Find an equation of the tangent plane to the surface 3z = xe^xy + ye^x at the point 6,0,2).
Use Lagrange multipliers to find the minimum value of the function
f(x,y,z) = x^2-4x+y^2-6y+z^2-2z+5, subject to the constraint x+y+z=3.

Answers

Answer 1

The equation of the tangent plane to the surface 3z = xe^xy + ye^x at the point (6, 0, 2) is x + 37y + 3z - 12 = 0.

To find the equation of the tangent plane to the surface 3z = xe^xy + ye^x at the point (6, 0, 2), we will follow these steps:

Find the partial derivatives of the surface equation with respect to x, y, and z.

Partial derivative with respect to x:

∂(3z)/∂x = e^xy + xye^xy

Partial derivative with respect to y:

∂(3z)/∂y = x^2e^xy + e^xy

Partial derivative with respect to z:

∂(3z)/∂z = 3

Evaluate the partial derivatives at the point (6, 0, 2).

∂(3z)/∂x = e^(60) + 60e^(60) = 1

∂(3z)/∂y = (6^2)e^(60) + e^(60) = 37

∂(3z)/∂z = 3

The equation of the tangent plane can be written as:

∂(3z)/∂x(x - 6) + ∂(3z)/∂y(y - 0) + ∂(3z)/∂z(z - 2) = 0

Substituting the evaluated partial derivatives:

1(x - 6) + 37(y - 0) + 3(z - 2) = 0

x - 6 + 37y + 3z - 6 = 0

x + 37y + 3z - 12 = 0

Therefore, the equation of the tangent plane to the surface 3z = xe^xy + ye^x at the point (6, 0, 2) is x + 37y + 3z - 12 = 0.

Now, let's use Lagrange multipliers to find the minimum value of the function f(x, y, z) = x^2 - 4x + y^2 - 6y + z^2 - 2z + 5, subject to the constraint x + y + z = 3.

Define the Lagrangian function L(x, y, z, λ) as:

L(x, y, z, λ) = f(x, y, z) - λ(g(x, y, z) - c)

Where g(x, y, z) is the constraint function (x + y + z) and c is the constant value (3).

L(x, y, z, λ) = x^2 - 4x + y^2 - 6y + z^2 - 2z + 5 - λ(x + y + z - 3)

Compute the partial derivatives of L with respect to x, y, z, and λ.

∂L/∂x = 2x - 4 - λ

∂L/∂y = 2y - 6 - λ

∂L/∂z = 2z - 2 - λ

∂L/∂λ = -(x + y + z - 3)

Set the partial derivatives equal to zero and solve the system of equations.

2x - 4 - λ = 0 ...(1)

2y - 6 - λ = 0 ...(2)

2z - 2 - λ = 0 ...(3)

x + y + z - 3 = 0

To learn more about equation, refer below:

https://brainly.com/question/29657983

#SPJ11


Related Questions

Determine whether the series converges absolutely or conditionally, or diverges. Σ_(n=1)^[infinity] [(-1)^n+1 / n+7]

Answers

The given series[tex]Σ((-1)^(n+1) / (n+7))[/tex] is conditionally convergent, meaning it converges but not absolutely.

We must look at both absolute convergence and conditional convergence in order to determine the convergence of the series ((-1)(n+1) / (n+7).

When a series converges, it does so by taking each term's absolute value and adding them together. This is known as absolute convergence. If we take into account the series |((-1)(n+1) / (n+7)| in this instance, we have |(1 / (n+7)]. We discover that this series converges using the p-series test because the exponent is bigger than 1. As a result, the original series ((-1)(n+1) / (n+7)) completely converges.

A series that is convergent but not perfectly convergent is said to have experienced conditional convergence. We consider the alternating series test to see if the original series ((-1)(n+1) / (n+7)) is conditionally convergent. The absolute values of the terms (-1) and (n+1) form a descending sequence, and their signs alternate. Additionally, the absolute values of the terms converge to zero as n gets closer to infinity. As a result, the original series ((-1)(n+1)/(n+7)) converges conditionally according to the alternating series test.

Learn more about series here:

https://brainly.com/question/28144066


#SPJ11

X + 3 16. У = 2 — 3х – 10 -
at what points is this function continuous? please show work and explain in detail!

Answers

The function f(x)is continuous for all values of x except x = 2/3, where it has a vertical asymptote or a point of discontinuity.

To determine where the function is continuous, we need to examine the individual parts of the function and identify any potential points of discontinuity.

Let's analyze the function:

f(x) = (x + 3)/(2 - 3x) - 10

For a rational function like this, we need to consider two cases of potential discontinuity: where the denominator is zero (which would result in division by zero) and any points where the function may have jump or removable discontinuities.

Learn more about function f(x) here:

https://brainly.com/question/28887915

#SPJ11

5. Find the two points where the curve 2? + xy + y2 = 7 crosses the x-axis, and show that the tangents to the curve at these points are parallel. What is the common slope of these tangents? 6. The dos

Answers

The tangents are parallel to the y-axis.The common slope of these tangents is 0.

Given equation is 2x² + xy + y² = 7

Crossing the curve to x-axis, y = 0

Substituting y = 0 in the above equation

2x² = 7x = ± √(7/2)

Therefore, the points are (x₁, 0) and (x₂, 0) where x₁ = √(7/2) and x₂ = - √(7/2).

Now differentiate the equation of curve 2x² + xy + y² = 7, we get dy/dx + y/x = -2x/y... (1)

We have y = 0 for x = x₁ and x = x₂.

For x = x₁, the slope is -2x/y = ∞

For x = x₂, the slope is -2x/y = -∞.

Therefore, the tangents are parallel to the y-axis.The common slope of these tangents is 0.

