Answer:
357=10.5*4*x
8.5x
Step-by-step explanation:
357=10.5*4*x
357=42*x
8.5=x
The manager of a small convenience store does not want her customers standing in long too long prior to a purchase. In particular, she is willing to hire an employee for another cash register if the average wait time of the customers is more than five minutes. She randomly observes the wait time (in minutes) of customers during the day: 3.5 5.8 7.2 1.9 6.8 8.1 5.4 Assume x-bar = 5.53 and s = 0.67. What is the appropriate conclusion at a 5% significance level? a) A new employee does not need to be hired since: .05 < p-value < .10 b) A new employee needs to be hired since: .025 < p-value < .05 c) A new employee does not need to be hired since: .025 < p-value < .05 d) A new employee needs to be hired since: .01 < p-value < .025
The appropriate conclusion at a 5% significance level is that a new employee needs to be hired since the p-value is less than 0.05.
To test the hypothesis, we will use a one-sample t-test with a null hypothesis that the true population mean wait time is less than or equal to 5 minutes. The alternative hypothesis is that the true population mean wait time is greater than 5 minutes.
Using the given sample data, we calculate the sample mean (x-bar) as 5.53 and the sample standard deviation (s) as 0.67. The sample size is 7.
We calculate the t-statistic using the formula t = (x-bar - mu)/(s/sqrt(n)), where mu is the hypothesized population mean (5) and n is the sample size.
Substituting the values, we get t = (5.53 - 5)/(0.67/sqrt(7)) = 2.44.
Using a t-distribution table with 6 degrees of freedom (n-1), we find the p-value to be 0.03 for a one-tailed test. Since the p-value is less than the significance level of 0.05, we reject the null hypothesis and conclude that a new employee needs to be hired to reduce the average wait time.
For more questions like Sample mean click the link below:
https://brainly.com/question/31101410
#SPJ11
Claim. The standard deviation of pulse rates of adult males is less than 10 bpm. For a random samplo of 135 adult males, the pulse rates have a standard deviation of 9.2 bpm. Find the value of the tes
The value of the test statistics is 113.42.
To test the claim that the standard deviation of pulse rates of adult males is less than 10 bpm, we will use a chi-square test. Given a random sample of 135 adult males with a standard deviation of 9.2 bpm, let's find the value of the test statistic.
Step 1: State the null and alternative hypotheses.
H0: σ = 10 bpm (null hypothesis)
H1: σ < 10 bpm (alternative hypothesis)
Step 2: Determine the appropriate test statistic.
In this case, we will use the chi-square test statistic: χ² = (n-1)(s²/σ²), where n is the sample size, s is the sample standard deviation, and σ is the population standard deviation.
Step 3: Calculate the test statistic.
χ² = (135-1)(9.2²/10²) = (134)(84.64/100) = 134 * 0.8464 ≈ 113.42
The value of the test statistic is approximately 113.42. This value can be compared to the critical value from the chi-square distribution table with (n-1) degrees of freedom to determine whether to reject or fail to reject the null hypothesis.
Know more about test statistics here:
https://brainly.com/question/15110538
#SPJ11
pls help me i need to show work and i need it asap
(1) The two triangles are similar because they have equal angles.
(2) Triangle QRS is similar to triangle QLM because they have equal angles.
(3) Both triangles are similar and the value of x is 21.
What are the measure of the triangles?Two triangles are said to be similar if they have equal sides, equal angles or both.
The missing angles of the triangles for the question is calculated as;
Bigger triangle; missing angle = 180 - (44 + 46) = 90
Smaller triangle; missing angle = 90 - 46 = 44⁰
Both triangles are similar.
For the second question; triangle QRS is similar to triangle QLM because angle R is equal to angle L, and also they have common angle Q, which implies that angle S must be equal to angle L.
For third question, the triangles are similar because their corresponding angles are equal.
