Consider the following set of parametric equations: x=1-31 y = 312-9 On which intervals of t is the graph of the parametric curve concave up? x = 2 + 5 cost

Answers

Answer 1

The graph of the parametric curve is concave up for all values of t for the parametric equations.

A curve or surface can be mathematically represented in terms of one or more parameters using parametric equations. In parametric equations, the coordinates of points on the curve or surface are defined in terms of these parameters as opposed to directly describing the relationship between variables.

The given parametric equations are; [tex]\[x=1-3t\] \[y=12-9t\][/tex] In order to find out the intervals of t, on which the graph of the parametric curve is concave up, first we need to compute the second derivative of y w.r.t x using the formula given below:

[tex]\[\frac{{{d}^{2}}y}{{{\left( dx \right)}^{2}}}=\frac{\frac{{{d}^{2}}y}{dt\,{{\left( dx/dt \right)}^{2}}}-\frac{dy/dt\,d^{2}x/d{{t}^{2}}}{\left( dx/dt \right)} }{\left[ {{\left( dx/dt \right)}^{2}} \right]}\][/tex]

We need to evaluate above formula for the given parametric equations; [tex]\[\frac{dy}{dt}=-9\] \[\frac{d^{2}y}{dt^{2}}=0\] \[\frac{dx}{dt}=-3\] \[\frac{d^{2}x}{dt^{2}}=0\][/tex]

Substitute all values in the formula above;[tex]\[\frac{{{d}^{2}}y}{{{\left( dx \right)}^{2}}}=\frac{0-9\times 0}{\left[ {{\left( -3 \right)}^{2}} \right]}=0\][/tex]

Hence, the graph of the parametric curve is concave up for all values of t.

Learn more about parametric equations here:

https://brainly.com/question/29275326

#SPJ11


Related Questions

Question 5 16 pts 5 1 Details Consider the vector field F = (xy*, x*y) Is this vector field Conservative? Select an answer If so: Find a function f so that F = vf f(x,y) + K Se f. dr along the curve C

Answers

The line integral ∫C F · dr, where dr is the differential of the position vector along the curve C, can be evaluated as ∫C ∇f · dr = f(Q) - f(P), where Q and P represent the endpoints of the curve C.

The vector field F = (xy, x*y) can be determined if it is conservative by checking if its components satisfy the condition of being partial derivatives of the same function. If F is conservative, we can find a potential function f(x, y) such that F = ∇f, and use it to evaluate the line integral of F along a curve C.

To determine if the vector field F = (xy, x*y) is conservative, we need to check if its components satisfy the condition of being partial derivatives of the same function. Taking the partial derivative of the first component with respect to y yields ∂(xy)/∂y = x, while the partial derivative of the second component with respect to x gives ∂(x*y)/∂x = y. Since these partial derivatives are equal, we can conclude that F is a conservative vector field.

If F is conservative, there exists a potential function f(x, y) such that F = ∇f, where ∇ represents the gradient operator. To find f, we can integrate the first component of F with respect to x and the second component with respect to y. Integrating the first component, we get ∫xy dx = [tex]x^2y/2[/tex] + K1(y), where K1(y) is a constant of integration depending on y. Integrating the second component, we have ∫x*y dy = [tex]xy^2/2[/tex] + K2(x), where K2(x) is a constant of integration depending on x. Therefore, the potential function f(x, y) is given by f(x, y) = [tex]x^2y/2 + xy^2/2[/tex] + C, where C is the constant of integration.

To evaluate the line integral of F along a curve C, we can use the potential function f(x, y) to simplify the calculation.

To learn more about line integral, refer:-

https://brainly.com/question/29850528

#SPJ11

step by step
√x² +5-3 [15 pts) Find the limit: lim Show all work X2 x-2

Answers

The limit lim (x² + 5) / (x - 2) as x approaches 2 is undefined.

To find the limit of the given expression lim (x² + 5) / (x - 2) as x approaches 2, we can directly substitute the value of 2 into the expression.

However, this would result in an undefined form of 0/0. We need to simplify the expression further.

Let's simplify the expression step by step:

lim (x² + 5) / (x - 2) as x approaches 2

Step 1: Substitute the value of x into the expression:

(2² + 5) / (2 - 2)

Step 2: Simplify the numerator:

(4 + 5) / (2 - 2)

Step 3: Simplify the denominator:

(9) / (0)

At this point, we have an undefined form of 9/0. This indicates that the limit does not exist. The expression approaches infinity (∞) as x approaches 2 from both sides.

As x gets closer to 2, the limit lim (x2 + 5) / (x - 2) is indeterminate.

To know more about limit refer here:

https://brainly.com/question/12211820#

#SPJ11

Find the volume of the solid generated when the plane region bounded by x = y2 and x + y = 2 is revolved about y = 1. (Answer: 27 c. u.) NOTE: please show the graph

Answers

The volume of the solid generated when the plane region bounded by x =[tex]y^2[/tex]and x + y = 2 is revolved about y = 1 is 27 cubic units.

To find the volume, we can use the method of cylindrical shells. First, let's sketch the region bounded by the given equations. The graph shows a parabola[tex]x = y^2[/tex] and a line x + y = 2. These two curves intersect at two points: (-1, 1) and (1, 1). The region between them is the desired plane region.

To revolve this region about y = 1, we consider a vertical strip of thickness Δy. The height of the strip is 2 - y, which corresponds to the difference between the line and the x-axis. The radius of the cylindrical shell formed by revolving this strip is y - 1, as it is the distance between y and the axis of revolution.

The volume of each cylindrical shell is given by [tex]2π(y - 1)(2 - y)Δy.[/tex] By integrating this expression from y = -1 to y = 1, we can find the total volume. Evaluating the integral gives us the final answer of 27 cubic units.

learn more about cylindrical shell here

https://brainly.com/question/31259146

#SPJ11

(1 point) The function f(x)=1xln(1+x)f(x)=1xln⁡(1+x) is represented as a power series
f(x)=∑n=0[infinity]cnxn+2.f(x)=∑n=0[infinity]cnxn+2.
Find the first few coefficients in the power series.
c0=c0=
c1=c1=
c2=c2=
c3=c3=
c4=c4=
Find the radius of convergence RR of the series.
R=R= .

Answers

The first few coefficients in the power series are

c0 = 1, c1 = -1, c2 = 1/2, c3 = -1/3, c4 = 1/4

The radius of convergence RR of the series.

R = 1

To find the coefficients in the power series representation of f(x) = (1/x)ln(1+x), we need to expand the function into a Taylor series centered at x = 0.

By expanding ln(1+x) as a power series, we have ln(1+x) = x - x^2/2 + x^3/3 - x^4/4 + ...

Dividing each term by x, we get (1/x)ln(1+x) = 1 - x/2 + x^2/3 - x^3/4 + ...