To know more about tangents click on below link :

https://brainly.com/question/30889385#

#SPJ11

a) Use the fixed point iteration method to find the root of x² + 5x − 2 in the interval [0, 1] to 5 decimal places. Start with xo = 0.4. b) Use Newton's method to find 3/5 to 6 decimal places. Start with xo = 1.8. c) Consider the difference equation n+1 = Asin(n) on the range 0 ≤ n ≤ 1. Use Taylor's theorem to find an equilibrium point. Can you show that there's a second equilibrium point, assuming A is large enough

Answers

a) Using the fixed point iteration method, the root of the equation x² + 5x - 2 in the interval [0, 1] can be found to 5 decimal places starting with xo = 0.4.

b) Newton's method can be applied to find the root 3/5 to 6 decimal places starting with xo = 1.8.

c) Taylor's theorem can be used to find an equilibrium point for the difference equation n+1 = Asin(n) on the range 0 ≤ n ≤ 1. It can also be shown that there is a second equilibrium point when A is large enough.

a) The fixed point iteration method involves repeatedly applying a function to an initial guess to approximate the root of an equation. Starting with xo = 0.4 and using the function g(x) = (2 - x²) / 5, the iteration process can be performed until convergence is achieved, obtaining the root to 5 decimal places within the interval [0, 1].

b) Newton's method, also known as the Newton-Raphson method, involves iteratively improving an initial guess to find the root of an equation. Starting with xo = 1.8 and using the function f(x) = x² + 5x - 2, the method involves applying the formula xn+1 = xn - f(xn) / f'(xn) until convergence is reached, yielding the root 3/5 to 6 decimal places.

c) Taylor's theorem allows us to approximate functions using a polynomial expansion. In the given difference equation n+1 = Asin(n), an equilibrium point can be found by setting n+1 = n = x and solving the resulting equation Asin(x) = x. The Taylor expansion of sin(x) around x = 0 can be used to obtain an approximate solution for the equilibrium point. Additionally, by analyzing the behavior of the equation Asin(x) = x, it can be shown that there is a second equilibrium point for large enough values of A.

Learn more about Newton-Raphson method here:

https://brainly.com/question/29346085

#SPJ11

Write the infinite series using sigma notation. 6 6 6+ 6 2 6 3 Σ n = The form of your answer will depend on your choice of the lower limit of summation. Enter infinity for .

Answers

The series will converge or diverge depending on the value of 6ⁿ⁺¹. If the value exceeds 1, the series diverges, while if it approaches 0, the series converges.

The given infinite series can be written using sigma notation as:

Σₙ₌₁ⁿ 6ⁿ⁺¹

The lower limit of summation is 1, indicating that the series starts with n = 1. The upper limit of summation is not specified and is denoted by "n", which implies the series continues indefinitely.

In sigma notation, Σ represents the summation symbol, and n is the index variable that takes on integer values starting from the lower limit (in this case, 1) and increasing indefinitely.

The term inside the sigma notation is 6ⁿ⁺¹, which means we raise 6 to the power of (n+1) for each value of n and sum up all the terms.

As n increases, the series expands by adding additional terms, each term being 6 raised to the power of (n+1).

To know more about sigma notation click on below link:

https://brainly.com/question/30518693#

#SPJ11

solve ASAP PLEASE. no need for steps
e44" (x-9) The radius of convergence of the series n=0 n! is R = +00 Select one: True False

Answers

The radius of convergence of the series n=0 n! is R = +00 true.

The radius of convergence of the series Σ (n!) * x^n, where n ranges from 0 to infinity, is indeed R = +∞ (infinity).

To determine the radius of convergence, we can use the ratio test. The ratio test states that if the limit of the absolute value of the ratio of consecutive terms in a power series is L, then the series converges if L is less than 1 and diverges if L is greater than 1.

Let's apply the ratio test to the series Σ (n!) * x^n:

lim (n→∞) |(n + 1)! * x^(n + 1)| / (n! * x^n)

Simplifying the expression:

lim (n→∞) |(n + 1)! * x * x^n| / (n! * x^n)

Notice that x^n cancels out in the numerator and denominator:

lim (n→∞) |(n + 1)! * x| / n!

Now, we can simplify further:

lim (n→∞) |(n + 1) * (n!) * x| / n!

The (n + 1) term in the numerator and the n! term in the denominator cancel out:

lim (n→∞) |x|

Since x does not depend on n, the limit is a constant value, which is simply |x|.

The ratio test states that the series converges if |x| < 1 and diverges if |x| > 1.

However, since we are interested in the radius of convergence, we need to find the value of |x| at the boundary between convergence and divergence, which is |x| = 1.

If |x| = 1, the series may converge or diverge depending on the specific value of x.

But for any value of |x| < 1, the series converges.

Therefore, the radius of convergence is R = +∞, indicating that the series converges for all values of x.

Learn more about radius of convergence here, https://brainly.com/question/17019250

#SPJ11

Evaluate the definite integral. 3 25) ja S (3x2 + x + 8) dx

Answers

The value of the definite integral ∫[3 to 25] (3x^2 + x + 8) dx is 16537.

To evaluate the definite integral ∫[a to b] (3x^2 + x + 8) dx, where a = 3 and b = 25, we can use the integral properties and techniques. First, we will find the antiderivative of the integrand, and then apply the limits of integration.

Let's integrate the function term by term:

∫(3x^2 + x + 8) dx = ∫3x^2 dx + ∫x dx + ∫8 dx

Integrating each term:

= (3/3) * ∫x^2 dx + (1/2) * ∫1 * x dx + 8 * ∫1 dx

= x^3 + (1/2) * x^2 + 8x + C

Now, we can evaluate the definite integral by substituting the limits of integration:

∫[3 to 25] (3x^2 + x + 8) dx = [(25)^3 + (1/2) * (25)^2 + 8 * 25] - [(3)^3 + (1/2) * (3)^2 + 8 * 3]

= [15625 + (1/2) * 625 + 200] - [27 + (1/2) * 9 + 24]

= [15625 + 312.5 + 200] - [27 + 4.5 + 24]

= 16225 + 312.5 - 55.5

= 16537

Therefore, the value of the definite integral ∫[3 to 25] (3x^2 + x + 8) dx is 16537.

To know more about definite integrals, visit the link : https://brainly.com/question/30094386

#SPJ11

the matrix. a=[62−210]. a=[6−2210]. has an eigenvalue λλ of multiplicity 2 with corresponding eigenvector v⃗ v→. find λλ and v⃗ v→.

Answers

The matrix A has an eigenvalue λ with a multiplicity of 2, and we need to find the value of λ and its corresponding eigenvector v.

To find the eigenvalue and eigenvector, we start by solving the equation (A - λI)v = 0, where A is the matrix, λ is the eigenvalue, I is the identity matrix, and v is the eigenvector.

Substituting the given matrix A, we have:

|6-λ -2|

|-2 10-λ| * |x|

|y| = 0

Expanding this equation, we get two equations:

(6-λ)x - 2y = 0 ...(1)

-2x + (10-λ)y = 0 ...(2)

To find λ, we solve the characteristic equation det(A - λI) = 0:

|(6-λ) -2|

|-2 (10-λ)| = 0

Expanding this determinant equation, we get:

(6-λ)(10-λ) - (-2)(-2) = 0

(λ^2 - 16λ + 56) = 0

Solving this quadratic equation, we find two solutions: λ = 8 and λ = 7.