The value of x is calculated as;
48 + 4x + (180 - (56 + 76)) = 180 (sum of angles on a straight line)
48 + 4x + 48 = 180
4x = 84
x = 84/4
x = 21
Learn more about similar triangles here: brainly.com/question/27996834
#SPJ1
Enter your answer and show all the steps that you use to solve this problem in the space provided. Use the 30°-60°-90° Triangle Theorem to find the answer.
Answer:
x = 5√3, and y = 10.
In a 30°-60°-90° triangle, the length of the longer leg is √3 times the length of the shorter leg, and the length of the hypotenuse is twice the length of the shorter leg.
What is the median of the data set?
I will give Brainliest to the best answer only if it is Brainly Expert
A. 10
B. 8.5
C. 8
D. 9
Answer:
The answer to your problem is, A. 10
Step-by-step explanation:
So first add up all the total number of ‘ X ‘
Which is:
4 + 3 + 2 + 1 = 10
Technically 10 is our answer.
Thus the answer to your problem is, A. 10
Not a 100% sure
Answer:
5, 8, 8, 8, 8, 9, 9, 9, 10, 10
The median of this data set is 8.5, so the correct answer is B.
Step-by-step explanation:
Since there are 10 observations, we are looking for the number halfway between the two middle observations (observations #5 and #6) when the data are arranged in order. Here, observation #5 is 8, and observation #6 is 9, so the median of this data set is (8 + 9)/2 = 8.5. B is the correct answer.
PLEASE ANSWER QUICK!!!!! 45 POINTS
Find the probability of exactly one successes in five trials of a binomial experiment in which the probability of success is 5%
round to the nearest tenth
Answer:
We can use the formula for the probability mass function of a binomial distribution:
P(X = k) = (n choose k) * p^k * (1 - p)^(n-k)
Where:
n = number of trials
k = number of successes
p = probability of success
In this case, n = 5, k = 1, and p = 0.05. Plugging these values into the formula, we get:
P(X = 1) = (5 choose 1) * 0.05^1 * (1 - 0.05)^(5-1) ≈ 0.23
Rounding to the nearest tenth, the probability of exactly one success in five trials with a 5% probability of success is approximately 0.2 or 20%.
Step-by-step explanation:
Please help, check picture! Also please explain, I need to understand
I don’t even see triangles on the graph
Answer:
a first
Step-by-step explanation:
because I just don't
To find the volume of a rectangular prism, Harris multiplies the area of the base times the height. The area of the base is (x + 4) square inches for some value of x. The height is (2x + 3) inches. What is the volume, in cubic inches, of the rectangular prism? A2x² +12x
B2x² +11x +12
C2^2x + 7x+12
D11x
Answer:
The correct answer is option B: 2x^2 + 11x + 12 cubic inches
Step-by-step explanation:
The volume of a rectangular prism is given by the formula V = lwh, where l is the length, w is the width (or base), and h is the height of the prism.
Given that the area of the base is (x + 4) square inches and the height is (2x + 3) inches, we can substitute these values into the formula to find the volume:
V = (x + 4)(2x + 3)
Now, we can multiply the binomials using the distributive property:
V = 2x^2 + 3x + 8x + 12
V = 2x^2 + 11x + 12
So, the correct answer is option B: 2x^2 + 11x + 12 cubic inches.
Determine whether the following statement pattern is a tautology or a contradiction or contingency:(p→q)∨(q→p)
The given statement pattern is a tautology.
To determine whether the following statement pattern is a tautology, a contradiction, or a contingency: (p→q)∨(q→p), follow these steps:
1. Write out the truth table for p and q:
p | q
-----
T | T
T | F
F | T
F | F
2. Calculate the truth values for (p→q) and (q→p) using the implication rule (p→q is false only when p is true and q is false):
(p→q) | (q→p)
-----------
T | T
F | T
T | F
T | T
3. Finally, calculate the truth values for the given statement pattern (p→q)∨(q→p) using the disjunction rule (a disjunction is true if at least one of the statements is true):
(p→q)∨(q→p)
---------
T
T
T
T
Since the statement pattern (p→q)∨(q→p) is true for all possible truth values of p and q, it is a tautology.
