Answer:
Nitride.
Explanation:
Have a good day, friend.
Which of the following correctly shows the relationship, in terms of number of particles, of the three substances?
A. 1 mole of water < 1 mole of helium < 1 mole of aluminum
B. 1 mole of aluminum = 1 mole of helium = 1 mole of water
C. 1 mole of aluminum < 1 mole of helium < 1 mole of water
D. 1 mole of helium < 1 mole of aluminum < 1 mole of water
The correct option which shows the relation between particles of the three substances is 1 mole of aluminum = 1 mole of helium = 1 mole of water.
What is a particle?
A particle is a small part of matter.
The term refers to particles of all sizes, ranging from subatomic particles like electrons to visible particles like dust particles floating in sunlight.
The relationship of a number of particles of the substance can be calculated by Avogadro's law
Thus, the correct option is B. 1 mole of aluminum = 1 mole of helium = 1 mole of water
Learn more about particles
https://brainly.com/question/1685421
Why do you think the different heating process result in different softness or hardness of the steel? Think about what steel is made of and how the atoms move .
Explanation:
Different heating process affect the microstructure of the steel in different ways. Thus, imparting different properties to the steel. For example, annealing is done is done to impart softness to steel, hardening is done to hardened the steel( eg: carburizing, nitriding, cyaniding) whereas tempering is done to improve the ductility of the steel.
Steel mainly contains iron and carbon. This percentage of carbon and iron decides the property of the steel. It is the % of carbon which is altered in different heating process that to obtained the desire microstructure in steel.
Which of the following is true about the electron configurations of the noble gases?
A) The highest occupied s and p shells are completely filled.
B) The highest occupied s and p shells are partially filled.
C) The electrons with the highest energy are in a d sublevel.
D) The electrons with the highest energy are in an f sublevel.
what do you mean by calcination??
Answer:
Calcination refers to heating a solid to high temperatures in absence of air or oxygen, generally for the purpose of removing impurities or volatile substances.
Explanation:
hope it helps
A breeder reactor is one type of nuclear reactor. In a breeder reactor, uranium-238 is transformed in a series of nuclear reactions into plutonium-239.
The plutonium-239 can undergo fission as shown in the equation below. The X represents a missing product in the equation.
Compare the amount of energy released by completely fissioned plutonium-239 to the amount of energy released by the complete combustion of the same amount of coal.
Answer:hope this help
Explanation:
idoine would have chemical properties most like ?
Which of these best describes a scientific law?
• a rule made by a government
• a rule that does not depend on observable evidence
• a statement which varies under the same conditions
• a statement about how things act in the natural world
What is the percent by mass of Nitrogen in Mg(NO3)2?
Answer:
18.888%
Explanation:
How many atoms of beryllium are equal to 0.39 moles of beryllium?
Answer:
2.35 x 10²³atoms
Explanation:
Given parameters:
Number of moles of Be = 0.39moles
Unknown:
Number of atoms = ?
Solution:
To solve this problem:
1 mole of a substance contains 6.02 x 10²³ atoms
0.39 mole of Be will contain 0.39 x 6.02 x 10²³ = 2.35 x 10²³atoms
Which elements are common to all organisms? Which ones apply??
A.sodium
B.oxygen
C. Sulfur
D. Hydrogen
E. iron
F. phosphorus
Answer:
B D
Explanation:
hope this is right but not entirely sure
Which statement describes the motion of the sun?
The sun rotates at the same rate throughout.
The sun does not rotate at its poles.
Different parts of the sun rotate at different rates.
The sun does not rotate at its equator.
Answer: Different parts of the sun rotate at different rates.
Explanation:
The statement that best describes the motion of the sun is that different parts of the sun rotate at different rates.
First and foremost, we should note that the rotation of the sun is on its axis and also the sun isn't a solid. Due to this, its motion will be that there'll be rotation of different part of it at different rates. Assuming the sun was solid, then all of its parts will move together.
Answer:
Different parts of the sun rotate at different rates.
Explanation: pic proof
what is one example of a electromagnetic wave
Answer:
Examples of EM waves are radio waves, microwaves, infrared waves, X-rays, gamma rays, etc.
Answer:
Electromagnetic waves can be split into a range of frequencies. This is known as the electromagnetic spectrum. Examples of EM waves are radio waves, microwaves, infrared waves, X-rays, gamma rays, etc.
Explanation:
What happens when the compound Mgo is formed? (5 points)
Oxygen transfers two electrons to magnesium.
Oxygen receives two electrons from magnesium.
Magnesium forms an ion with -1 charge; oxygen forms an ion with +1 charge.
Magnesium forms an ion with +1 charge; oxygen forms an ion with -1 charge.
Answer:
Oxygen receives two electrons from magnesium.
Explanation:
Hello!