Now, for each eigenvalue, we substitute back into equations (1) and (2) to find the corresponding eigenvectors v. For λ = 8:

(6-8)x - 2y = 0

-2x + (10-8)y = 0

Simplifying these equations, we get -2x - 2y = 0 and -2x + 2y = 0. Solving this system of equations, we find x = -y.

Therefore, the eigenvector corresponding to λ = 8 is v = [1 -1].

Similarly, for λ = 7, we find x = y, and the eigenvector corresponding to

λ = 7 is v = [1 1].

Therefore, the eigenvalue λ has a multiplicity of 2, with λ = 8 and the corresponding eigenvector v = [1 -1]. Another eigenvalue is λ = 7, with the corresponding eigenvector v = [1 1].

Learn more about eigenvalue λ  here:

https://brainly.com/question/14415841

#SPJ11

f"(x) = 5x + 4 = and f'(-1) = -5 and f(-1) = -4. = = Find f'(x) = and find f(1) =

Answers

To find f'(x), we need to take the derivative of the given function [tex]f(x) = 5x^2 + 4x[/tex].
Taking the derivative, we have:
[tex]f'(x) = d/dx (5x^2 + 4x) = 10x + 4.[/tex]
To find f(1), we substitute x = 1 into the original function:
[tex]f(1) = 5(1)^2 + 4(1) = 5 + 4 = 9[/tex].

A function is a mathematical relationship or rule that assigns a unique output value to each input value. It describes the dependence between variables and can be represented symbolically or graphically. A function takes one or more inputs, applies a set of operations or transformations, and produces an output. It can be expressed using algebraic equations, formulas, or algorithms. Functions play a fundamental role in various branches of mathematics, physics, computer science, and many other fields, providing a way to model or analyze real-world phenomena and solve problems.

Learn more about function here;
https://brainly.com/question/25638609

#SPJ11

The diameter of a circle is 16 ft. Find its area to the nearest whole number

Answers

Answer: 201 ft

Step-by-step explanation:

Circle area = 3.14 * 8² = 3.14 x 64

3.14 x 8² = 200.96 ft²

Hello !

Answer:

[tex]\boxed{\sf A_{circle}\approx 201\ ft^2}[/tex]

Step-by-step explanation:

The area of a circle is given by the following formula :

[tex]\sf A_{circle}=\pi \times r^2[/tex]

Where r is the radius.

Given :

Diameter : d =  16ft

We know that the radius is half the diameter.

So [tex]\sf r=\frac{d}{2} =\frac{16}{2} =\underline{8ft}[/tex].

Let's substitute r whith it value in the previous formula :

[tex]\sf A_{circle}=\pi\times 8^2\\\boxed{\sf A_{circle}\approx 201\ ft^2}[/tex]

Have a nice day ;)

Q1.
please show work for each part of the question. thank you
1. Let f(x) = x + 2 a. Describe the domain. Use sentences to explain. b. Describe the range. Use sentences to explain. when x c. Describe the end behavior (what happens when x → and x + - sentences

Answers

a. The domain of the function f(x) = x + 2 is all real numbers.

b. The range of the function f(x) = x + 2 is also all real numbers.

c. The end behavioras is x approaches infinity (positive or negative), the function f(x) = x + 2 also approaches infinity (positive or negative) respectively.

a. The domain of the function f(x) = x + 2 is all real numbers. This means that the function is defined for any value of x you can plug into it. There are no restrictions on the values of x for this function.

b. The range of the function f(x) = x + 2 is also all real numbers. This means that for any input value of x, you will get a corresponding output value of f(x) that can be any real number. Every real number is attainable as an output of this function.

c. To describe the end behavior of the function f(x) = x + 2, we look at what happens as x approaches positive infinity and negative infinity.

When x approaches positive infinity (x → ∞), the function value f(x) also approaches positive infinity. As x becomes larger and larger, the value of f(x) increases without bound.

When x approaches negative infinity (x → -∞), the function value f(x) also approaches negative infinity. As x becomes more and more negative, the value of f(x) decreases without bound.

In summary, as x approaches infinity (positive or negative), the function f(x) = x + 2 also approaches infinity (positive or negative) respectively.

To learn more about range click here:  brainly.com/question/29204101 #SPJ11.

Need solution of these questions But Fast Please
Find the power series representation 4.) f(x) = (1 + x)²/3 of # 4-6. State the radius of convergence. 5.) f(x) = sin x cos x (hint: identity) 6.) f(x) = x²4x

Answers

The power series representation of f(x) = (1 + x)²/3 is f(x) = 1/3 + 2/3x + 1/3x² + 0x³ + 0x⁴ + ...The radius of convergence is infinite.

The power series representation of f(x) = sin x cos x is f(x) = (1/2)sin(2x) = x - (1/6)x³ + (1/120)x⁵ - ...The radius of convergence is infinite.The power series representation of f(x) = x²4x is f(x) = x^2 + 4x^3 + 0x^4 + 0x^5 + ...The radius of convergence is infinite.4.) To find the power series representation of f(x) = (1 + x)²/3, we expand (1 + x)² to get 1 + 2x + x². Dividing by 3, we have f(x) = (1/3) + (2/3)x + (1/3)x². This representation can be extended with additional terms of x raised to higher powers, but since the numerator is a constant, those terms will be zero. The radius of convergence for this power series is infinite, meaning it converges for all values of x.

5.) To find the power series representation of f(x) = sin x cos x, we can use the double-angle identity: sin 2x = 2sin x cos x. Rearranging, we have f(x) = (1/2)sin 2x. Using the power series representation of sin x, we substitute 2x for x, yielding f(x) = (1/2)(2x - (1/6)(2x)³ + (1/120)(2x)⁵ - ...). Simplifying, we have f(x) = x - (1/6)x³ + (1/120)x⁵ - ... The radius of convergence for this power series is also infinite.6.) The power series representation of f(x) = x²4x is straightforward. It is simply x² + 4x³ + 0x⁴ + 0x⁵ + ... As there are no coefficients involving x to negative powers, the radius of convergence is also infinite.

Learn more about convergence here:

https://brainly.com/question/14394994

#SPJ11

Circle T is shown below the radius is 30 cm what is the arc length terms of pi of UV

Answers

The arc length of the arc UV in terms of pi is (θ/360°) × (60π), where θ represents the Central angle of the arc

In the given scenario, a circle T is shown with a radius of 30 cm. We need to determine the arc length of the arc UV in terms of pi.