Learn more about : Mathematical Reasoning - https://brainly.com/question/27935612
#SPJ11
To encourage a student in his work on rates and ratios, his teacher promises to pay him 70 cents for every correct problem he solves. However, for every problem where he gives an incorrect answer, the teacher will take 40 cents off him! Amazingly, at the end of 33 problems completed, neither owes anything to the other. So how many problems did the student solve correctly? Investigate this fully (give evidence) and clearly show how you arrive at your solution.
Answers only will be awarded O marks
The student solved 12 problems correctly.
To find out how many problems the student solved correctly, we can use the given information and set up an equation using the terms "correct problems" and "incorrect problems."
Let x represent the number of correct problems and y represent the number of incorrect problems. We know the following:
1. The total number of problems completed is 33, so x + y = 33.
2. The teacher pays 70 cents for correct problems and takes 40 cents for incorrect problems, and neither owes anything to each other. So, 70x - 40y = 0.
Now, we'll solve this system of equations step-by-step:
Step 1: Solve the first equation for x: x = 33 - y.
Step 2: Substitute the expression for x in the second equation: 70(33 - y) - 40y = 0.
Step 3: Simplify and solve for y: 2310 - 70y - 40y = 0 => 2310 - 110y = 0 => y = 21.
Step 4: Substitute the value of y back into the equation for x: x = 33 - 21 => x = 12.
Learn more Substitute Problems: https://brainly.com/question/22340165
#SPJ11
Determine the equation of any asymptotes in the graph of : (Help!ASAP!)
F(x)= x+3/ x^2-x-12
(Steps by steps)
The equations of the asymptotes for the graph of F(x) are Vertical asymptote at x = 4 and Horizontal asymptote at y = 0.
To find the equations of the asymptotes, we need to examine the behavior of the function as x gets very large or very small.
First, let's factor the denominator of the function
F(x) = (x + 3) / (x - 4)(x + 3)
Notice that (x + 3) appears in both the numerator and denominator, and therefore can be cancelled out, leaving
F(x) = 1 / (x - 4)
Now, as x gets very large or very small, the value of F(x) approaches 0. However, we can see that as x approaches 4, the denominator of F(x) approaches 0, which means F(x) approaches infinity or negative infinity, depending on which side of x = 4 we approach from.
Therefore, we have a vertical asymptote at x = 4.
To find any horizontal asymptotes, we need to examine the behavior of the function as x approaches infinity or negative infinity. Since the degree of the numerator and denominator are the same (both 1), we can find the horizontal asymptotes by looking at the ratio of the leading coefficients
F(x) = (x + 3) / (x - 4)(x + 3)
As x approaches infinity or negative infinity, the denominator becomes dominated by the highest degree term, x². Therefore
F(x) ≈ (1/x²) / (1 - 4/x + 3/x²)
As x approaches infinity or negative infinity, the terms with x in the denominator become negligible compared to the constant term. Therefore
F(x) ≈ (1/x²) / (1 + 0 + 0) = 1/x²
Thus, we have a horizontal asymptote at y = 0.
To know more about asymptote here
https://brainly.com/question/28882234
#SPJ1
write the radicand as the product of a perfect cube first and a factor that does not contain a perfect cube (second)
The number or expression underneath the top line of the symbol is called the radicand. The cube root symbol is a grouping symbol, meaning that all operations in the radicand are grouped as if they were in parentheses.
To write the radicand as the product of a perfect cube (first) and a factor that does not contain a perfect cube (second), follow these steps:
1. Identify the radicand in the given expression. The radicand is the number or expression inside the cube root symbol.
2. Determine the prime factors of the radicand by breaking it down into its smallest prime factors.
3. Group the prime factors into sets of three identical factors. These sets will form the perfect cube factors.
4. Multiply the sets of three factors together to form the perfect cube part of the product.
5. Multiply any remaining factors together to form the factor that does not contain a perfect cube.
6. Write the radicand as the product of the perfect cube (step 4 result) and the factor that does not contain a perfect cube (step 5 result).
