe probabilities.
The area of the bullseye is the area of the inner circle with a radius of 4 cm. Similarly, the area of the entire target is the area of the outer circle with a radius of 8 cm.
The area of a circle is given by the formula A = πr², where A is the area and r is the radius.
Therefore, the area of the bullseye is:
A_bullseye = π(4 cm)² = 16π cm²
And the area of the entire target is:
A_target = π(8 cm)² = 64π cm²
So, the probability that the randomly selected point is in the bullseye is the ratio of the area of the bullseye to the area of the target:
P(bullseye) = A_bullseye / A_target
P(bullseye) = (16π cm²) / (64π cm²)
P(bullseye) = 1/4
Therefore, the probability that the randomly selected point is in the bullseye is 1/4 or 25%.
Learn more about probability here:
https://brainly.com/question/30034780
#SPJ2
please help i need to get this work done
The solution to the polynomial division is:
3x³ + 7x² + 5x - 1 - 4/(2x - 3)
How to carry out polynomial long division?A long division polynomial is defined as an algorithm that is used in dividing polynomial by another polynomial of the same or a lower degree. The long division of polynomials is made up of the divisor, quotient, dividend, and the remainder as in the long division method of numbers.
We are given the polynomial functions as:
f(x) = 6x⁴ - 23x³ + 31x² - 17x - 1
g(x) = 2x - 3
Using polynomial long division we have:
3x³ + 7x² + 5x - 1
2x - 3|6x⁴ - 23x³ + 31x² - 17x - 1
- 6x⁴ - 9x³
-14x³ + 31x²
- -14x³ + 21x²
10x² - 17x
- 10x² - 15x
- 2x - 1
- -2x + 3
- 4
Read more about polynomial long division at: https://brainly.com/question/25289437
#SPJ1
Need help asap. Write a explicit formula for a^n, the n^th term of the sequence 33,30,27
The explicit formula of the sequence is -3n + 36.
How to find the explicit formula of a sequence?The sequence above is a arithmetic progression. Therefore, let's write the nth term of the sequence.
Hence,
33, 30, 27
a + (n - 1)d = nth term
where
a = first termn = number of termsd = common differenceTherefore,
a = 33
d = 30 - 33 = -3
n = number of term
Hence,
nth term = 33 + (n - 1)-3
nth term = 33 - 3n + 3
nth term = -3n + 36
learn more on sequence here: https://brainly.com/question/30948434
#SPJ1
please answer i will give brainlest
The probability of puling out
a Triangle is 1/8,a Circle is 1/2, a Square is 3/8.How to find the probabilityIn order to calculate the probability of extracting each shape from the bag, a formula can be employed:
Probability = Number of times the shape was taken out / Total number of times shapes were taken out
Given below are the frequency of each shape:
Triangle: 3 times
Circle: 12 times
Square: 9 times
Total number of times shapes were taken out = 3 + 12 + 9 = 24
Probability of taking out a Triangle
= 3 / 24
= 1/8
Probability of taking out a Circle
= 12/24
= 1/2
Probability of taking out a Square
= 9/24
= 3/8
Learn more about probability at
https://brainly.com/question/24756209
#SPJ1
the lady tasting tea. this is one of the most famous experiments in the founding history of statistics. in his 1935 book the design of experiments (1935), sir ronald a. fisher writes, a lady declares that by tasting a cup of tea made with milk she can discriminate whether the milk or the tea infusion was first added to the cup. we will consider the problem of designing an experiment by means of which this assertion can be tested . . . our experiment consists in mixing eight cups of tea, four in one way and four in the other, and presenting them to the subject for judgment in a random order. . . . her task is to divide the 8 cups into two sets of 4, agreeing, if possible, with the treatments received. consider such an experiment. four cups are poured milk first and four cups are poured tea first and presented to a friend for tasting. let x be the number of milk-first cups that your friend correctly identifies as milk-first. (a) identify the distribution of x. (b) find p(x
P(X = k) = (1 - p)^4 for k = 0
P(X = k) = 4p(1 - p)^3 for k = 1
P(X = k) = 6p^2(1 - p)^2 for k = 2
P(X = k) = 4p^3(1 - p) for k = 3
P(X = k) = p^4 for k = 4
Note that these probabilities add up to 1, as they should for any probability distribution.