The arc length of a circle is given by the formula:

Arc Length = θ/360° × 2πr,

where θ is the central angle of the arc and r is the radius of the circle.

Since the central angle θ of the arc UV is not provided, we cannot calculate the exact arc length. However, we can still express it in terms of pi.

To do this, we need to find the ratio of the central angle θ to the full angle of a circle, which is 360 degrees. We can express this ratio as:

θ/360° = Arc Length/(2πr).

Substituting the given radius value of 30 cm into the equation, we have:

θ/360° = Arc Length/(2π × 30).

Simplifying, we get:

θ/360° = Arc Length/(60π).

Now, if we express the arc length in terms of pi, we can rewrite the equation as:

θ/360° = (Arc Length/π)/(60π/π).

θ/360° = (Arc Length/π)/(60).

θ/360° = Arc Length/(60π).

From the equation, we can see that the arc length in terms of pi is equal to θ/360° multiplied by (60π).

Therefore, the arc length of the arc UV in terms of pi is (θ/360°) × (60π), where θ represents the central angle of the arc. Without additional information about the central angle, we cannot provide an exact numerical value for the arc length in terms of pi. time is a multifaceted and pervasive element of human existence.

To know more about Central angle.

https://brainly.com/question/10945528

#SPJ8

Note the full question may be :

In circle T with a radius of 30 cm, the arc UV has a central angle of 150°. What is the arc length of UV in terms of π? Round your answer to the nearest hundredth.

Find the volume of the solid bounded by the cylinder x2 + y2 = 4 and the planes z = 0, y + z = 3. = = (A) 37 (B) 41 (C) 67 (D) 127 10. Evaluate the double integral (1 ***+zy) dydz. po xy) ) (A) 454

Answers

To find the volume of the solid bounded by the given surfaces, we'll set up the integral using cylindrical coordinates. The closest option from the given choices is (C) 67.

The cylinder x^2 + y^2 = 4 can be expressed in cylindrical coordinates as r^2 = 4, where r is the radial distance from the z-axis.

We need to determine the limits for r, θ, and z to define the region of integration.

Limits for r:

Since the cylinder is bounded by r^2 = 4, the limits for r are 0 to 2.

Limits for θ:

Since we want to consider the entire cylinder, the limits for θ are 0 to 2π.

Limits for z:

The planes z = 0 and y + z = 3 intersect at z = 1. Therefore, the limits for z are 0 to 1.

Now, let's set up the integral to find the volume:

V = ∫∫∫ dV

Using cylindrical coordinates, the volume element dV is given by: dV = r dz dr dθ

Therefore, the volume integral becomes:

V = ∫∫∫ r dz dr dθ

Integrating with respect to z first:

V = ∫[0 to 2π] ∫[0 to 2] ∫[0 to 1] r dz dr dθ

Integrating with respect to z: ∫[0 to 1] r dz = r * [z] evaluated from 0 to 1 = r

Now, the volume integral becomes:

V = ∫[0 to 2π] ∫[0 to 2] r dr dθ

Integrating with respect to r: ∫[0 to 2] r dr = 0.5 * r^2 evaluated from 0 to 2 = 0.5 * 2^2 - 0.5 * 0^2 = 2

Finally, the volume integral becomes:

V = ∫[0 to 2π] 2 dθ

Integrating with respect to θ: ∫[0 to 2π] 2 dθ = 2 * [θ] evaluated from 0 to 2π = 2 * 2π - 2 * 0 = 4π

Therefore, the volume of the solid bounded by the given surfaces is 4π.

Learn more about cylindrical coordinates:

https://brainly.com/question/30394340

#SPJ11

2) (15 pts) Find the solution the initial value problem as an explicit function of the independent variable. Then verify that your solution satisfies the initial value problem. (1? +1) y'+ y2 +1=0 y (3)=2 Hint: Use an identity for tan(a+b) or tan(a-B)

Answers

Integrating both sides with respect to y, we get:

[tex]\rm e^{(y^3/3 + y)[/tex] * y = -∫[tex]\rm e^{(y^3/3 + y)[/tex] * (y² + 1) dy

What is Variable?

A variable is a quantity that can change in the context of a mathematical problem or experiment. We usually use one letter to represent a variable. The letters x, y, and z are common general symbols used for variables.

To solve the initial value problem y' + y² + 1 = 0 with the initial condition y(3) = 2, we can use an integrating factor.

The differential equation can be written as:

y' = -y² - 1

Let's rewrite the equation as:

y' = -(y² + 1)

To find the integrating factor, we multiply the equation by the integrating factor μ(y), which is given by:

μ(y) = [tex]\rm e^\int(y^2 + 1)[/tex] dy

Integrating μ(y), we get:

μ(y) =  [tex]\rm e^\int(y^2 + 1)[/tex] dy)

= [tex]e^{(\int y^2[/tex] dy + ∫dy)

= [tex]\rm e^{(y^3/3 + y)[/tex]

Now, we multiply the differential equation by μ(y):

[tex]\rm e^{(y^3/3 + y)[/tex] * y' = -[tex]\rm e^{(y^3/3 + y)[/tex] * (y² + 1)

The left side can be simplified using the chain rule:

(d/dy)[tex]\rm e^{(y^3/3 + y)[/tex] * y) = -[tex]\rm e^{(y^3/3 + y)[/tex] * (y² + 1)

Integrating both sides with respect to y, we get:

[tex]\rm e^{(y^3/3 + y)[/tex] * y = -∫[tex]\rm e^{(y^3/3 + y)[/tex] * (y² + 1) dy

Simplifying the integral on the right side may not be possible analytically. However, we can use numerical methods to approximate the solution.

To verify that the solution satisfies the initial condition y(3) = 2, we substitute y = 2 and t = 3 into the solution and check if it holds true.

To learn more about Variable from the given link

https://brainly.com/question/16906863

#SPJ4

The demand curve of Lucky Egg in each district is shown as follow:
0 = 1000 - 2P Suppose the manufacturer is the monopolist in the market of production. There are many distributors in the whole market but there is only one distributor in
each district (Each distributor is the monopolist in retail for a particular district). The marginal cost to produce a Lucky egg to the manufacturer is $100. The distribution cost to the distributor is $50 per egg. Determine the quantity transacted between one distributor and manufacturer in one district, quantity transacted between consumer and distributor in one district, the wholesale price
and the retail price respectively.