Learn more about radicand: https://brainly.com/question/8952483
#SPJ11
Find m∠T in parallelogram QRST.
The unknown angle of the parallelogram is as follows:
m∠T = 63 degrees
How to find the angle of a parallelogram?A parallelogram is a quadrilateral with opposite sides parallel to each other and opposite congruent to each other.
Therefore, the opposite angles of a parallelogram are equal. Consecutive angles are supplementary angles to each other.
Hence,
10w + 53 + 17w + 100 = 180
27w + 153 = 180
27w = 180 - 153
27w = 27
divide both sides by 27
w = 27 / 27
w = 1
Therefore,
m∠T = 10(1) + 53 = 63 degrees
learn more on parallelograms here: https://brainly.com/question/31533465
#SPJ1
Determine 5^903 (mod60) and 17^342 (mod5)
The final value is 4 (mod5)
Hence, 17^342 ≡ 2^342 ≡ 4 (mod5).
To find 5^903 (mod60), we can use Euler's totient function. Since 60 = 2^2 × 3 × 5, we have φ(60) = 2^1 × 3^1 × 4 = 24. Therefore, we can use Euler's theorem to write:
5^24 ≡ 1 (mod60)
Raising both sides to the power of 37, we get:
5^(24*37) ≡ 1^37 ≡ 1 (mod60)
So 5^888 ≡ 1 (mod60).
Now, we can write:
5^903 = 5^888 * 5^15
Since 5^888 ≡ 1 (mod60), we just need to find 5^15 (mod60).
To do this, we can use the repeated squaring method. Writing 15 in binary form, we have:
15 = 1111 (in binary)
So we can compute:
5^1 ≡ 5 (mod60)
5^2 ≡ 25 (mod60)
5^4 ≡ 25^2 ≡ 25 (mod60)
5^8 ≡ 25^2 ≡ 25 (mod60)
Therefore:
5^15 ≡ 5^8 * 5^4 * 5^2 * 5^1 ≡ 25 * 25 * 25 * 5 ≡ 25 (mod60)
Hence, 5^903 ≡ 5^15 ≡ 25 (mod60).
To find 17^342 (mod5), we can use the fact that 17 ≡ 2 (mod5). Therefore:
17^342 ≡ 2^342 (mod5)
Using the repeated squaring method again, we can compute:
2^1 ≡ 2 (mod5)
2^2 ≡ 4 (mod5)
2^4 ≡ 1 (mod5)
Therefore:
2^342 ≡ 2^2 * (2^4)^85 ≡ 4 * 1^85 ≡ 4 (mod5)
Hence, 17^342 ≡ 2^342 ≡ 4 (mod5).
To learn more about Raising visit:
https://brainly.com/question/28568593
#SPJ11
10) How many distinguishable permutations are there for the word sleepless
The word "sleepless" has 8 letters. To find the number of distinguishable permutations, we can use the formula for permutations of a set with no repeated elements, which is n!, where n is the number of elements.
Therefore, the number of permutations for the word "sleepless" can be calculated as 8!, which is equal to 40,320. This means that there are 40,320 different ways we can arrange the letters in the word "sleepless" while keeping all the letters distinct.
Note that if the word had repeated letters, we would have to divide the result by the factorials of the number of times each letter was repeated.
Use the data given in the table below to compute the probability that a randomly chosen voter from the survey will satisfy the following. Round to the nearest hundredth.
The voter is under 50 years old.