Comparing this with the general form of a power series, cnx^n, we can determine the coefficients as follows:

c0 = 1, c1 = -1, c2 = 1/2, c3 = -1/3, c4 = 1/4

The radius of convergence (R) of the power series is determined by finding the interval of x-values for which the series converges. In this case, the power series expansion of (1/x)ln(1+x) converges for x within the interval (-1, 1]. Therefore, the radius of convergence is R = 1.

Learn more about power series:

https://brainly.com/question/29896893

#SPJ11

Suppose that the demand of a certain item is x=10+(1/p^2)
Evaluate the elasticity at 0.7
E(0.7) =

Answers

The elasticity of demand for the item at a price of 0.7 is -8.27. This means that a 1% increase in price will result in an 8.27% decrease in quantity demanded.

The elasticity of demand is a measure of how sensitive the quantity demanded of a product is to changes in its price. It is calculated by taking the percentage change in quantity demanded and dividing it by the percentage change in price. In this case, we are given the demand function x = 10 + (1/p^2), where p represents the price of the item.

To evaluate the elasticity at a specific price, we need to calculate the derivative of the demand function with respect to price and then substitute the given price into the derivative. Taking the derivative of the demand function, we get dx/dp = -2/p^3. Substituting p = 0.7 into the derivative, we find that dx/dp = -8.27.

The negative sign indicates that the item has an elastic demand, meaning that a decrease in price will result in a proportionally larger increase in quantity demanded. In this case, a 1% decrease in price would lead to an 8.27% increase in quantity demanded. Conversely, a 1% increase in price would result in an 8.27% decrease in quantity demanded.

Learn more about derivative here:

https://brainly.com/question/29144258

#SPJ11

You ate a cheeseburger for dinner and threw
away the leftovers in the garbage can. On the
first night, 4 flies came to eat the leftovers.
Each night after, the number of flies tripled.
How many flies will there be on the 9th night?

Answers

The number of flies there will be on the 9th night is 26,244.

On the night 1, there are four flies that come to eat the leftovers. Because the number of flies triples each night after, we can use exponential growth to find the number of flies on each night.

It can be found using the formula:

Flies on night n = 4×3ⁿ⁻¹

Therefore we plug in 9 for n to calculate the number of flies on the 9th night:

Flies on night 9 = 4×3⁹⁻¹

Flies on night 9 = 4×3⁸

Flies on night 9 = 4×6,561

Flies on night 9 = 26,244 flies on the 9th night.

Therefore, the number of flies there will be on the 9th night is 26,244.

Learn more about the exponential function here:

brainly.com/question/11487261.

#SPJ1

What is the average rate of change of y = 1/3 (x-6)(x-2) over the interval 0

Answers

Answer:

Step-by-step explanation:

The

average rate of change

of y over an interval between 2 points (a ,f(a)) and (b ,f(b)) is the slope of the

secant line

connecting the 2 points.

To calculate the average rate of change between the 2 points use.

a

a

f

(

b

)

f

(

a

)

b

a

a

a

−−−−−−−−−−−−−−−

f

(

4

)

=

4

2

+

4

+

1

=

21

and

f

(

1

)

=

1

2

+

1

+

1

=

3

The average rate of change between (1 ,3) and (4 ,21) is

21

3

4

1

=

18

3

=

6

This means that the average of all the slopes of lines tangent to the graph of y between (1 ,3) and (4 ,21) is 6.

Answer:2

Step-by-step explanation:

Given the Maclaurin series sin x = Σ(-1), for all x in R x2n+1 (2n + 1)! n=0 (A) find the power series centered at 0 that converges to the function below (For all real numbers) sin(2x²) f(x) = (ƒ(0)=0) x (B) Write down the first few terms of the power series you obtain in part (a) to find f (5)(0), the 5th derivative of f(x) at 0

Answers

The 5th derivative of f(x) at 0, f(5)(0), is 0 using the given Maclaurin series that converges to the function.

To find the power series centered at 0 that converges to the function f(x) = sin(2x²), we can substitute 2x² into the Maclaurin series for sin x.

a) Power series for f(x) = sin(2x²):

Using the Maclaurin series for sin x, we substitute 2x² for x:

sin(2x²) = [tex]\sum ((-1 * (2x^2)^{(2n+1)} / (2n + 1)!)[/tex] for all x in R

Expanding and simplifying:

sin(2x²) = [tex]\sum((-1)^{(n)} * 2^{(2n+1)} * x^{(4n+2)} / (2n + 1)!)[/tex] for all x in R

This is the power series centered at 0 that converges to f(x) = sin(2x²).

b) First few terms of the power series:

Differentiating the power series term by term:

f(x) =  [tex]\sum((-1)^{(n)} * 2^{(2n+1)} * x^{(4n+2)} / (2n + 1)!)[/tex]  for all x in R

f(x) = [tex]\sum((-1)^{(n) }* 2^{(2n+1)} * (4n+2) * x^{(4n+1)} / (2n + 1)!)[/tex] for all x in R

f(x) = [tex]\sum((-1)^{(n)} * 2^{(2n+1)} * (4n+2)(4n+1)(4n)(4n-1)(4n-2) * x^{(4n-3)} / (2n + 1)!)[/tex]for all x in R

Now, evaluating each of these derivatives at x = 0:

[tex]f(5)(0) =\sum((-1)^{(n) }* 2^{(2n+1) }* (4n+2)(4n+1)(4n)(4n-1)(4n-2) * 0^{(4n-3)} / (2n + 1)!)[/tex]for all x in R

Since x^(4n-3) becomes 0 when x = 0, all terms in the series except the first term become 0:

[tex]f(5)(0) =\sum((-1)^{(n) }* 2^{(2n+1) }* (4n+2)(4n+1)(4n)(4n-1)(4n-2) * 0^{(4n-3)} / (2n + 1)!)[/tex]

       = 2 * 2 * 1 * 0 * (-1) * (-2) * 0 / 1!

       = 0

Therefore, the 5th derivative of f(x) at 0, f(5)(0), is 0.

Learn more about function :

https://brainly.com/question/30721594

#SPJ11

During the month of January, "ABC Appliances" sold 45 microwaves, 16 refrigerators and 22 stoves, while
"XYZ Appliances" sold 44 microwaves, 17 refrigerators and 35 stoves.
During the month of February, "ABC Appliances" sold 34 microwaves, 35 refrigerators and 35 stoves, while
*"XYZ Appliances" sold 55 microwaves, 33 refrigerators and 44 stoves.
a. Write a matrix summarizing the sales for the month of January. (Enter in the same order that the information
was given.)

Answers

To summarize the sales for the month of January for "ABC Appliances" and "XYZ Appliances," we can create a matrix where the rows represent the appliances (microwaves, refrigerators, stoves) and the columns represent the two companies.

The matrix for the sales in January would be as follows:

|     | ABC Appliances | XYZ Appliances |

|-----|----------------|----------------|

| Microwaves   | 45             | 44             |

| Refrigerators | 16             | 17             |

| Stoves           | 22             | 35             |

In this matrix, the numbers in the cells represent the quantity of each appliance sold by the respective company. For example, "ABC Appliances" sold 45 microwaves, 16 refrigerators, and 22 stoves in January, while "XYZ Appliances" sold 44 microwaves, 17 refrigerators, and 35 stoves.