Answers

Manufacturer-retailer transaction volume is 450 lucky eggs, Consumer-retailer transaction volume is 275 lucky eggs, the wholesale price is $550 per egg, and the retail price is $750 per egg for marginal cost.

In one district, the quantity traded between manufacturers and retailers is 450 Lucky Eggs. The quantity traded between consumers and sellers in the district is 275 Lucky Eggs. The wholesale price will be $550 per egg and the retail price will be $750 per egg.

As a market monopoly, the manufacturer controls the production and supply of happy eggs. The demand curve for happy eggs in each district is given by the following equation.

Q = 1000 - 2P, where Q is quantity demanded and P is price.

To find out the quantity transacted between manufacturers and distributors in a region, we need to equate the quantity demanded with the quantity supplied by the manufacturer. The maker's marginal cost to produce a lucky egg is $100. Considering distribution costs of $50 per egg, the manufacturer would accept a floor price of $150 per egg.

Substituting this price into the demand curve equation gives:

Q = 1000 - 2 * 150

Q=700.

Therefore, the quantity traded between the manufacturer and the retailer in a district is 700 happy eggs. Next, subtract the distribution cost of $50 per egg from the wholesale price to determine the quantity transacted between consumers and retailers in the county. Because retailers have a monopoly on the retail market, retail prices are higher than wholesale prices. Let R be the selling price.

Equating the quantity demanded and the quantity supplied by retailers, we get:

700 = 1000 - 2R.

Solving for R gives us the following:

R = (1000 - 700) / 2

R=150. Therefore, the retail price is $750 per egg and the quantity traded between consumers and retailers in the county is 700 – 150 = 550 lucky eggs.

Finally, subtracting the distribution cost of $50 per egg from the retail price gives the wholesale price for the marginal cost.

Wholesale Price = Retail Price – Distribution Cost

Wholesale price = 150 - 50

Wholesale price = $550 per egg.  

Learn more about marginal cost here:
https://brainly.com/question/14923834


#SPJ11

Solve for the input that corresponds to the given output value. (Round answers to three decimal places when approp though the question may be completed without the use of technology, the authors intend for you to complete the act course so that you become familiar with the basic functions of that technology.) r(x) = 7 In(1.2)(1.2); r(x) = 9.3, r(x) = 20 r(x) = 9.3 X = r(x) = 20 x=

Answers

The solutions for x in each case are as follows: r(x) = 7: x ≈ ±1.000; r(x) = 9.3: x ≈ ±1.153 and r(x) = 20: x ≈ ±1.693.

To solve for the input values that correspond to the given output values, we need to set up the equations and solve for the variable x.

r(x) = 7 * ln(1.2)^2

To find the value of x that corresponds to r(x) = 7, we set up the equation:

7 = 7 * ln(1.2)^2

Dividing both sides of the equation by 7, we have:

1 = ln(1.2)^2

Taking the square root of both sides, we get:

ln(1.2) = ±sqrt(1)

ln(1.2) ≈ ±1

The natural logarithm of a positive number is always positive, so we consider the positive value:

ln(1.2) ≈ 1

r(x) = 9.3

To find the value of x that corresponds to r(x) = 9.3, we have:

9.3 = 7 * ln(1.2)^2

Dividing both sides of the equation by 7, we get:

1.328571 ≈ ln(1.2)^2

Taking the square root of both sides, we have:

ln(1.2) ≈ ±sqrt(1.328571)

ln(1.2) ≈ ±1.153272

r(x) = 20

To find the value of x that corresponds to r(x) = 20, we set up the equation:

20 = 7 * ln(1.2)^2

Dividing both sides of the equation by 7, we get:

2.857143 ≈ ln(1.2)^2

Taking the square root of both sides, we have:

ln(1.2) ≈ ±sqrt(2.857143)

ln(1.2) ≈ ±1.692862

Therefore, the solutions for x in each case are as follows:

r(x) = 7: x ≈ ±1.000

r(x) = 9.3: x ≈ ±1.153

r(x) = 20: x ≈ ±1.693

Remember to round the answers to three decimal places when appropriate.

To learn more about  natural logarithm visit:

brainly.com/question/25644059

#SPJ11

Write down matrices A1, A2, A3 that correspond to the respective linear transformations of the plane: Ti = ""reflection across the line y = -2"" T2 ""rotation through 90° clockwise"" T3 = ""refl"

Answers

the matrix that corresponds to this transformation is: A3 = [-1 0 0 1]. Matrices are arrays of numbers that are used to represent linear equations.

Transformations are operations that change the position, shape, and size of objects.

The following matrices correspond to the respective linear transformations of the plane:

T1: Reflection across the line y = -2

To find the matrix that corresponds to this transformation, we need to know where the unit vectors i and j are transformed.

When we reflect across the line y = -2, the x-component of a point remains the same, but the y-component changes sign.

Therefore, the matrix that corresponds to this transformation is:

A1 = [1 0 0 -1]T2: Rotation through 90° clockwise

When we rotate through 90° clockwise, the unit vector i becomes the unit vector j and the unit vector j becomes the negative of the unit vector i.

Therefore, the matrix that corresponds to this transformation is:

A2 = [0 -1 1 0]T3: Reflection across the line x = -1

When we reflect across the line x = -1, the y-component of a point remains the same, but the x-component changes sign.

To learn more about Matrices click here https://brainly.com/question/30646566

#SPJ11








Simple harmonic motion can be modelled with a sin function that has a period of 2pie. A maximum is located at x = pie/4. A minimum will be located at x = Зpie/4 5pie/4 pie 2pie

Answers

Simple harmonic motion can be represented by a sine function with a period of 2π. The maximum point occurs at x = π/4, and the minimum point will be located at x = 3π/4, 5π/4, and so on.

In simple harmonic motion, an object oscillates back and forth around an equilibrium position. The motion can be described by a sinusoidal function, typically a sine or cosine. For a sine function with a period of 2π, one complete cycle occurs over the interval from 0 to 2π.

Given that the maximum point of the motion is located at x = π/4, this represents the displacement of the object at the peak of its oscillation. To find the location of the minimum point, we need to determine when the displacement is at its lowest.

Since the period is 2π, the complete cycle repeats every 2π units. Therefore, the minimum point will occur at x = 3π/4, 5π/4, 7π/4, and so on, which are all equivalent to adding or subtracting 2π to the initial minimum point at x = π/4.

In summary, for simple harmonic motion modeled by a sine function with a period of 2π, the maximum point is located at x = π/4, and the minimum points will occur at x = 3π/4, 5π/4, 7π/4, and so on, which are all multiples of π/4 plus or minus 2π.