The probability that a randomly chosen voter from the survey is under 50 years old is 0.75
Computing the probability of randomly chosen a voterFrom the question, we have the following parameters that can be used in our computation:
The table of values
Where we have
Voters under 50 years old = 847 + 804 + 773
Total = 3228
So, the required probability is
P = (847 + 804 + 773)/3228
Evaluate
P = 0.75
Hence, the probability is 0.75
Read more about probability at
https://brainly.com/question/24756209
#SPJ1
Consider an electric circuit with an inductance of 0.05 henry, a resistance of 20 ohms, a condenser of capacitance of 100 micro farads and an emf of E = 100 volts. Find I and Q given the initial conditions Q = 0; I = 0 at t = 0
To solve for I and Q in this electric circuit, we can use the equations for the charge and current in a series RL circuit with a capacitor:
Q = CV(1 - e^(-t/RC))
I = (E/R)e^(-t/tau) + (Q/R) where tau = L/R
Plugging in the given values, we have:
Q = (100 micro farads)(100 volts)(1 - e^(-t/(20 ohms)(0.05 henry)))
I = (100 volts/20 ohms)e^(-t/(0.05 henry/20 ohms)) + Q/20 ohms
Using the initial conditions Q = 0 and I = 0 at t = 0, we can simplify the equations to:
Q = 100 micro farads * 100 volts * (1 - e^(-t/1 millisecond))
I = (100 volts/20 ohms)e^(-t/1 millisecond)
So at t = 1 millisecond, we have:
Q = 100 micro farads * 100 volts * (1 - e^(-1))
≈ 42.36 microcoulombs
I = (100 volts/20 ohms)e^(-1)
≈ 1.831 amperes
Therefore, at t = 1 millisecond, the charge on the capacitor is about 42.36 microcoulombs and the current in the circuit is about 1.831 amperes.
https://brainly.com/question/31564505
#SPJ11
Approximate the number to the nearest integer and tenth.
-√7
Estimating the square root of the number -√7 gives -2 and -2.6
Estimate the square root of the numberFrom the question, we have the following parameters that can be used in our computation:
-√7
To estimate the number is to approximate the number
When the square root of 7 is evaluated, we have
-√7 = -2.64575131106
Approximate to the nearest integer
-√7 = -2
Approximate to the nearest tenth.
-√7 = -2.6
Hence, the estimates are -2 and -2.6
Read more abot expression at
brainly.com/question/15775046
#SPJ1
M is the midpoint of PQ. the diameter of circle O is 13 in. and RM = 4 in. Find PM
The PM of the circle is 6 in.
How to find the PM of the circle?Since the diameter of the circle divide the circle into two equal parts. We can say:
PM = MQ
Applying the Intersecting Chord Theorem (When two chords intersect each other inside a circle, the products of their segments are equal). That is:
SM * RM = PM * MQ
SM * RM = PM²
SM = 13 - 4
SM = 9 in
RM = 4 in
Substituting:
SM * RM = PM²
9 * 4 = PM²
PM² = 36
PM = √36
PM = 6 in
Learn more about circle on:
https://brainly.com/question/31533348
#SPJ1
n² + n² + n² for n = -1
I need it fasttt
Substituting n = -1 in the given expression, we get:
n² + n² + n² for n = -1
= (-1)² + (-1)² + (-1)²
= 1 + 1 + 1
= 3
Therefore, n² + n² + n² for n = -1 is equal to 3.
Which is the most accurate way to estimate 74% of 57?
Answer:
74% is about 75%, or 3/4.
57 is about 60.
So 74% of 57 is about 3/4 of 60, or 45.
74% of 57 is .74 × 57 = 42.18, so the estimate seems reasonable
Answer:
42.18
Step-by-step explanation:
[tex]\frac{57*74}{100} = 42.18[/tex]
A triangle is shown with its exterior angles. The interior angles of the triangle are angles 2, 3, 5. The exterior angle at angle 2 is angle 1. The exterior angle at angle 3 is angle 4. The exterior angle at angle 5 is angle 6. Which statements are always true regarding the diagram? Select three options. m∠5 + m∠3 = m∠4 m∠3 + m∠4 + m∠5 = 180° m∠5 + m∠6 =180° m∠2 + m∠3 = m∠6 m∠2 + m∠3 + m∠5 = 180°
The statements that are true about the triangle are
a) m∠5 + m∠6 = 180°
b) ∠ 2+ ∠ 3 = ∠ 6
c) m∠2 + m∠3 + m∠5 = 180°
Given data ,
Let the triangle be represented as ΔABC
Now , An exterior angle of a triangle is equal to the sum of the opposite interior angles.