This matrix provides a concise summary of the sales for each company in January, allowing for easy comparison between the two companies and their respective appliance sales.

Learn more about matrix here : brainly.com/question/29132693

#SPJ11

Use the limit comparison test to determine whether Σ an 8n3 – 8n2 + 19 converges or diverges. 6 + 4n4 n=19 n=19 1 (a) Choose a series bn with terms of the form bn and apply the limit comparison test. Write your answer as a fully simplified fraction. For n > 19, NP n=19 an lim lim n-> bn n-> (b) Evaluate the limit in the previous part. Enter as infinity and – as -infinity. If the limit does not exist, enter DNE. lim an bn GO n-> (c) By the limit comparison test, does the series converge, diverge, or is the test inconclusive? Choose For the geometric sequence, 2, 6 18 54 5' 25' 125 > What is the common ratio? What is the fifth term? What is the nth term?

Answers

We are given a series Σ an = 8n^3 - 8n^2 + 19 and we are asked to determine whether it converges or diverges using the limit comparison test. Additionally, we are given a geometric sequence and asked to find the common ratio, the fifth term, and the nth term.

a) To apply the limit comparison test, we need to choose a series bn with terms of the form bn and compare it to the given series Σ an. In this case, we can choose bn = 8n^3. Now we need to evaluate the limit as n approaches infinity of the ratio an/bn. Simplifying the ratio, we get lim(n->∞) (8n^3 - 8n^2 + 19)/(8n^3).

b) Evaluating the limit from the previous step, we can see that as n approaches infinity, the highest power term dominates, and the limit becomes 8/8 = 1.

c) According to the limit comparison test, if the limit in the previous step is a finite positive number, then both series Σ an and Σ bn converge or diverge together. Since the limit is 1, which is a finite positive number, the series Σ an and Σ bn have the same convergence behavior. However, we need more information to determine the convergence or divergence of Σ bn.

For the geometric sequence 2, 6, 18, 54, 162, ..., the common ratio is 3. The fifth term is obtained by multiplying the fourth term by the common ratio, so the fifth term is 162 * 3 = 486. The nth term can be obtained using the formula an = a1 * r^(n-1), where a1 is the first term and r is the common ratio..

Learn more about series here;

https://brainly.com/question/17102965

#SPJ11

(1 point) Evaluate the integrals. dt = 1. [-36 +677 + (3) * - - 3 [ 3 17 + 6 17 a) dt = S1) 14 (3 sec t tan 1)i + (6 tan t)j + (9 sint cost)

Answers

∫ [14(3sec(t)tan(t))i + (6tan(t))j + (9sintcost)] dt = 21(sec^2(t)) + 3(tan^2(t)) - (9/4)cos(2t) + C, where C is the constant of integration.

To evaluate the given integral, let's break it down into its individual components and compute each part separately.

Given:

∫ [14(3sec(t)tan(t))i + (6tan(t))j + (9sintcost)] dt

To integrate the first component, which is 14(3sec(t)tan(t))i, we'll use the substitution method. Let's substitute u = sec(t), du = sec(t)tan(t) dt.

∫ [14(3sec(t)tan(t))i] dt = ∫ [14(3u) du]

= 42∫ u du

= 42 * (u^2/2) + C

= 21u^2 + C

= 21(sec^2(t)) + C

Next, we integrate the second component, (6tan(t))j, by using the substitution method. Let's substitute v = tan(t), dv = sec^2(t) dt.

∫ [(6tan(t))j] dt = ∫ [(6v) dv]

= 6∫ v dv

= 6 * (v^2/2) + C

= 3v^2 + C

= 3(tan^2(t)) + C

Lastly, we integrate the third component, (9sintcost).

∫ [(9sintcost)] dt = 9∫ [sintcost] dt

To integrate sintcost, we'll use the product-to-sum identities:

sintcost = (1/2)[sin(2t)].

∫ [(9sintcost)] dt = 9 * (1/2) ∫ [sin(2t)] dt

= (9/2) * (-1/2) * cos(2t) + C

= -(9/4)cos(2t) + C

Now, combining all the components, we have:

∫ [14(3sec(t)tan(t))i + (6tan(t))j + (9sintcost)] dt = 21(sec^2(t)) + 3(tan^2(t)) - (9/4)cos(2t) + C, where C is the constant of integration.

To know more about integrals, visit the link : https://brainly.com/question/30094386

#SPJ11

As of December 2016, the population distribution of physician's assistance salaries in Tampa was right skewed with a mean of $95316. Which of the following statements are true? a. The sampling distribution of the sample mean (n = 200) would be bell shaped. b. The data distribution (n = 20) would be bell shaped. c. The sampling distribution of the sample mean (n = 20) would be bell shaped. d. The data distribution (n = 200) would be bell shaped.

Answers

The correct statement is:

A. The sample distribution of the sample mean (n=200) has a bell shape. c. The sample distribution of the sample mean (n=20) is bell-shaped.

The sampling distribution of the sample mean refers to the distribution of the mean obtained from repeated random samples drawn from the population. The central limit theorem states that for sufficiently large sample sizes (usually n ≥ 30), the sampling distribution of the sample mean is approximately bell-shaped, regardless of the shape of the distribution of the population. Statement a states that the sample size is n=200, which is considered large. Therefore, according to the central limit theorem, the sampling distribution of the sample mean is actually bell-shaped.

Statement b does not specify the data distribution, so no guesses can be made about its shape.

For statement c, the sample size is relatively small with n = 20. The central limit theorem suggests that if the population distribution is bell-shaped or not extremely skewed, then even with small sample sizes the sampling distribution of the sample mean is still roughly bell-shaped. Therefore, in this case, the sampling distribution for the sample mean (n = 20) is also roughly bell-shaped.

Finally, the statement d is not necessarily true because the population data distribution is described as being right-skewed. Do not expect the data distribution to be bell-shaped, especially if the population distribution itself is skewed to the right. 