In this case, considering the chemical reaction by which magnesium oxide is produced:
[tex]2Mg+O_2\rightarrow 2MgO[/tex]
In that case, if we show up the oxidation states, we have:
[tex]2Mg^0+O_2\rightarrow 2Mg^{2+}O^{2-}[/tex]
In such a way, since metals, like magnesium, have the capacity to lose electrons, rather than receive them, we infer why it turns out with +2 rather than -2; thus, we the correct answer is "oxygen receives two electrons from magnesium." because it results with -2 in MgO.
Best regards!
Answer:
Oxygen receives two electrons from magnesium.
Explanation:
The picture below shows the positions of the Earth, Moon, and Sun during an eclipse.
What is true of the eclipse shown in the picture?
A.
It is a lunar eclipse, in which the Earth casts a shadow on the Moon.
B.
It is a solar eclipse, in which the Earth casts a shadow on the Moon.
C.
It is a lunar eclipse, in which the Moon casts a shadow on the Earth.
D.
It is a solar eclipse, in which the Moon casts a shadow on the Earth.
Answer:
it is option c liner eclipse
Answer:
A-It is a lunar eclipse, in which the Earth casts a shadow on the Moon.
How do you draw a lewis structure?
Answer:
How to Draw a Lewis Structure.
Step 1: Find the Total Number of Valence Electrons.
Step 2: Find the Number of Electrons Needed to Make the Atoms "Happy".
Step 3: Determine the Number of Bonds in the Molecule.
Step 4: Choose a Central Atom.
Step 5: Draw a Skeletal Structure.
Step 6: Place Electrons Around Outside Atoms.
Explanation:
Hope this helped! :)
Balance the Chemical Equations
Rb + RbNO3---> Rb2O + N2
please help me
Answer:
10Rb° + 2RbNO₃ => 6Rb₂O + N₂
Explanation:
Given: Rb° + RbNO₃ => Rb₂O + N₂
=> 1st balance rubidium in RbNO₃ against Rb₂O by inserting a '2' coefficient before RbNO₃ and a '6' coefficient before Rb₂O
=> Rb° + 2RbNO₃ => 6Rb₂O + N₂ => Oxygen and Nitrogen are balanced. All that remains is balancing Rb by inserting a '10' coefficient.
=> 10Rb° + 2RbNO₃ => 6Rb₂O + N₂
Note: In balancing chemical equations, saving an element that is not part of a compound until last frequently gives balance by inspecting the number of elements of the specific kind and boosting its coefficient to balance the equation.
Balanced equation => 10Rb° + 2RbNO₃ => 6Rb₂O + N₂
The balanced chemical reaction can be of the equation given is [tex]2Rb + RbNO_3 - > Rb_2O + N_2[/tex].
We need to make sure that the amount of atoms of each element is the same on both sides of the equation in order to balance the chemical equation [tex]Rb + RbNO_3- > Rb_2O + N_2[/tex].
By counting the atoms in each element, we may begin to balance the equation. We have one Rb, one Rb, one N, and three O atoms on the left side. We have two Rb, one N, and two O atoms on the right side.
We can add a coefficient of 2 in front of [tex]RbNO_3[/tex] to balance the Rb atoms, which gives us:
[tex]2Rb + RbNO_3 - > Rb_2O + N_2[/tex]
Thus, now, the equation is balanced with two Rb atoms on both sides.
For more details regarding chemical reaction, visit:
https://brainly.com/question/34137415
#SPJ6
Two cars travel next to each other. One speedometer reads
20 meters per second and the other reads 72 kilometers per
hour. If arrows represent speed, which pair of arrows
represents the relationship of speeds of these two cars?
The blue arrow is always the 20 meters per second car.
PLEASE HELP
Answer:
The pair of arrows which represents the relationship of speeds of the two cars is;
The second option as shown in the attached drawing
Explanation:
The given parameters are;
The reading on the speedometer of one car = 20 m/s
The reading on the speedometer of the other car = 72 km/h = 20 m/s
The blue arrow = 20 m/s
Therefore, given that the speeds of both cars are equal (20 m/s = 72 km/h = 20 m/s), the pair of arrows that represent the relationship of speeds of the two cars is two equal length blue arrows which is the second option
The attached diagram showing the pair of arrows that represents the relationship of speeds of the two cars is drawn using Microsoft Visio.
i need help asap!! i will give brainliest
BRAINLIEST PLEASEEE HELPLP 5. In a lab experiment, 2.5 grams of sodium bicarbonate is heated and decomposed into
sodium carbonate, carbon dioxide, and water vapor when heated. The actual yield of
sodium carbonate produced in the experiment is 2.04 grams. The theoretical yield of
each product is recorded in the data table below.
Using this data, determine the percent yield for sodium carbonate?