For Exterior ∠ 1 we have
∠ 1 = ∠ 5 + ∠ 3 ( Exterior angle Property of Triangle )
Similarly,
For Exterior ∠ 4 we have
∠ 4 = ∠ 5 + ∠ 2 ( Exterior angle Property of Triangle )
Similarly,
For Exterior ∠ 6 we have
∠ 6 = ∠ 2 + ∠ 3 ( Exterior angle Property of Triangle )
From the triangle sum property , we get
Ina triangle sum of the measures of angles is equal to 180°
m∠2 + m∠3 + m∠5 = 180°
Hence , the triangle is solved
To learn more about triangles click :
https://brainly.com/question/16739377
#SPJ1
The complete question is attached below :
A triangle is shown with its exterior angles. The interior angles of the triangle are angles 2, 3, 5. The exterior angle at angle 2 is angle 1. The exterior angle at angle 3 is angle 4. The exterior angle at angle 5 is angle 6. Which statements are always true regarding the diagram? Select three options.
m∠5 + m∠3 = m∠4
m∠3 + m∠4 + m∠5 = 180°
m∠5 + m∠6 =180°
m∠2 + m∠3 = m∠6
m∠2 + m∠3 + m∠5 = 180°
The first three terms of a sequence are given. Round to the nearest thousandth (if necessary). find the 7th term 18,6,2
The 7th term of the sequence is 0.297
We have,
To find the 7th term, we need to know the common ratio.
We can find the common ratio by dividing any term by the previous term.
Common ratio = 6/18 = 1/3
Now we can use the formula for the nth term of a geometric sequence:
[tex]a_n = a_1 \times r^{n-1}[/tex]
where a(1) is the first term and r is the common ratio.
So, for this sequence:
a(1) = 18
r = 1/3
To find the 7th term:
a(7) = 18 x (1/3)^{7 - 1}
= 0.297
Rounding to the nearest thousandth:
Thus,
The 7th term of the sequence is 0.297
Learn more about geometric sequence here:
https://brainly.com/question/2321576
#SPJ1
Complete the following description for a graph that shows the distance Sam travels over time when she
runs at a constant rate.
A line that starts at
with a constant (select)
slope.
D
A line starts at 0 with a constant positive slope.
The graph that shows the distance Sam travels over time is given below.
Here the graph starts at the point (0, 0).
So the line starts at 0.
Now the line is moving in such a way that as time increases, the distance travelled also increases.
So the slope is positive.
Hence the complete description is that line starts at 0 with a constant positive slope.
Learn more about Slope here :
https://brainly.com/question/16180119
#SPJ1
Multiply: (3x−5)(−x+4)
Applying the distributive property, the expression becomes (3x)(−x)+(3x)(4)+(−5)(−x)+(−5)(4).
What is the simplified product in standard form?
x2+
x+
Answer:
-3x^2 + 12x + 5x - 20 = -3x^2 + 17x - 20
Step-by-step explanation:
(-3x - 5)(-x + 4) is a binomial expression, where (-3x - 5) is one expression and (-x + 4) is the other.
As the text eludes to, we can multiply binomial expressions using the FOIL method, where you multiply the first terms (3x and -x), outer terms (3x and 4), the inner terms (-5 and -x), and the last terms (-5 and 4)
This is how you get
(3x)(-x) + (3x)(4) + (-5)(-x) + (-5)(4)
Now, multiply the terms and combine like terms:
[tex](3x)(-x)+(3x)(4)+(-5)(-x)+(-5)(4)\\-3x^2+12x+5x-20\\-3x^2+17x-20[/tex]
In the diagram below, QP is tangent to a circle with the centre O. Rs is a straight line. T is a point on the circle. PS bisects TPQ and SPQ=22°
Answer:
In the given diagram, QP is tangent to a circle with centre O, RS is a straight line, T is a point on the circle, and PS bisects TPQ. We know that SPQ = 22°. Let's try to find out the value of the angle TPQ.