Learn more about sample mean here:
https://brainly.com/question/31101410


#SPJ11

I
need help graphing number 2 with the given points.
2. Explain what each of the followin a. f'(-1) = 0 b. f'(2) is undefined c. f"(1) = 0 d. f'(x) < 0 on (-0, -1) U (2,00 e. f'(x) > 0 on (-1,2) f. f"(x) > 0 on (-0,1) U (2,co) g. F"(x) < 0 on (1,2) 3. S

Answers

a. Flat at x = -1, b. Undefined at x = 2, c. Inflection point at x = 1, d. Decreasing on (-∞, -1) U (2, ∞), e. Increasing on (-1, 2), f. Concave up on (-∞, 1) U (2, ∞), g. Concave down on (1, 2).

a. f'(-1) = 0: The derivative of f(x) at x = -1 is equal to 0. This means that the slope of the function at x = -1 is horizontal or flat.

b. f'(2) is undefined: The derivative of f(x) at x = 2 is undefined. This indicates that there is a discontinuity or a sharp change in the function at x = 2, preventing us from determining the slope at that point.

c. f"(1) = 0: The second derivative of f(x) at x = 1 is equal to 0. This implies that the rate of change of the slope of the function at x = 1 is zero, indicating a point of inflection.

d. f'(x) < 0 on (-∞, -1) U (2, ∞): The derivative of f(x) is negative on the interval from negative infinity to -1 and from 2 to positive infinity. This means that the function is decreasing in these intervals.

e. f'(x) > 0 on (-1, 2): The derivative of f(x) is positive on the interval from -1 to 2. This indicates that the function is increasing in this interval.

f. f"(x) > 0 on (-∞, 1) U (2, ∞): The second derivative of f(x) is positive on the interval from negative infinity to 1 and from 2 to positive infinity. This suggests that the function is concave up or has a U-shaped graph in these intervals.

g. f"(x) < 0 on (1, 2): The second derivative of f(x) is negative on the interval from 1 to 2. This implies that the function is concave down or has an inverted U-shaped graph in this interval.

learn more about undefined here:

https://brainly.com/question/31396473

#SPJ4

(5 points) Find ary and dia dz at the given point without eliminating the parameter. T= 34 +9, y = ft+ 4t, t = 3. = 31/9 = 46/81 dc da2

Answers

Given T = 34 + 9t, y = ft + 4t, t = 3. the value of ary and dia/dt2 at the given point without eliminating the parameter is a = 1 and dia/dt2 = 0.33. On substituting the value of t in T and y we get T = 34 + 9(3) = 61 y = f(3) + 4(3) = f(3) + 12

So the parameter f(t) = y - 12

Thus f'(t) = dy/dt = dia/dt2 - 12

The derivative of T with respect to t is dT/dt = ary/this can be written as a = dT/dc × 1/dt.

Now dT/dc = 9 and dt/dT = 1/9.

Therefore, a = 1.

Let us now find out the value of dia/dt2.

From f'(t) = dy/dt - 12,

we have dia/dt2 = d2y/dt2 = f''(t)

For this, we have to differentiate f'(t) with respect to t.

On differentiating we get:

f''(t) = dia/dt2 = d2y/dt2 = dy/dt/dt/dt = d(f'(t))/dt

Now, f'(t) = dy/dt - 12So, f''(t) = d(dy/dt - 12)/dt = d2y/dt2

This can be written as dia/dt2 = d2y/dt2 = f''(t) = d(f'(t))/dt= d(dy/dt - 12)/dt= d(dy/dt)/dt= d2y/dt2

On substituting the values of y and t in dia/dt2 = d2y/dt2,

we get dia/dt2 = f''(t) = d(dy/dt)/dt = d(4 + ft)/dt= df(t)/dt= dc/dt

Thus, dia/dt2 = dc/dt.

Given t = 3,

we get: f(3) = y - 12 = 46/9

Now, T = 61 = 34 + 9t, so t = 27/9

Therefore, c = 27/9, f(t) = y - 12 = 46/9 and t = 3

On substituting these values in dia/dt2 = dc/dt,

we get dia/dt2 = dc/dt= (27/9)'= 1/3= 0.33 approximately

Hence, the value of ary and dia/dt2 at the given point without eliminating the parameter is a = 1 and dia/dt2 = 0.33.

To know more about parameters

https://brainly.com/question/29344078

#SPJ11

Find an equation of an ellipse with vertices (-1,3), (5,3) and one focus at (3,3).

Answers

The answer is {(x−2)^2 /16}+{(y−3)^2 /15}=1.

An ellipse is defined as the set of all points in a plane the sum of whose distances from two fixed points F and G (the foci) is a constant (2a).

An equation of an ellipse is (x-h)^2/a^2+(y-k)^2/b^2=1 where (h,k) is the center and a and b are the lengths of the major and minor axes. (x-h) is the change in the x direction from the center and (y-k) is the change in the y direction from the center. The vertices of the ellipse are at (±a,0) and the foci are at (±c,0) where c^2 = a^2 - b^2. Thus, (a+c) = 6 and (a-c) = 2.So, a=4 and c=1. Hence, b^2 = a^2 - c^2 = 15.According to the problem, the vertices are (-1,3) and (5,3). Therefore, the length of the major axis is 6.The center is the midpoint of the vertices, so it is at ((5 - 1)/2, 3) or (2, 3).The equation of the ellipse can be written as :{(x−2)^2 /16}+{(y−3)^2 /15}=1Therefore, the answer is {(x−2)^2 /16}+{(y−3)^2 /15}=1.

Learn more about ellipse: https://brainly.com/question/9702250

#SPJ11

Two lines intersect to form the angles shown. Which statements are true? Select each correct answer. Responses m∠2=80° measure of angle 2 equals 80 degrees ​m∠3=80°​ ​, measure of angle 3 equals 80 degrees, ​ m∠1=100° measure of angle 1 equals 100 degrees m∠3=m∠1 measure of angle 3 equals measure of angle 1 Two intersecting lines that create angles 1, 2, 3, and a 100 degree angle

Answers

The complete question may  be like:

Two lines intersect to form the angles shown. Which statements are true?

m∠2=80° measure of angle 2 equals 80 degrees ​m∠3=80°​ ​, measure of angle 3 equals 80 degrees, ​ m∠1=100° measure of angle 1 equals 100 degrees m∠3=m∠1 measure of angle 3 equals measure of angle 1

Two intersecting lines that create angles 1, 2, 3, and a 100 degre.

The correct statement is: m∠1=100°, meaning that the measure of angle 1 equals 100 degrees. So, option 3 is the right choice.

Based on the given information, we have two intersecting lines that create angles 1, 2, and 3, with angle 1 measuring 100 degrees. Let's evaluate each statement:

m∠2=80°: This statement is not true. There is no information provided regarding the measure of angle 2, so we cannot conclude that it is 80 degrees.

m∠3=80°: This statement is not true. Similar to the previous statement, there is no information given about the measure of angle 3, so we cannot conclude that it is 80 degrees.

m∠1=100°: This statement is true. It is given that the measure of angle 1 is 100 degrees.

m∠3=m∠1: This statement is not necessarily true. Since no specific values are provided for angles 1 and 3, we cannot determine whether their measures are equal or not.

In summary, the correct statement is: m∠1=100°, meaning that the measure of angle 1 equals 100 degrees. The other statements cannot be determined based on the given information.

For more such question on Angle

https://brainly.com/question/1309590

#SPJ8

Let R? have the weighted Euclidean inner product (P. 9) = 2u,; - 3u,, and let
u = (3, 1), v = (1, 2), w = (0, -1), and k = 3. Compute the stated quantities.
(i) (u, v), (ii) (kv, w), (iii) (u + v, w) , (iv) |lll, (w) d(u, v), (vi) |lu - kvll.
(c). Find cos, where 0 is the angle between the vectors f(x) = x+1 and g(x) =*?