(a) The distribution of X can be modeled as a binomial distribution with parameters n = 4 and p, where p is the probability that the friend correctly identifies a milk-first cup as milk-first. Each cup that the friend tastes can either be identified correctly (success) or incorrectly (failure), and there are 4 cups that were poured milk-first in the experiment.
(b) To find the probability mass function (PMF) of X, we need to find the probability of each possible value of X. Since X is a binomial random variable, the PMF of X is given by:
P(X = k) = (n choose k) * p^k * (1 - p)^(n - k)
where (n choose k) is the binomial coefficient, given by:
(n choose k) = n! / (k! * (n - k)!)
where n! denotes the factorial of n.
In this case, n = 4 and there are 4 cups that were poured milk-first, so we have:
P(X = 0) = (4 choose 0) * p^0 * (1 - p)^4 = (1 - p)^4
P(X = 1) = (4 choose 1) * p^1 * (1 - p)^3 = 4p(1 - p)^3
P(X = 2) = (4 choose 2) * p^2 * (1 - p)^2 = 6p^2(1 - p)^2
P(X = 3) = (4 choose 3) * p^3 * (1 - p)^1 = 4p^3(1 - p)
P(X = 4) = (4 choose 4) * p^4 * (1 - p)^0 = p^4
Since X can only take on values between 0 and 4, the PMF of X is given by:
P(X = k) = (1 - p)^4 for k = 0
P(X = k) = 4p(1 - p)^3 for k = 1
P(X = k) = 6p^2(1 - p)^2 for k = 2
P(X = k) = 4p^3(1 - p) for k = 3
P(X = k) = p^4 for k = 4
Note that these probabilities add up to 1, as they should for any probability distribution.
Visit to know more about Probability:-
brainly.com/question/13604758
#SPJ11
Evaluate the integral by interpreting it in terms of areas. 4/−3 (1 − x) dx
Answer:
[tex] \frac{2}{3} square \: units[/tex]
In the normed vector space R² with the usual norm, find a number r >0 such that Br(0,1) ∩ Bt(2,1)≠0
In the normed vector space R² with the usual norm, find a number r >0 such that B2(1,1)∩Br(3,3)≠0
|| (3,3) - (1,1) || < 2 + r
Simplifying this inequality, we get:
2√2 < 2 + r
r > 2√2 - 2
So, any value of r such that r > 2√2 - 2 will satisfy the condition B2(1,1)∩Br(3,3)≠0.
For the first question, we need to find an r such that the open ball centered at (0,0) with radius 1 (denoted as Br(0,1)) intersects with the open ball centered at (2,0) with radius t (denoted as Bt(2,1)). Since the usual norm is the Euclidean norm, the distance between (0,0) and (2,0) is 2. Thus, we have the inequality:
|| (2,0) - (0,0) || < 1 + t
Simplifying this inequality, we get:
2 < 1 + t
t > 1
So, any value of r such that 1 < r < 3 will satisfy the condition Br(0,1) ∩ Bt(2,1)≠0.
For the second question, we need to find an r such that the open ball centered at (1,1) with radius 2 (denoted as B2(1,1)) intersects with the open ball centered at (3,3) with radius r (denoted as Br(3,3)). Using the Euclidean norm, we have:
|| (3,3) - (1,1) || < 2 + r
Simplifying this inequality, we get:
2√2 < 2 + r
r > 2√2 - 2
So, any value of r such that r > 2√2 - 2 will satisfy the condition B2(1,1)∩Br(3,3)≠0.
To learn more about condition visit:
https://brainly.com/question/13708575
#SPJ11
give inequalities that describe the flat surface of a washer that is 3.6 inches in diameter and has an inner hole with a diameter of 3/7 inch.
The coordinates of any point on the flat surface of the washer, and the radius is half of the diameter, which is 3/7 inches.
To describe the flat surface of a washer that is 3.6 inches in diameter and has an inner hole with a diameter of 3/7 inch, we can use the following inequalities:
For the outer circumference of the washer:
[tex]x^2 + y^2[/tex]≤ [tex](3.6/2)^2[/tex]
where x and y are the coordinates of any point on the flat surface of the washer, and the radius is half of the diameter, which is 3.6/2 inches.