Since QP is tangent to the circle, the angle between RS and QP (i.e., angle RQP) is equal to the angle between QP and the radius drawn to the point of tangency (i.e., angle QOT). So, we can say that:
angle RQP = angle QOT
Also, since PS bisects TPQ, we can say that:
angle TPS = angle TPQ / 2
Now, let's consider the triangle TPQ. We know that:
angle TPQ + angle TQP + angle PTQ = 180° [Sum of angles in a triangle]
Substituting the values we have:
angle TPQ + angle TQP + (angle TPS + angle SPQ) = 180°
angle TPQ + angle TQP + (angle TPQ/2 + 22°) = 180°
Multiplying both sides by 2 to eliminate the fraction:
2(angle TPQ) + 2(angle TQP) + angle TPQ + 44° = 360°
Simplifying:
3(angle TPQ) + 2(angle TQP) = 316°
We don't know the values of angle TPQ and angle TQP, so we can't solve this equation exactly. However, we do know that these angles are both less than 180° (since they are angles in a triangle). Therefore, we can try some values for angle TPQ (let's call it x) and see if we can find a corresponding value for angle TQP that satisfies the equation.
If we take x = 40°, then we get:
3(40°) + 2(angle TQP) = 316°
120° + 2(angle TQP) = 316°
2(angle TQP) = 196°
angle TQP = 98°
Now, we can use the fact that angle TPS = angle TPQ / 2 to find angle TPS:
angle TPS = x/2 = 20°
Finally, we can use the fact that PS bisects TPQ to find angle PQT:
angle PQT = angle TPS
Step-by-step explanation:
Given the demand function is D(x) = (x - 5)^2 and supply function is S(x) = x^2 + x + 3. Find each of the following: a) The equilibrium point. B) The consumer surplus at the equilibrium point. Explain what the answer means in a complete sentence using the definition of consumer surplus. C) The producer surplus at the equilibrium point. Explain what the answer means in a complete sentence using the definition of producer surplus
a) The equilibrium point is x = 2 or x = 8
b) The consumer surplus equilibrium point is $6,062.67
c) The producer surplus equilibrium point is $13,208.67
a) To find the equilibrium point, we need to set the demand function equal to the supply function and solve for x:
D(x) = S(x)
[tex](x - 5)^2 = x^2 + x + 3[/tex]
Expanding the left side and simplifying, we get:
[tex]x^2 - 10x + 22 = 0[/tex]
Using the quadratic formula, we get:
[tex]x = (10[/tex] ± [tex]\sqrt{36})/ 2[/tex]
[tex]x = 5[/tex] ± [tex]3[/tex]
[tex]x = 2[/tex] or [tex]x = 8.[/tex]
b) To find the consumer surplus at the equilibrium point, we need to calculate the area under the demand curve and above the equilibrium price, which is given by the supply curve. Since we have two possible equilibrium points, we need to check both of them to see which one gives us a positive consumer surplus.
For [tex]x = 2[/tex], the equilibrium price is given by [tex]S(2) = 11[/tex], which is above the demand curve. Therefore, there is no consumer surplus at this equilibrium point.
For [tex]x = 8[/tex], the equilibrium price is given by [tex]S(8) = 75[/tex], which is below the demand curve. Therefore, the consumer surplus is given by the area under the demand curve and above the price of 75:
[tex]∫[75, 8] (x - 5)^2 dx = [(x - 5)^3 / 3][/tex] from 8 to 75
≈[tex]6,062.67[/tex]
This means that at the equilibrium point x = 8, consumers are willing to pay a total of approximately $6,062.67 more than what they actually pay.
c) To find the producer surplus at the equilibrium point, we need to calculate the area under the equilibrium price and above the su
For x =2 supply curve. Again, since we have two possible equilibrium points, we need to check both of them to see which one gives us a positive producer surplus.