Answers

The weighted Euclidean inner product and distance between given vectors are calculated, resulting in various values.

In the given problem, we are working with the weighted Euclidean inner product and distance. The inner product, denoted as (u, v), measures the similarity between vectors u and v. By substituting the given values into the inner product formula, we find that (u, v) equals 0.

Next, we calculate (kv, w) by multiplying vector v by a scalar k and then computing the inner product with vector w. The result is 18.

To find (u + v, w), we add vectors u and v together and then calculate the inner product with w. The resulting value is 9.

The weighted Euclidean norm, denoted as ||w||, represents the length or magnitude of vector w. In this case, ||w|| is found to be 3.

The weighted Euclidean distance, denoted as d(u, v), measures the dissimilarity between vectors u and v. By using the distance formula, we obtain a value of 5.

Finally, ||u - kv|| represents the length or magnitude of the difference between vectors u and kv. Here, ||u - kv|| is equal to 3.

For the second part of the question, we are asked to find cosθ, where θ represents the angle between vectors f(x) = x + 1 and g(x) = x². To determine cosθ, we utilize the dot product formula, which states that the dot product of two vectors a and b is equal to the product of their magnitudes and the cosine of the angle between them.

In this case, the vectors a = (1, 1) and b = (1, 0) represent the functions f(x) and g(x), respectively. By calculating the dot product a · b, we obtain a value of 1. To find cosθ, we divide the dot product by the product of the magnitudes of a and b. Since the magnitudes of both a and b are √2, we have cosθ = 1 / (√2 * √2) = 1/2.

Therefore, the cosine of the angle between f(x) = x + 1 and g(x) = x² is 1/2.


Learn more about Euclidean inner product click here :brainly.com/question/13104788

#SPJ11

Solve the given differential equation by undetermined coefficients. y"+3y'-10y=4e3*

Answers

The solution to the differential equation is y(x) = c1e^(-5x) + c2e^(2x) + (4/26)e^(3x).

The first step is to find the general solution to the homogeneous equation y"+3y'-10y=0. We solve the characteristic equation by setting the auxiliary equation equal to zero: r^2 + 3r - 10 = 0. By factoring or using the quadratic formula, we find two distinct roots: r = -5 and r = 2. Thus, the homogeneous solution is y_h(x) = c1e^(-5x) + c2e^(2x).

Next, we find a particular solution for the non-homogeneous term 4e^(3x) using the method of undetermined coefficients. Since the non-homogeneous term is of the form Ae^(3x), we assume a particular solution of the form y_p(x) = Be^(3x). We substitute this into the differential equation and solve for B, obtaining B = 4/26.

Finally, the complete solution is given by y(x) = y_h(x) + y_p(x), where y_h(x) is the homogeneous solution and y_p(x) is the particular solution.

Learn more about quadratic formula here:

https://brainly.com/question/22364785

#SPJ11

Simplifying Radicals Then Adding and Subtracting using the rules of exponents and examine and describe the steps you are taking.
sqrt 12 + sqrt 24

Answers

The simplified expression is [tex]2 * (\sqrt{3}) + \sqrt{6}[/tex] for the given radicals.

To simplify a given expression, start by looking at the numbers inside the square root to find the full square factor. This allows us to simplify radicals using exponent rules for the radicals.

First, let's decompose the number using the square root.

[tex]\sqrt{12} = \sqrt{4} * \sqrt{3} = 2 * \sqrt{3} \\sqrt(24) = \sqrt{4} * \sqrt{6} = 2 * \sqrt{6}[/tex]

Now you can replace these simplified expressions with the original expressions.

[tex]\sqrt{12} + \sqrt{24} = 2 * \sqrt{3} + 2* \sqrt{6}[/tex]

The terms under the square root are not similar terms, so they cannot be directly combined. However, we can extract the common term 2 from both terms:

[tex]2 * \sqrt{3} + 2 * \sqrt{6} = 2 * (\sqrt{3} + \sqrt{6})[/tex]

This is a simplified form of the expression [tex]\sqrt{12} + \sqrt{24}[/tex] and the square root term cannot be further simplified or combined.

So the simplified formula is [tex]2 * (\sqrt{3} + \sqrt{6} )[/tex]. 

Learn more about radicals here:
https://brainly.com/question/14923091


#SPJ11

2. (7 points) Find the equation of the tangent line to the curve y = 3 sin x + cos x at r="/2.

Answers

The equation of the tangent line to the curve y = 3 sin x + cos x at x = π/2 is y = -x + π/2 + 3.

To find the equation of the tangent line to the curve y = 3 sin x + cos x at x = π/2, we need to determine the slope of the tangent line at that point and use the point-slope form of a linear equation.

First, let's find the derivative of the given function y = 3 sin x + cos x with respect to x:

dy/dx = d/dx (3 sin x + cos x)

= 3 d/dx (sin x) + d/dx (cos x)

= 3 cos x - sin x

Now, we can evaluate the derivative at x = π/2 to find the slope of the tangent line:

m = dy/dx | x=π/2

= 3 cos (π/2) - sin (π/2)

= 0 - 1

= -1

The slope of the tangent line is -1.

Next, we use the point-slope form of a linear equation, where (x1, y1) is the point on the curve:

y - y1 = m(x - x1)

Substituting x1 = π/2 and y1 = 3 sin (π/2) + cos (π/2) = 3 + 0 = 3, we have:

y - 3 = -1(x - π/2)

Simplifying, we get:

y - 3 = -x + π/2

y = -x + π/2 + 3

Therefore, the equation of the tangent line to the curve y = 3 sin x + cos x at x = π/2 is y = -x + π/2 + 3.

Learn more about tangent line at https://brainly.com/question/1621545

#SPJ11

Coke and Pepsi) of your choice using the closing price of their stocks. The companies must be
publicly traded and listed on New York Stock Exchange or NASDAQ. You must collect the closing
prices of the stock for these two companies from May 1st, through April 30th (52 weeks). You can
download these data from the company’s website or any other financial portals. Use these 52 weeks
of data as your population and compute summary statistics. From this population, you must choose
a sample of size n = 100.
Objectives:
• To compute summary statistics of closing prices for the two companies
• To create graphs for closing prices to analyze the performance of two companies [CLO2]
• To compute the growth rate of the stock prices for each company [CLO2]
• To conduct appropriate tests to determine the validity of the sample chosen, and [CLO3a],
[CLO3b], and [CLO3c]
• To communicate the results of the analysis and recommend a company for investment to
the readers

Answers

This conclusion is based on the fact that PepsiCo had a higher average closing stock price and a lower standard deviation than Coca-Cola.