Learn more about sine function:

https://brainly.com/question/32247762

#SPJ11

Solve by the addition-or-subtraction method.

10p + 4q = 2
10p - 8q = 26

Answers

Answer:

p = 1

q = -2

Step-by-step explanation:

10p + 4q = 2

10p - 8q = 26

Time the second equation by -1

10p + 4q = 2

-10p + 8q = -26

12q = -24

q = -2

Now we put -2 in for q and solve for p

10p + 4(-2) = 2

10p - 8 = 2

10p = 10

p = 1

Let's Check the answer

10(1) + 4(-2) = 2

10 - 8 = 2

2 = 2

So, p = 1 and q = -2 is the correct answer.

13. Find the arc length of the given curve on the indicated interval. x=2t, y=t,0st≤1

Answers

The arc length of the curve x = 2t, y = t, on the interval 0 ≤ t ≤ 1, is approximately 2.24 units.

To calculate the arc length, we can use the formula:

Arc length =[tex]\int\limits {\sqrt{(dx/dt)^2 + (dy/dt)^2} dt[/tex]

In this case, dx/dt = 2 and dy/dt = 1. Substituting these values into the formula, we have:

[tex]Arc length = \int\limits\sqrt{[(2)^2 + (1)^2] } dt \\ =\int\limits\sqrt{[4 + 1]}dt \\\\ = \int\limits\sqrt{[5]} dt \\ = \int\limits\sqrt{5} dt[/tex]

Evaluating the integral, we find:

Arc length = [2√5] from 0 to 1

          = 2√5 - 0√5

          = 2√5

Therefore, the arc length of the given curve on the interval 0 ≤ t ≤ 1 is approximately 2.24 units.

Learn more about arc length here:

https://brainly.com/question/31762064

#SPJ11

Pr. #7) Find the absolute extreme values on the given interval. sin 21 2 + cos21

Answers

The absolute extreme values on the given interval, sin 21 2 + cos21 is 1. Since the function is continuous on a closed interval, it must have a maximum and a minimum on the interval.

Since sin²(θ) + cos²(θ) = 1 for all θ, we have:

sin²(θ) = 1 - cos²(θ)

cos²(θ) = 1 - sin²(θ)

Therefore, we can write the expression sin²(θ) + cos²(θ) as:

sin²(θ) + cos²(θ) = 1 - sin²(θ) + cos²(θ)

                    = 1 - (sin²(θ) - cos²(θ))

Now, let f(θ) = sin²(θ) + cos²(θ) = 1 - (sin²(θ) - cos²(θ)).

We want to find the absolute extreme values of f(θ) on the interval [0, 2π].

First, note that f(θ) is a continuous function on the closed interval [0, 2π] and a differentiable function on the open interval (0, 2π).

Taking the derivative of f(θ), we get:

f'(θ) = 2cos(θ)sin(θ) + 2sin(θ)cos(θ) = 4cos(θ)sin(θ)

Setting f'(θ) = 0, we get:

cos(θ) = 0 or sin(θ) = 0

Therefore, the critical points of f(θ) on the interval [0, 2π] occur at θ = π/2, 3π/2, 0, and π.

Evaluating f(θ) at these critical points, we get:

f(π/2) = 1

f(3π/2) = 1

f(0) = 1

f(π) = 1

Therefore, the absolute maximum value of f(θ) on the interval [0, 2π] is 1, and the absolute minimum value of f(θ) on the interval [0, 2π] is also 1.

In summary, the absolute extreme values of sin²(θ) + cos²(θ) on the interval [0, 2π] are both equal to 1.

To know more about extreme value refer here:

https://brainly.com/question/17613380#

#SPJ11

I need help with question 39

Answers

Answer:

e = 5.25 , f = 4.5

Step-by-step explanation:

since the triangles are similar then the ratios of corresponding sides are in proportion , that is

[tex]\frac{DF}{AC}[/tex] = [tex]\frac{EF}{BC}[/tex] ( substitute values )

[tex]\frac{e}{7}[/tex] = [tex]\frac{3}{4}[/tex] ( cross- multiply )

4e = 7 × 3 = 21 ( divide both sides by 4 )

e = 5.25

and

[tex]\frac{DE}{AB}[/tex] = [tex]\frac{EF}{BC}[/tex] , that is

[tex]\frac{f}{6}[/tex] = [tex]\frac{3}{4}[/tex] ( cross- multiply )

4f = 6 × 3 = 18 ( divide both sides by 4 )

f = 4.5

(b) Find parametric equations for the line through (5, 1, 6) that is perpendicular to the plane x - y + 3.2 = 7(Use the parameter :) (xt), y(t), 0) b) In what polit does this tine intersect the coordinate planes? xy planu. veplates.)

Answers

Parametric equations for the line through (5, 1, 6) that is perpendicular to the plane x - y + 3.2 = 7 is xt = 5 - t, yt = 1 - t, zt = 6. (0, -4, 6) point does this line intersect the coordinate planes.

To find the parametric equations for the line through (5, 1, 6) that is perpendicular to the plane x - y + 3.2 = 7, we first need to determine the direction vector of the line. Since the line is perpendicular to the plane, its direction vector will be perpendicular to the normal vector of the plane.

The normal vector of the plane is (1, -1, 0) since the coefficients of x, y, and z in the plane equation represent the normal vector. To find a direction vector perpendicular to this normal vector, we can take the cross product of (1, -1, 0) with any other vector that is not parallel to it.

Let's choose the vector (0, 0, 1) as the second vector. Taking the cross product:

(1, -1, 0) x (0, 0, 1) = (-1, -1, 0)

So, the direction vector of the line is (-1, -1, 0).

a) Parametric equations for the line:

The parametric equations for the line through (5, 1, 6) with the direction vector (-1, -1, 0) can be written as:

xt = 5 - t

yt = 1 - t

zt = 6

b) Intersection points with the coordinate planes:

To find the points where the line intersects the coordinate planes, we can substitute the appropriate values of t into the parametric equations.

Intersection with the xy-plane (z = 0):

Setting zt = 6 to 0, we have:

6 = 0

This equation has no solution, indicating that the line does not intersect the xy-plane.

Intersection with the xz-plane (y = 0):

Setting yt = 1 - t to 0, we have:

1 - t = 0

t = 1

Substituting t = 1 into the parametric equations:

x(1) = 5 - 1 = 4

y(1) = 1 - 1 = 0

z(1) = 6

The line intersects the xz-plane at the point (4, 0, 6).