For the inner circumference of the washer:
[tex]x^2 + y^2[/tex] ≥ [tex](3/14)^2[/tex]
where x and y are the coordinates of any point on the flat surface of the washer, and the radius is half of the diameter, which is 3/7 inches.
Note that these inequalities represent the circular boundaries of the flat surface of the washer, where the outer circumference is a circle with radius 1.8 inches and the inner circumference is a circle with radius 3/14 inches. The flat surface of the washer is the region bounded by these two circles.
To learn more about coordinates visit: https://brainly.com/question/16634867
#SPJ11
e. a 20 foot by 10 foot rectangular pool has been built. if 50 cubic feet of water is pumped into the pool per hour, write the water-level height (feet) as a function of time (hours).
To find the water-level height (feet) as a function of time (hours), we need to know the volume of the pool and how much water is being pumped in per hour.
The volume of the rectangular pool can be found by multiplying its length, width, and height:
Volume = Length x Width x Height
Since we know the dimensions of the pool are 20 feet by 10 feet, we can assume the height is 5 feet (half the length of the pool).
Volume = 20 ft x 10 ft x 5 ft = 1000 cubic feet
This means the pool can hold 1000 cubic feet of water.
If 50 cubic feet of water is pumped into the pool per hour, we can write the water-level height (h) as a function of time (t) as follows:
h(t) = (50t) / 1000
where t is the time in hours.
For example, after 1 hour, the water-level height would be:
h(1) = (50 x 1) / 1000 = 0.05 feet
After 2 hours, the water-level height would be:
h(2) = (50 x 2) / 1000 = 0.1 feet
And so on.
To learn more about Dimensions - brainly.com/question/13324776
#SPJ11
Find the volume of each rectangular prism from the given parameters.
length = 19 in ; width = 17 in ; height = 13 in
best answer gets 55 points
Factor 12+54. Write your answer in the form a(b+c) where a is the GCF of 12 and 54
For the answer of factors of expression (12 + 54), in the form of a(b + c), where a is the GCF of 12 and 54 is equals to 6( 2 + 9).
In math, to factor a number means to express it as a product of (other) whole numbers, called its factors. For example, if 7x5 = 35, 7 and 5 are both factors. The divisors that give the remainder to be 0 are the factors of the number. We have an expression of numbers, 12 + 54. We have to write this expression in form of a( b + c), where a is GCF of 12 and 54. Now, we can write the factors of 12 and 54 are 12 = 2×2×3
54 = 2×3 ×3×3
The greatest common factor, GCF of 12 and 54 is 2×3 = 6. So, 12 + 54 = 6× 2 + 6×9
Taking out the common factor 6 from above expression, 6( 2 + 9) which is required form a( b + c). Hence, required expression is 6( 2 + 9).
For more information about factor, visit :
https://brainly.com/question/28765863
#SPJ4
Workers at a warehouse of consumer goods gather items from the warehouse to fill customer orders
If the order contains 22 products, it will take 16.06 minutes to gather the items. The correct option is (b).
Based on the given regression output, the equation to predict the time it takes to gather items from the number of items in an order is:
Predicted time [tex]= 3.0979 + 2.7633[/tex] × (square root of items)
To find the predicted time for an order with 22 items, we can substitute the value of 22 into the equation:
Predicted time [tex]= 3.0979 + 2.7633[/tex] × (square root of 22)
Predicted time ≈ [tex]16.06[/tex]
The predicted time is estimated using a least-squares regression analysis that relates the number of items in an order to the time taken to gather them. The regression output provides the equation to predict the time. By substituting the value of 22 items into the equation, the predicted time is calculated to be approximately 16.06 minutes.
Therefore, the predicted time, in minutes, that it took to gather the items for an order with 22 items is approximately 16.06 minutes.
To know more about Predicted Time visit:
https://brainly.com/question/953289
#SPJ4
Complete Question:
Workers at a warehouse of consumer goods gather items from the warehouse to fill customer orders. The number of Items in a sample of orders and the time, in minutes, it took the workers to gather the items were recorded. A scatterplot of the recorded data showed a curved pattern, and the square root of the number of items was taken to create a linear pattern. The following table shows computer output from the least-squares regression analysis created to predict the time it takes to gather items from the number of items in an order.
Predictor Coef
Constant 3.0979
Square root of items 2.7633
R-Sq=96.7%
Based on the regression output, which of the following is the predicted time, in minutes, that it took to gather the items if the order has 22 Items?
a. 7.99
b. 16.06
c. 27.49
d. 17.29
e. 63.89
A cooler is filled with 4 1/2 gallons of water. There are small cups that each hold 1/32 gallon.
How many small cups can be filled with the water from the cooler before it's empty?
Answer: its 144 i think
Step-by-step explanation: Math
Q8 (6 points) Let x be a binomial random variable with n = 100 and p = 0.3. (a) Can we use the Poisson approximation to find P(30 < = x < 35)? Why? (b) Use the normal approximation to find P(30 < = x< 50) points) If x is a binomial random variable with n = 4 and P(0) = 0.0081, find P(3).
P(3) is approximately equal to 0.139.
(a) Yes, we can use the Poisson approximation to find P(30 < x < 35) because both np and n(1-p) are greater than or equal to 10, where n = 100 and p = 0.3. Therefore, the conditions for the Poisson approximation are satisfied.
Using Poisson approximation, we have:
λ = np = 100 x 0.3 = 30
P(30 < x < 35) ≈ P(X = 31) + P(X = 32) + P(X = 33) + P(X = 34)
= e^(-λ) * ([tex]λ^31[/tex] / 31!) + e^(-λ) * (λ^32 / 32!) + e^(-λ) * (λ^33 / 33!) + e^(-λ) * (λ^34 / 34!)
≈ 0.1885
(b) Using the normal approximation, we have:
µ = np = 100 x 0.3 = 30
σ = sqrt(np(1-p)) = sqrt(100 x 0.3 x 0.7) = 4.58
P(30 < x < 50) ≈ P((30 - µ)/σ < (x - µ)/σ < (50 - µ)/σ)
≈ P(-4.34 < Z < 4.34) [where Z is a standard normal random variable]
≈ 1
Therefore, P(30 < x < 50) is approximately equal to 1.
(c) Let x be a binomial random variable with n = 4 and P(0) = 0.0081.
We need to find P(3).
Let P(1) = q
Then, from the given information, we have:
P(0) = (1-q)^4 = 0.0081
Solving for q, we get:
q = 1 - (0.0081)^(1/4) ≈ 0.207
Now, using the binomial probability formula, we have:
P(3) = (4 choose 3) * q^3 * (1-q)^1
= 4 * 0.207^3 * 0.793
≈ 0.139
Therefore, P(3) is approximately equal to 0.139.
To learn more about approximation visit:
https://brainly.com/question/26257968
#SPJ11
A manufacturer inspects 800 personal video players and finds that 796 of them have no defects. What is the experimental probability that a video player chosen at random has no defects? Express your answer as a percentage.
Answer:
99.6%
Step-by-step explanation:
It shows how they got the answer
It was correct
I js took the test
tysm!
}); if
A student is studying the wave different elements are similar to one w
Atem
NUMPA
199
Atem a
dices
Atom 2
NQ
Alam 4
Which two atoms are of elements in the same group in the periodic table?
The two atoms are of elements in the same group in the periodic table include the following: D. Atom 1 and Atom 2.
What is a periodic table?In Chemistry, a periodic table can be defined as an organized tabular array of all the chemical elements that are typically arranged in order of increasing atomic number (number of protons), in rows.
What are valence electrons?In Chemistry, valence electrons can be defined as the number of electrons that are present in the outermost shell of an atom of a specific chemical element.
In this context, we can reasonably infer and logically deduce that both Atom 1 and Atom 2 represent chemical elements that are in the same group in the periodic table because they have the same valence electrons of six (6).
Read more on periodic table here: brainly.com/question/24373113
#SPJ1
Complete Question:
A student is studying the ways different elements are similar to one another. Diagrams of atoms from four different elements are shown below.
Which two atoms are of elements in the same group in the periodic table?
The dog shelter has Labradors, Terriers, and Golden Retrievers available for adoption. If P(terriers) = 15%, interpret the likelihood of randomly selecting a terrier from the shelter.