(Round Your Answer to the Nearest Whole Number)
Answer:
Explanation:
Sodium bicarbonate,
NaHCO
3
, will decompose to form sodium carbonate,
Na
2
CO
3
, water, and carbon dioxide,
CO
2
2
NaHCO
3(s]
→
Na
2
CO
3(s]
+
CO
2(g]
+
H
2
O
(g]
Notice that you have a
2
:
1
mole ratio between sodium bicarbonate and sodium carbonate. This means that the reaction will produce half as many moles of the latter than whatever number of moles of the former underwent decomposition.
Use sodium carbonate's molar amss to determine how many moles you'd get in that sample
0.685
g
⋅
1 mole NaHCO
3
84.007
g
=
0.008154 moles NaHCO
3
Now, if the reaction were to have a
100
%
yield, it would produce
0.008154
moles NaHCO
3
⋅
1 mole Na
2
CO
3
2
moles NaHCO
3
=
0.004077 moles Na
2
CO
3
Use the molar mass of sodium carbonate to determine how many grams would contain this many moles
0.004077
moles
⋅
105.99 g
1
mole
=
0.4321 g Na
2
CO
3Sodium bicarbonate,
NaHCO
3
, will decompose to form sodium carbonate,
Na
2
CO
3
, water, and carbon dioxide,
CO
2
2
NaHCO
3(s]
→
Na
2
CO
3(s]
+
CO
2(g]
+
H
2
O
(g]
Notice that you have a
2
:
1
mole ratio between sodium bicarbonate and sodium carbonate. This means that the reaction will produce half as many moles of the latter than whatever number of moles of the former underwent decomposition.
Use sodium carbonate's molar amss to determine how many moles you'd get in that sample
0.685
g
⋅
1 mole NaHCO
3
84.007
g
=
0.008154 moles NaHCO
3
Now, if the reaction were to have a
100
%
yield, it would produce
0.008154
moles NaHCO
3
⋅
1 mole Na
2
CO
3
2
moles NaHCO
3
=
0.004077 moles Na
2
CO
3
Use the molar mass of sodium carbonate to determine how many grams would contain this many moles
0.004077
moles
⋅
105.99 g
1
mole
=
0.4321 g Na
2
CO
3
By using the given data, the percent yield for sodium carbonate (Na₂CO₃) is equal to 127.
How to calculate percent yield?Percent yield of any data can be calculated as:
% yield = (Actual value / Theoretical value) × 100
In the question actual yield of sodium carbonate is given, which is equal to 2.04 grams. And in the table theoretical yield of sodium carbonate also given, which is equal to 1.60 grams.
Now putting these value in the above equation, we get:
% yield = (2.04 / 1.60) × 100 = 127
Hence, percent yield of sodium carbonate (Na₂CO₃) is 127.
To learn more about percent yield, visit the below link:
https://brainly.com/question/11963853
Increased human population will most likely have which consequence? *
A: decrease global warning
B: increase the use of fossil fuels
C: increase animal habits
D:replenish Fish species in our Ocean
Please help with my homework
Answer:
B its most likely sorry if im wrong :D :(
Explanation:
10 While a student is holding a piece of metal in her hand, her hand gets colder. What happens to the temperature of the metal? * m (6 Points) A. The piece of metal will get warmer because some thermal energy is transferred from the metal to the student's hand. B. The piece of metal will get warmer because some thermal energy is transferred from the student's hand to the ON metal. C. The piece of metal will stay at the same temperature because an equal amount of thermal energy is exchanged between the student's hand and the metal. D. The piece of metal will stay at the same temperature because thermal energy is not transferred between the student's hand and the metal.
Answer:
B
Explanation:
thermal energy is the energy between one object to another
If we react 5.4g of sodium chloride with an unknown amount of fluorine gas, we produce 4.9g of sodium fluoride and 3.7g chlorine gas. How much fluorine was consumed in the reaction?
Answer:
4.43 g
Explanation:
The reaction between sodium chloride and flourine gas is given as;
NaCl + F2 --> NaF + Cl2
From the stochiometry of the equation;
1 mol of NaCl reacts eith 1 mol of F2 to form 1 mol of NaF and Cl2
Mass of 1 mol of F2 = 38g
Mass of 1 mol of sodium flouride, NaF = 42g
This means 38g of flourine reacted with NaCl to form 42g of NaF
xg of F2 would form 4.9g of NaF
38 = 42
x = 4.9
x = 4.9 * 38 / 42
x = 4.43 g
How does the following equation demonstrate the law of conservation of mass? 22 + 2 → 22
A. The number of atoms of each element is the same on the reactant side as the product side.
B. The number of atoms on the reactant side is more than the number of atoms on the product side.
C. The number of water molecules is the same on the reactant and product side.
D. The number of atoms on the reactant side is less than the number of atoms on product side.
Answer:
A. The number of atoms of each element is the same on the reactant side as the product side.
Explanation:
The equation demonstrates the law of conservation of mass in such a way that the number of atoms of each element is the same on the reactant side as the product side.