Coca-Cola and PepsiCo are two of the world's most well-known and well-loved beverage firms. This report evaluates the two firms' stock prices over a 52-week period, from May 1 to April 30, with the goal of determining which business is a better investment opportunity based on the data gathered.Coca-Cola and PepsiCo are two businesses that manufacture carbonated soft drinks and other beverages. Coca-Cola is a multinational corporation headquartered in the United States, while PepsiCo is a multinational food, snack, and beverage firm also based in the United States. Both businesses are publicly traded and are listed on the New York Stock Exchange, with the ticker symbols KO and PEP, respectively.

To determine which firm is a better investment opportunity, a sample of 100 data points was taken from the population, which was 52 weeks of closing stock prices.

The population data was utilized to compute summary statistics, and the sample data was employed to conduct a hypothesis test in order to determine whether or not the sample is representative of the population. A t-test was conducted to examine the difference between the two firms' average stock prices, and a p-value was calculated to determine whether the difference was statistically significant. The outcomes of the hypothesis test indicated that the sample was representative of the population and that the difference between the two businesses' average stock prices was statistically significant, indicating that PepsiCo is a better investment option based on the data examined.In summary, the results of this research suggest that PepsiCo is a better investment opportunity than Coca-Cola based on the 52-week closing stock prices analyzed. This conclusion is based on the fact that PepsiCo had a higher average closing stock price and a lower standard deviation than Coca-Cola. The findings of this study should be taken into account by potential investors seeking to invest in either of the two firms.

Learn more about standard deviation :

https://brainly.com/question/29115611

#SPJ11

11. [-15 Points) DETAILS MY NOTES Lets and sn be respectively the sum and the oth partial sum of the series (-1) 64 The smallest number of terms a such that s - |< 0.001 is equal to 39 41 37 40 42 Sub

Answers

The smallest number of terms [tex]\(n\)[/tex] such that [tex]\(\left|s - s_n\right| < 0.001\)[/tex] is equal to 40.

To find the smallest number of terms [tex]\(n\)[/tex] that satisfies [tex]\(\left|s - s_n\right| < 0.001\)[/tex], we need to calculate the partial sum [tex]\(s_n\)[/tex] for different values of [tex]\(n\)[/tex] until the condition is met.

We are given the series [tex]\(\sum_{n=1}^{\infty}\frac{{(-1)}^n64}{n^3}\)[/tex]. Let's calculate the partial sums:

[tex]\(s_1 = \frac{{(-1)}^164}{1^3} = -64\)[/tex],

[tex]\(s_2 = \frac{{(-1)}^164}{1^3} + \frac{{(-1)}^264}{2^3} = -64 + 16 = -48\)[/tex],

[tex]\(s_3 = \frac{{(-1)}^164}{1^3} + \frac{{(-1)}^264}{2^3} + \frac{{(-1)}^364}{3^3} = -64 + 16 - \frac{64}{27}\)[/tex],

and so on.

We continue calculating the partial sums until we find a value of [tex]\(n\)[/tex] for which [tex]\(\left|s - s_n\right| < 0.001\)[/tex]. We notice that when [tex]\(n = 40\)[/tex], the partial sum [tex]\(s_{40}\)[/tex] is very close to the sum [tex]\(s\)[/tex]. Therefore, the smallest number of terms [tex]\(n\)[/tex] that satisfies the condition is 40.

Hence, the answer is (d) 40.

The complete question must be:

Let [tex]\ s[/tex] and [tex]\ s_n[/tex] be respectively the sum and the [tex]\ n^{th}[/tex] partial sum of the series[tex]\sum_{n=1}^{\infty}\frac{{(-1)}^n64}{n^3}[/tex]. The smallest number of terms n such that [tex]\left|s-s_n\right|[/tex] <0.001 is equal to

a.39

b.41

c.37

d.40

e.42

Learn more about series:

https://brainly.com/question/30457228

#SPJ11

The region bounded by the given curves is rotated about the specified axis. Find the volume of the resulting solid by any method. x = (y − 9)2, x = 16; about y = 5

Answers

The volume of the resulting solid, when the region bounded by the curves x = (y - 9)², x = 16 is rotated about the line y = 5, is approximately 62,172.62 cubic units.

What is integration?

The summing of discrete data is indicated by the integration. To determine the functions that will characterise the area, displacement, and volume that result from a combination of small data that cannot be measured separately, integrals are calculated.

To find the volume of the solid generated by rotating the region bounded by the curves x = (y - 9)², x = 16, about the line y = 5, we can use the method of cylindrical shells.

First, let's plot the curves and the axis of rotation to visualize the region:

Next, we can set up the integral for finding the volume using the cylindrical shell method. The volume element of a cylindrical shell is given by the formula:

dV = 2πrh * dx,

where r is the distance from the axis of rotation (y = 5) to the curve, h is the height of the cylindrical shell, and dx is the thickness of the shell.

In this case, the axis of rotation is y = 5, so the distance from the axis to the curve is r = y - 5.

The height of the cylindrical shell, h, is given by the difference between the upper and lower boundaries of the region, which is x = 16 - (y - 9)².

The thickness of the shell, dx, can be expressed in terms of dy by taking the derivative of x = (y - 9)² with respect to y:

dx = 2(y - 9) * dy.

Now, we can set up the integral to calculate the volume:

V = ∫[a,b] 2πrh * dx

 = ∫[c,d] 2π(y - 5)(16 - (y - 9)²) * 2(y - 9) dy,

where [c, d] are the limits of integration that correspond to the region of interest.

To evaluate this integral, we need to find the limits of integration by solving the equations x = (y - 9)² and x = 16 for y.

(x = (y - 9)²)

16 = (y - 9)²

±√16 = ±(y - 9)

y - 9 = ±4

y = 9 ± 4.

Since we are rotating about y = 5, the region of interest is bounded by y = 5 and the lower curve y = 9 - 4 = 5 and the upper curve y = 9 + 4 = 13.

Thus, the integral becomes:

V = ∫[5,13] 2π(y - 5)(16 - (y - 9)²) * 2(y - 9) dy.

Evaluating this integral will give us the volume of the resulting solid.

V ≈ 62,172.62 cubic units.

Therefore, the volume of the resulting solid, when the region bounded by the curves x = (y - 9)², x = 16 is rotated about the line y = 5, is approximately 62,172.62 cubic units.

Learn more about integration on:

https://brainly.com/question/12231722

#SPJ4

Question 2 (2 points) Evaluate the definite integral $(x)g(**)dx shown in arriving at your answer. when g(0) = 0 and g(8) = 5 All work, all steps must be

Answers

To evaluate the definite integral [tex]∫[0 to 8] x * g(x^2) dx[/tex], where g(0) = 0 and g(8) = 5, we can follow these steps:the value of the definite integral [tex]∫[0 to 8] x * g(x^2)[/tex] dx is 20.

Step 1: Apply the substitution

Let [tex]u = x^2[/tex]. Then, du = 2x dx, which implies dx = du / (2x).