Intersection with the yz-plane (x = 0):

Setting xt = 5 - t to 0, we have:

5 - t = 0

t = 5

Substituting t = 5 into the parametric equations:

x(5) = 5 - 5 = 0

y(5) = 1 - 5 = -4

z(5) = 6

The line intersects the yz-plane at the point (0, -4, 6).

Therefore, the line intersects the xz-plane at (4, 0, 6) and the yz-plane at (0, -4, 6).

To learn more about parametric equations: https://brainly.com/question/30451972

#SPJ11

Determine if u =(-2, 4 ) and o=( 15, -7) are orthogonal. Show work, then answer YES or NO"

Answers

To determine if two vectors u and v are orthogonal, we need to check if their dot product is equal to zero. If the dot product is zero, the vectors are orthogonal. If the dot product is nonzero, the vectors are not orthogonal.

Let u = (-2, 4) and v = (15, -7). To check if u and v are orthogonal, we calculate their dot product:

u · v = (-2)(15) + (4)(-7) = -30 - 28 = -58

Since the dot product is not equal to zero (-58 ≠ 0), we conclude that u and v are not orthogonal.

Therefore, the answer is NO.

Learn more about orthogonal here : brainly.com/question/32196772

#SPJ11

which of the following tools is used to test multiple linear restrictions? a. z test b. unit root test c. f test d. t test

Answers

The tool used to test multiple linear restrictions is the F test.

The F test is a statistical tool commonly used to test multiple linear restrictions in regression analysis. It assesses whether a set of linear restrictions imposed on the coefficients of a regression model is statistically significant.

In multiple linear regression, we aim to estimate the relationship between a dependent variable and multiple independent variables. The coefficients of the independent variables represent the impact of each variable on the dependent variable. Sometimes, we may want to test specific hypotheses about these coefficients, such as whether a group of coefficients are jointly equal to zero or have specific relationships.

The F test allows us to test these hypotheses by comparing the ratio of the explained variance to the unexplained variance under the null hypothesis. The F test provides a p-value that helps determine the statistical significance of the tested restrictions. If the p-value is below a specified significance level, typically 0.05 or 0.01, we reject the null hypothesis and conclude that the linear restrictions are not supported by the data.

In contrast, the z test is used to test hypotheses about a single coefficient, the t test is used to test hypotheses about a single coefficient when the standard deviation is unknown, and the unit root test is used to analyze time series data for stationarity. Therefore, the correct answer is c. f test.

Learn more about f test here:

https://brainly.com/question/32391559

#SPJ11

Evaluate the expression without the use of a calculator. Write
answers in radians
1. cos-1(sin7pi/6)
2. tan-1(-1)

Answers

cos^(-1)(sin(7π/6)): The value of cos^(-1)(sin(7π/6)) is π/6. By evaluating the sine of 7π/6, which is -1/2, we can determine the angle whose cosine is -1/2.

To evaluate cos^(-1)(sin(7π/6)), we start by finding the value of sin(7π/6). The angle 7π/6 is in the third quadrant of the unit circle, where the sine function is negative. In the third quadrant, the reference angle is π/6, and the sine of π/6 is 1/2. Since sine is negative in the third quadrant, sin(7π/6) is equal to -1/2.

Now, we need to find the angle whose cosine is -1/2. We know that the cosine function is positive in the second and Fourth quadrants. In the fourth quadrant, the angle with a cosine of -1/2 is π/6. Therefore, cos^(-1)(sin(7π/6)) simplifies to π/6.

In conclusion, by evaluating the sine of 7π/6 as -1/2 and considering the unit circle and the fourth quadrant, we find that cos^(-1)(sin(7π/6)) equals π/6. This demonstrates the relationship between the trigonometric functions and allows us to evaluate the expression without the use of a calculator.

Learn more about Circle : brainly.com/question/22964058

#SPJ11

please help, Find the solution to the given inequality and pick the correct graphical representation

Answers

Using the answers possible, you could pick x=0 and see if 0 work.  

-3 + | 0-2 | > 5

 -3 + | -2 | > 5

      -3 + 2 > 5

             -1 > 5

this is false, so any answer that includes 0 is not correct

this eliminates "-6 < x < 10" and "x > -6 or x < 10" since they both include 0.

that leaves only "x < -6 or x > 10".  

And the graph that matches this answer is the very bottom graph with two open circles at -6 and 10 and arrows pointing outward.  

Now if you want to solve the inequality, that'd look like this:

-3 + | x - 2 | > 5

      | x - 2 | > 8    by adding 3 to both sides

this will split into "x - 2 > 8 or x - 2 < -8"

Solving each of those, you'd have "x > 10 or x < -6" which is the answer we previously determined.

Find the center and radius of the circle given by this equation X2 - 10x + y2 + 6y - 30=0

Answers

Answer:

Center:(5,-3)

Radius:8

Step-by-step explanation:

x²-10x+y²+6y-30=0

(x²-10x__)+(y²+6y__)=30____

(x-5)²+(y+3)²=64

(x-5)²+(y+3)²=8²

Center:(5,-3)

Radius:8

Let L, denote the left-endpoint sum using n subintervals and let R, denote the corresponding right-endpoint sum. In the following exercises, compute the indicated left and right sums for the given functions on the indicated interval. 1. Lo for f(x)=- 1 x(x-1) on [2, 5]

Answers

The left-endpoint sum (L) and right-endpoint sum (R) for the function f(x) = -x(x-1) on the interval [2, 5] can be calculated using n subintervals. The sum involves dividing the interval into smaller subintervals and evaluating the function at the left and right endpoints of each subinterval. The exact values of L and R will depend on the number of subintervals chosen.

To compute the left-endpoint sum (L), we divide the interval [2, 5] into n subintervals of equal width. Let's say each subinterval has a width of Δx. The left endpoints of the subintervals will be 2, 2 + Δx, 2 + 2Δx, and so on, up to 5 - Δx. We evaluate the function f(x) = -x(x-1) at these left endpoints and sum up the results. The value of L will depend on the number of subintervals chosen (n) and the width of each subinterval (Δx).

Similarly, to compute the right-endpoint sum (R), we use the right endpoints of the subintervals instead. The right endpoints will be 2 + Δx, 2 + 2Δx, 2 + 3Δx, and so on, up to 5. We evaluate the function at these right endpoints and sum up the results. Again, the value of R will depend on the number of subintervals (n) and the width of each subinterval (Δx).