2, the equilibrium price is given by [tex]S(2) = 11,[/tex] which is above the demand curve. Therefore, there is no producer surplus at this equilibrium point.
For x = 8, the equilibrium price is given by[tex]S(8) = 75[/tex], which is below the demand curve. Therefore, the producer surplus is given by the area above the supply curve and below the price of 75:
∫[tex][8, 75] (75 - x^2 - x - 3) dx = [(75x - x^3/ 3 - x^2 / 2 - 3x)][/tex] from 8 to 75
≈ [tex]13,208.67[/tex]
This means that at the equilibrium point x = 8, producers receive a total of approximately $13,208.67 more than their costs.
To learn more about equilibrium point visit:
https://brainly.com/question/17431835
#SPJ4
Year-round-Recreation sells recreation vechiles (cross country motorcycles to snowmobiles) and has total costs given by
C(e) 2750+30x+2
and the total revenues for Year-round-Recreation is given by
R(z) = 135x
Find the x-values of the break-even points.
The break-even x-value(s) are (separate by commas - order does not matter)
The break-even x-value for Year-round-Recreation is approximately 26.19.
To find the break-even points for Year-round-Recreation, we need to set the total costs equal to total revenues and solve for x. In this case, the total costs are given by C(x) = 2750 + 30x + 2, and the total revenues are given by R(x) = 135x.
The break-even point is when C(x) = R(x), so:
2750 + 30x + 2 = 135x
Now, we need to solve for x:
1. Subtract 30x from both sides:
2750 + 2 = 105x
2. Subtract 2 from both sides:
2750 = 105x
3. Divide both sides by 105:
x = 2750 / 105
x ≈ 26.19
The break-even x-value for Year-round-Recreation is approximately 26.19.
Break-even pointsbhttps://brainly.com/question/13735564
#SPJ11
The pizza box measures 2/3 feet wide by 4/5 feet long. What is the area of the pizza box
The area of the pizza box measuring 2/3 feet wide by 4/5 feet long is 8/15 square feet.
The shape of the pizza box is a rectangle. The rectangle is a quadrilateral with opposite sides parallel and equal with an equal angle and of 90°.
The area of a rectangle is considered as:
A = L * B
where L is the length
B is the breadth
Given in the question,
L = 4/5 feet
B = 2/3 feet
The area is calculated by multiplying the fractions. For the multiplication of fractions, we multiply the numerators and denominators separately. And final answer is calculated by simplifying the resulting fraction.
A = 4/5 * 2/3
= 4*2 / 5*3
= 8/15 square feet
Thus, the pizza box has an area of 8/15 square feet
Learn more about the Area:
https://brainly.com/question/24487155
#SPJ4
a machine is used to fill 1-liter bottles of a type of soft drink. we can assume that the output of the machine approximately follows a normal distribution with a mean of 1.0 liter and a standard deviation of .01 liter. the firm uses means of samples of 25 observations to monitor the output, answer the following questions: determine the upper limit of the control chart such that it will include roughly 97 percent of the sample means when the process is in control. (3 decimal points are required)
The upper limit of the control chart such that it will include roughly 97 percent of the sample means when the process is in control is 1.008.
For a process with a normal distribution, the mean of the sample means is equal to the population mean and the standard deviation of the sample means is equal to the population standard deviation divided by the square root of the sample size. In this case, the mean of the output is 1.0 liter and the standard deviation is 0.01 liter, so the standard deviation of the sample means is 0.01 / √25 = 0.002.
To construct a control chart for the sample means, we need to determine the upper and lower control limits such that the process is in control when the sample means fall within these limits. Assuming the process is in control, we want to find the upper limit such that roughly 97% of the sample means fall below this limit.
Using the standard normal distribution, the Z-score corresponding to the 97th percentile is approximately 1.88.
Therefore, the upper control limit is 1.0 + 1.88(0.002) = 1.008. Any sample mean above this limit should be investigated for potential process issues.
To know more about sample means, refer here:
https://brainly.com/question/30580598#
#SPJ11