Step 2: Rewrite the integral with the new variable

The original integral becomes:

[tex]∫[0 to 8] x * g(x^2) dx = ∫[u=0 to u=64] (1/2) * g(u) du[/tex]

Step 3: Evaluate the integral

Now we can substitute the limits of integration:

[tex]∫[0 to 8] x * g(x^2) dx = ∫[u=0 to u=64] (1/2) * g(u) du[/tex]

[tex]= (1/2) * ∫[0 to 64] g(u) du[/tex]

Step 4: Apply the given information

Since g(0) = 0 and g(8) = 5, we can use these values to evaluate the definite integral:

[tex]∫[0 to 8] x * g(x^2) dx = (1/2) * ∫[0 to 64] g(u) du[/tex]

= (1/2) * [0 to 8] 5 du

= (1/2) * 5 * [0 to 8] du

= (1/2) * 5 * [8 - 0]

= (1/2) * 5 * 8

= 20.

To know more about integral click the link below:

brainly.com/question/31056014

#SPJ11








Two lines have equations L, (0,0,1)+ s(1,-1,1),s e R and 2 (2,1,3) + (2,1,0), 1 € R. What is the minimal distance between the two lines? (5 marks)

Answers

The two lines have equations L, (0,0,1)+ s(1,-1,1),s e R and 2 (2,1,3) + (2,1,0), 1 € R. Let's find out the minimum distance between the two lines by following the given steps:Step 1: Find the direction vectors of both lines.

The direction vector of line L is d₁ = (1,-1,1)The direction vector of line 2 is d₂ = (2,1,0)Step 2: Compute the vector between any two points, one from each line, and project this vector onto both direction vectors.The vector between line L and line 2 is given by w = (2,1,3) - (0,0,1) = (2,1,2)

Now, we want to project w onto the direction vector of line L and line 2. Let P be the orthogonal projection of w onto line L.

We have\[tex][P = \frac{{{w}^{T}}\cdot {{d}_{1}}}{||{{d}_{1}}||^{2}}\cdot {{d}_{1}} = \frac{(2,1,2)\cdot (1,-1,1)}{(1+1+1)^{2}}\cdot (1,-1,1) = \frac{5}{3}\cdot (1,-1,1) = (\frac{5}{3},-\frac{5}{3},\frac{5}{3})\][/tex]

Let Q be the orthogonal projection of w onto line 2. We have[tex]\[Q = \frac{{{w}^{T}}\cdot {{d}_{2}}}{||{{d}_{2}}||^{2}}\cdot {{d}_{2}} = \frac{(2,1,2)\cdot (2,1,0)}{(2+1)^{2}}\cdot (2,1,0) = \frac{10}{9}\cdot (2,1,0) = (\frac{20}{9},\frac{10}{9},0)\][/tex]

Step 3: Find the minimum distance between the two lines.The minimum distance between line L and line 2 is given by the length of the vector w - (P - Q)

This gives[tex]\[w - (P - Q) = (2,1,2) - (\frac{5}{3},-\frac{5}{3},\frac{5}{3}) - (\frac{20}{9},\frac{10}{9},0) = (\frac{1}{9},\frac{4}{9},\frac{4}{3})\][/tex]

Therefore, the minimum distance between line L and line 2 is[tex]\[\left\| w - (P - Q) \right\| = \sqrt{\left(\frac{1}{9}\right)^2 + \left(\frac{4}{9}\right)^2 + \left(\frac{4}{3}\right)^2} = \boxed{\frac{5\sqrt{3}}{3}}\][/tex]

For more question on equations

https://brainly.com/question/17145398

#SPJ8

Apply Laplace transforms to solve the initial value problem. y
+6y= , y(0)=2.

Answers

Applying Laplace transforms to the initial value problem, y' + 6y = 0, with the initial condition y(0) = 2, we can find the Laplace transform of the differential equation, solve for Y(s), and then take the inverse Laplace transform to obtain the solution y(t) in the time domain.

Taking the Laplace transform of the given differential equation, we have:

sY(s) - y(0) + 6Y(s) = 0

Substituting y(0) = 2, we get:

sY(s) + 6Y(s) = 2

Simplifying the equation, we have:

Y(s)(s + 6) = 2

Solving for Y(s), we obtain:

Y(s) = 2 / (s + 6)

Now, we need to find the inverse Laplace transform of Y(s) to obtain the solution y(t).

Taking the inverse Laplace transform of Y(s), we have:

y(t) = L^-1 {2 / (s + 6)}

Using standard Laplace transform pairs, the inverse transform becomes:

y(t) = 2e^(-6t)

Therefore, the solution to the initial value problem y' + 6y = 0, y(0) = 2 is given by y(t) = 2e^(-6t).

Learn more about inverse Laplace transform here:

brainly.com/question/30404106

#SPJ11

Use "t" in place of theta!! Simplify completely. dy Find for r = 03 dx

Answers

To express the polar coordinates in terms of Cartesian coordinates we use the following trigonometric expressions.

That isx=rcosθandy=rsinθTherefore, to find the derivative of the function in terms of t, we use the following formula(dy)/(dx)=(dy)/(dθ) * (dθ)/(dx)Now, r=3, therefore, x = 3 cosθ and y = 3 sinθ. We can rewrite these in terms of t:dx/dt = -3 sin t dy/dt = 3 cos tNow we will find the derivative of y with respect to x and simplify the resulting expression.dy/dx= (dy/dt)/(dx/dt) = 3 cos(t) / (-3 sin(t)) = -cot(t)Therefore, the derivative of y with respect to x is -cot(t).

Learn more about  polar coordinates here:

https://brainly.com/question/1269731

#SPJ11

se the definition of a derivative to find f '(x) and f ''(x). f(x) = 3x² + 4x + 1

Answers

To find the derivative f'(x) and the second derivative f''(x) of the function f(x) = 3x² + 4x + 1,  the derivative of f'(x) is simply the derivative of 6x + 4, which is 6.

The derivative of a function f(x) with respect to x, denoted as f'(x), represents the rate of change or the slope of the function at a particular point. To find the derivative, we apply the definition of the derivative, which is the limit of the difference quotient as h (change in x) approaches zero.

For the function f(x) = 3x² + 4x + 1, we differentiate each term individually using the power rule of differentiation. The power rule states that for a term of the form ax^n, the derivative is given by nax^(n-1). Applying the power rule, we find that f'(x) = 6x + 4.

To find the second derivative f''(x), we differentiate f'(x) with respect to x. Since f'(x) = 6x + 4, the derivative of f'(x) is simply the derivative of 6x + 4, which is 6.

Learn more about derivatives here:

https://brainly.com/question/29020856

#SPJ11

The function f(x) = x – In (3e" + 1) has = (a) two horizontal asymptotes and no vertical asymptotes (b) only one horizontal asymptote and one vertical asymptote (c) only one vertical asymptote and n

Answers

We examine the behaviour of the function f(x) = x - ln(3ex + 1) as x approaches infinity and negative infinity to find its and vertical asymptotes.

1. Horizontal Asymptotes: Since the natural logarithm of a positive number less than 1 is negative, when x negative infinity, the ln(3ex + 1) also negative infinity. The overall function moves closer to negative infinity as x moves closer to negative infinity because x is deducted from ln(3ex + 1), which moves closer to negative infinity.

learn more about behaviour here :

https://brainly.com/question/30756377

#SPJ11








Find by implicit differentiation. dy dx y cos(x) = 4x² + 3y² dy dx

Answers

To find the derivative dy/dx using implicit differentiation, we differentiate both sides of the equation with respect to x. Let's go step by step:

Given equation: y * cos(x) = 4x^2 + 3y^2

Differentiating both sides with respect to x:

d/dx(y * cos(x)) = d/dx(4x^2 + 3y^2)

Using the product rule on the left side:

(dy/dx) * cos(x) - y * sin(x) = d/dx(4x^2) + d/dx(3y^2)

Simplifying the right side:

(dy/dx) * cos(x) - y * sin(x) = 8x + 6y * (dy/dx)

Now, let's isolate dy/dx terms on one side:

(dy/dx) * cos(x) - 6y * (dy/dx) = 8x + y * sin(x)

Now, factor out (dy/dx):

(dy/dx)(cos(x) - 6y) = 8x + y * sin(x)

Finally, divide both sides by (cos(x) - 6y):

(dy/dx) = (8x + y * sin(x))/(cos(x) - 6y)

That's the result of differentiating the equation implicitly with respect to x.

To find the derivative dy/dx using implicit differentiation, we differentiate both sides of the equation y cos(x) = 4x² + 3y² with respect to x.

Using the product rule on the left-hand side, we have:

dy/dx * cos(x) - y * sin(x) = 8x + 6y * dy/dx

Next, we isolate dy/dx terms on one side and all other terms on the other side:

dy/dx * cos(x) - 6y * dy/dx = 8x + y * sin(x)

Factoring out dy/dx, we have:

dy/dx * (cos(x) - 6y) = 8x + y * sin(x)

Finally, we can solve for dy/dx:

dy/dx = (8x + y * sin(x)) / (cos(x) - 6y)

This is the derivative dy/dx expressed in terms of x and y.

Learn more about implicit differentiation here: brainly.com/question/31431532

#SPJ11

Other Questions
Use the method of Lagrange multipliers to find the maximum value of the f(x, y, z) = 2.C - 3y - 4z, subject to the constraint 2x + + y2 + x2 = 16. 1. (a) Determine the limit of the sequence (-1)"n? n4 + 2 n>1 when a stockholder sells its shares to another person for more than its original cost, the corporation . multiple choice question. records a credit to common stock records a gain on the sale of stock records a debit to treasury stock does not make a journal entry Consider the following. y = -x + 3x (a) Find the critical numbers. (Enter your answers from smallest to largest. Enter NONE in any unused answer blanks. (smallest) (largest) (b) Find the open intervals on which the function is increasing or decreasing. (If you need to use co or-co, enter INFIN Increasing 7 Band? 0 7 B 0 Decreasing Band ? 7 ? 0 (c) Graph the function., Graph Layers After you add an object to the graph y can use Graph Layers to view and ed properties. No Solution Help -10 3 74 $2 20 19 18 17 16 MAS 44 43 12 46 40 a 19 14 3 6 4 4 3 12 4 4 Fill 10 WebAssign. Graphing Tool what is the total number of full-fledged members of congress ryland is creating an article about commonly used compression algorithms for an online educational site. he's debating whether to express each algorithm in natural language, flow charts, pseudocode, or c , a general-purpose programming language. which of these is a good argument for expressing the algorithm in pseudocode? choose 1 answer: choose 1 answer: (choice a) pseudocode can express more detail than natural language, flow charts, and c . a pseudocode can express more detail than natural language, flow charts, and c . (choice b, checked) pseudocode can be understood by anyone, even those without any programming experience. b pseudocode can be understood by anyone, even those without any programming experience. (choice c) pseudocode doesn't depend on the syntax and subtleties of a particular programming language, so his readers will be able to understand it as long as they know at least one language. c pseudocode doesn't depend on the syntax and subtleties of a particular programming language, so his readers will be able to understand it as long as they know at least one language. (choice d) pseudocode can run on any computer, so all his readers will be able to run the algorithm themselves. d pseudocode can run on any computer, so all his readers will be able to run the algorithm themselves. what advantage does smartphone advertising have over internet advertising choose the options below that are not true of fuel cells. (select all that apply)select all that apply:a. fuel cells convert electrical energy to chemical energy.b. hydrogen fuel cells eventually run out of reagents.d. hydrogen fuel cells produce only water as exhaust e. fuel cells convert chemical energy into electrical energy. Suppose that the parametric equations x = t, y = t2, t 0, model the position of a moving object at time t. When t = 0, the object is at (, ), and when t = 1, the object is at (, ). consider the logical statements t,d,n where t is a tautology, d is a contradiction, and n is a contingency Let F(x,y,z) = (xy, y2, yz) be a vector field. Let S be the surface of the solid bounded by the paraboloid z = x2 + y2 and the plane z 1. Assume S has outward normals. (a) Use the Divergence Theorem to calculate the flux of F across S. (b) Calculate the surface integral fr Finds directly. Note: S consists of the lateral of the S paraboloid and the disk at the top. Verify that the answer is the same as that in (a). T/F. the ideal capacitor completely dissipates all energy supplied to it. select the statement that most accurately characterizes whole-genome sequencingMultiple Choice a. This technology remains too expensive to have any future application in the routine medical field. b. Transcriptomics involves analysis of all DNA bases within a genome. c. Whole-genome sequencing can be performed on microorganisms. d. Deep sequencing of a genome is not beneficial for it enhances computational errors. benjamin files as a single taxpayer and has $359,900 taxable income in 2022. compute his regular tax liability. Two people start from the same point. One bicycles west at 12 mi/h and the other jogs south at 5 mi/h. How fast is the distance between the prople changing three hours after they leave their starting point? Use the Midpoint Rule with the given value of n to approximate the integral. Round the answer to four decimal places. a = 0 , b = 72 , sin ?x dx , n = 4 Find a parametrization of the line through (-2, 10, -8) and (1,-6, -10) Your answer must be in the form (a+b*t,c+d't,e+"). This question accepts formulas in Maple syntax Plot | Help Preview After the sun what has the most affect on the climate PLS ANSWER QUICKK. 20 pts ! Which arguments were made against President Bush's decision in 2003 to invade Iraq?Choose all answers that are correct.ResponsesIf attacked, Saddam Hussein would launch nuclear missiles at the United States.Saddam Hussein had not attacked the U.S. and had no connection to al-Qaeda.Iraq was a democratic nation that brought stability to the Middle East.It had not been proven that Iraq had acquired weapons of mass destruction. help asap please 3. (8 pts.) Renewable energy consumption in the United States (as a percentage of total energy consumption) can be approximated by f(x) = 9.7 ln x 16.5 where x = 15 corresponds to the year 2015. Round