Likely
Unlikely
Equally likely and unlikely
This value is not possible to represent probability of a chance event
The likelihood of randomly selecting a terrier from the shelter would be unlikely. That is option B
How to calculate the probability of the selected event?The formula that can be used to determine the probability of a selected event is given as follows;
Probability = possible event/sample space.
The possible sample space for terriers = 15%
Therefore the remaining sample space goes for Labradors and Golden Retrievers which is = 75%
Therefore, the probability of selecting the terriers at random is unlikely when compared with other dogs.
Learn more about probability here:
https://brainly.com/question/24756209
#SPJ1
Consider the following statistical argument:
"Emily is a member of a study group for her philosophy class composed of 16 students including herself. There are about 30 students total in her class. After talking with the study group on Monday night, she found that each study group member received a high grade on the most recent quiz. So, Emily concluded that everyone in the class must have received a high grade on the quiz."
What fallacy, if any, is being committed? Select all that apply.
A. Biased Sample Fallacy
B. Hasty Generalization Fallacy
C. Biased Questions
D. No Fallacy
In the statistical argument provided, Emily concludes that everyone in the class must have received a high grade on the quiz based on the information from her study group. The fallacy being committed in this argument is a combination of A. Biased Sample Fallacy and B. Hasty Generalization Fallacy.
A. Biased Sample Fallacy occurs when the sample is used to make a conclusion that is not representative of the entire population. In this case, Emily's study group consists of 16 students out of a total of 30 students in her class. The study group may not be representative of the whole class, as it is a smaller sample and could be composed of more diligent or prepared students.
B. Hasty Generalization Fallacy is when a conclusion is made based on insufficient evidence. In this argument, Emily concludes that everyone in the class must have received a high grade based on the performance of her study group alone. This is a hasty generalization as she has not considered the performance of the other students in the class.
To sum up, the argument commits both A. Biased Sample Fallacy and B. Hasty Generalization Fallacy, as it bases its conclusion on a potentially unrepresentative sample and insufficient evidence.
To know more about the fallacies visit:
https://brainly.com/question/31201486
#SPJ11
Find the area of the shaded region.
The area of the shaded region is 9198.11 in³ - 112.5 in².
We have,
Sphere:
Diameter = 26 in
Radius = 26/2 = 13 in
Volume.
= 4/3 πr³
= 4/3 x 3.14 x 13 x 13 x 13
= 9198.11 in³
Now,
The unshaded region is a trapezium.
Height = 5 in
Parallel sides = 19 in and 26 in
Area = 1/2 x height x (sum of the parallel sides)
= 1/2 x 5 x (19 + 26)
= 1/2 x 5 x 45
= 1/2 x 225
= 112.5 in²
Now,
The area of the shaded region.
= Volume of the sphere - Area of the trapezium
= 9198.11 in³ - 112.5 in²
Thus,
The area of the shaded region is 9198.11 in³ - 112.5 in².
Learn more about Sphere here:
https://brainly.com/question/12390313
#SPJ1
Triangle RST is similar to triangle RVW .
What is the value of d in millimeters?
The value of d in millimeters is 12 mm and this can be determined by using the similar triangle property.
How to calculate the valueTriangle RST is similar to triangle RVW.
The length of the segment RW = 10 mm
The length of the segment WT = 5 mm
The length of the segment TS = 18 mm
The following steps can be used in order to determine the value of d in millimeters:
The similar triangle property can be used in order to determine the value of d in millimeters.
The value will be:
= 10/15 × 18
= 12
Learn more about triangles on
https://brainly.com/question/15186010
#SPJ1
A sphere has a diameter of 28 millimeters. Which measurement is closest to the volume of the sphere in cubic millimeters?
The volume of the sphere is 11494.04 cubic millimeters
The correct answer is an option (B)
We know that the formula for the volume of the sphere is :
V = 4/3 × π × r³
where r is the radius of the sphere
Here, A sphere has a diameter of 28 millimeters.
so, the radius of the sphere would be,
r = d/2
r = 28/2
r = 14 mm
Using above formula the volume of the sphere would be,
V = 4/3 × π × r³
V = 4/3 × π × 14³
V = 11494.04 cubic millimeter
Therefore, the correct answer is an option (B)
Learn more about the volume of sphere here:
https://brainly.com/question/31618376
#SPJ1