To obtain more accurate approximations of the definite integral of f(x) over the interval [2, 5], we would need to increase the number of subintervals (n) and make the width of each subinterval (Δx) smaller. As n approaches infinity and Δx approaches zero, the left and right sums converge to the definite integral of f(x) over the interval.

Learn more about definite integral here:

https://brainly.com/question/30760284

#SPJ11

Other Questions
Use spherical coordinates to find the volume of the solid within the cone z = 3x + 3y and between the spheres x+y+z=1 and x+y+z? = 16. You may leave your answer in radical form. Nation:GDP or GNI (total):GDP or GNI (percapita):Population:National debt:Exchange rate:Unemployment:United StatesN/AJapanEconomyAntigua after recording depreciation for the current year, media mania incorporated decided to discontinue using its printing equipment. the equipment had cost $758,000, accumulated depreciation was $568,000, and its fair value (based on estimated future cash flows from selling the equipment) was $57,000. required: determine whether the equipment is impaired. prepare the journal entries to record the impairment in asset if any. Knan Academy Practice QuestionCrossing the line: reading creative fiction; The Race OfficialWhich THREE choices accurately explain how the structure of the textcontributes to its meaning?Choose 3 answers:DParagraphs 7 and 8 pause the story to provide a "behind the scenes"look at what's happening in secret during the Olympics.Paragraphs 9 and 10 provide a scene from the Olympics that showshow the race of equalized athletes is supposed to go.Paragraphs 11 and 12 preview Kelly's plan to overthrow the regimeunder General Taney through specific details.Paragraphs 1 and 2 describe the story's setting so the readerunderstands the context of the 2068 Olympics.Paragraphs 16 and 17 use dialogue to make the reader sympathizewith Tucker's character.Paragraphs 21 and 22 end the story by telling how Kelly and theother finalists achieved their goal. Crisis management plans are especially important for smaller organizations as they often have ___________ to draw from when a crisis erupts. a) More resources b) The same resources as larger organizations c) Fewer resources the amount by which the right hand side of a constraint can change before the shadow price of that constraint changes is Formulas for you for this question: point-masses in plane region R between f and g total mass: 771 = mk H = moment about y-axis (x = 0): MR.X My = 3 " : - /* p(x) 8(x) dx = p. Area (7 My = L*px"IF Eye4Customer is a 3-year-old call centre. It has launched Performance Appraisal system recently. Being the HR Manager, you are required to set three SMART performancegoals each for the following positions:a. Training Managerb. Recruitment Manager(Please write the Answer of a and b in maximum 300 words each) select all the nontransparent pixels on the flowers layer and save it as a new selection named foreground. An individual acquired 500 shares of stock on December 20, Year 1, for a personal portfolio. On March15, Year 2, the individual executed a short sale of 500 shares of the stock. On December 21, Year 2, theindividual delivered the 500 shares to cover the short sale. Which of the following statements bestcharacterizes the gain or loss on the short sale?A.The transaction will be treated as ordinary income because of the March short sale.B.The transaction will be treated as a long-term capital asset sale.C.The transaction will be treated as a 40% short-term/60% long-term capital asset sale.D.The transaction will be treated as a short-term capital asset sale. 3. Evaluate the flux F ascross the positively oriented (outward) surface S S s Fids, , where F =< 23 +1, y3 +2, 23 +3 > and S is the boundary of x2 + y2 + z2 = 4,2 > 0. S = Mr. Severe, the overseer, used to stand by the door of the quarter, armed with a large hickory stick and heavy cow skin, ready to whip any one who was so unfortunate as not to hear, or, from any other cause, was prevented from being ready to start for the field at the sound of the horn. Mr. Severe was rightly named: he was a cruel man. I have seen him whip a woman, causing the blood to run half an hour at the time; and this, too, in the midst of her crying children, pleading for their mothers release. He seemed to take pleasure in manifesting his fiendish barbarity. Added to his cruelty, he was a profane swearer. It was enough to chill the blood and stiffen the hair of an ordinary man to hear him talk. Scarce a sentence escaped him but that was commenced or concluded by some horrid oath. The field was the place to witness his cruelty and profanity. His presence made it both the field of blood and of blasphemy. From the rising till the going down of the sun, he was cursing, raving, cutting, and slashing among the slaves of the field, in the most frightful manner. His career was short. He died very soon after I went to Colonel Lloyds; and he died as he lived, uttering, with his dying groans, bitter curses and horrid oaths. His death was regarded by the slaves as the result of a merciful providence. Mr. Severes place was filled by a Mr. Hopkins. He was a very different man. He was less cruel, less profane, and made less noise, than Mr. Severe. His course was characterized by no extraordinary demonstrations of cruelty. He whipped, but seemed to take no pleasure in it. He was called by the slaves a good overseer. Question: Which of the following statements is NOT true about the passage?Douglass creates a feeling of pathos in the reader by using auditory imagery (crying children, cursing, the sound of the horn).In spite of the violence, there is humor at the end of the passage when he describes the kinder overseer, Mr. Hopkins.Douglass creates emotion in the reader by using blood as imagery to support Mr. Severe's cruelty.Douglass creates a horrifying picture of slavery by showing in graphic detail the violence and cruelty of Mr. Severe. Suppose that a customer's willingness to pay for a product is $83, and the seller's willingness to sell is $57. If the negotiated price is $68, how much is consumer surplus?Group of answer choices$15$21$4$11 table salt forms from sodium and chloride via hydrogen bonding. T/F the monkeys _from one branch to another picking and eating the fruits.1.prowl2.swing3.swoop4.trot5. flutter How did the Propaganda Movement influence the desire of Filipinos for complete freedom? Andrey works at a call center, selling insurance over the phone. While debating over which greeting he should use when calling potential customers - Howdy! or Hiya! - he decided to conduct a small study.For his subsequent 500 calls, he chose one of the greetings randomly by flipping a coin. Then, he compared the percentage of calls he succeeded in selling insurance using each greeting.What type of a statistical study did Andrey use?Part 2: Andrey found that the success rate of the conversation that started with Howdy! was 20 percent greater than the success rate of the conversation that started with Hiya! Based on some re-randomization simulations, he concluded that the result is significant and not due to the randomization of the calls. Find equations r? - 2y + 2 + y = 16. (3, 2,-5) (a) the tangent plane - 6(x - 3) - 13(y - 1) 8(z+5) = 0 X (b) the normal line to the given surface at the specified point (Enter your answer in ter x which of the following sources would provide an investor with the best information about municipal bonds in the primary market? yellow sheets the bond buyer the blue list thomson municipal new ExpandLog6 X^3/7ySHOW ALL WORKURGENT