According to the law of conservation of mass "matter is neither created nor destroyed in a chemical reaction but they are changed from one form to another".
By virtue of this, the number of moles of atoms on both sides of the expression must be the same.The diagram represents the path of a ball that has been thrown upward. Discuss how the kinetic energy (KE), gravitational potential energy (GPE), and total mechanical energy (ME) change between points A (where the ball is thrown from), B (the highest point reached by the ball), and C (where the ball hits the ground). Ignore friction between the ball and the air. (3 points)
Answer:
Gravitational potential energy: [tex]GPE_{B}>GPE_{A}>GPE_{C}[/tex]
Kinetic energy: [tex]KE_{B}<KE_{A}<KE_{C}[/tex]
Total mechanical energy: [tex]ME_{A}=ME_{B}=ME_{C}[/tex]
Explanation:
The gravitational potential energy is directly proportional to height ([tex]GPE_{B}>GPE_{A}>GPE_{C}[/tex]). Since there are no non-conservative forces, the total mechanical energy is conserved ([tex]ME_{A}=ME_{B}=ME_{C}[/tex]) and the total mechanical energy is the sum of gravitational potential and kinetic energies. Then:
[tex]GPE_{A} + KE_{A} = GPE_{B} + KE_{B} = GPE_{C} + KE_{C}[/tex] (1)
If we know that [tex]GPE_{B}>GPE_{A}>GPE_{C}[/tex], then we conclude the following inequation for the kinetic energy:
[tex]KE_{B}<KE_{A}<KE_{C}[/tex] (2)
In two or more complete sentences describe all of the van der Waals forces that exist between molecules of water.
Answer:
Van der Waals forces is defined as the force that include attraction and repulsions between atoms or molecules, and also involve intermolecular forces
Vander Waals force formed between the similar molecules and not different molecules, that means Van der Waals force exist between two water molecules and not between hydrogen and oxygen of one molecule. Hydrogen and oxygen are connected with covalent bonds.
If a sample of gas of valume 605 mL and temperature of 39 OC, has 0,00803 moles. What is it’s pressure?
Answer: The pressure of the gas is 0.34 atm
Explanation:
According to ideal gas equation:
[tex]PV=nRT[/tex]
P = pressure of gas = ?
V = Volume of gas = 605 ml = 0.605 L (1L=1000ml)
n = number of moles = 0.00803
R = gas constant =[tex]0.0821Latm/Kmol[/tex]
T =temperature =[tex]39^0C=(39+273)K=312K[/tex]
[tex]P=\frac{nRT}{V}[/tex]
[tex]P=\frac{0.00803\times 0.0821 L atm/K mol\times 312K}{0.605L}=0.34atm[/tex]
The pressure of the gas is 0.34 atm
Meiosis goes through 2 divisions to create four unique haploid cells. true or false
Answer:
True
Explanation:
True is the ANSWER.
9) Given the reaction: N2(g) + O2(g) + 182.6 kJ → 2 NO(g) What is the heat of formation of nitrogen (II) oxide in kJ/mole? A) AH = -182.6 B) AH = -91.3 C) AH = 91.3 Show D) AH = 182.6
PLEASE HELP please
The heat of formation of nitrogen (II) oxide : +91.3 kJ/mol
Further explanationGiven
Reaction
N2(g) + O2(g) + 182.6 kJ → 2 NO(g)
Required
The heat of formation
Solution
In the above reaction, the heat of the reaction is located on the reactant side which indicates that the formation of nitric oxide requires heat (endothermic reaction).
In the above reaction the heat required to form 2 moles of NO, so the heat required for each mole is:
+182.6 kJ : 2 = =+91.3 kJ/mol
1. How is the atom count for each element on the reactant side of a balanced chemical equation related to the atom count for each element on the product side of the same equation?
Answer: The atom count for each element on the reactant side of a balanced chemical equation is equal to the atom count for each element on the product side of the same equation
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products formed must be equal to the mass of reactants taken.
In order to get the same mass on both sides, the atoms of each element must be balanced on both sides of the chemical equation.
[tex]2H_2+O_2\rightarrow 2H_2O[/tex]
Thus there are 4 atoms of hydrogen on reactant as well as product side.
Also there are 2 atoms of oxygen on reactant as well as product side.
Thomson's plum pudding model of the atom was most directly replaced or refuted by
a. Rutherford's discovery that atoms contain a nucleus
b. Chadwick's discovery of the neutron
c. Goldstein's discovery of protons
d. Democritus's idea that the atom is indivisible
Answer:
A. Rutherford's discovery that atoms contain a nucleus
Explanation:
Answer:
A is the answer
Explanation: