Answer:
y = 4x - 16
Step-by-step explanation:
Parallel lines have the same slope. Find slope using the points (-3, -3) and (-1, 5)
slope = m = (5 - -3) / (-1 - -3) = 8/2 = 4
y = mx + b find b using the point (4, 0), the x-intercept of the parallel line
0 = 4(4) + b
b = -16
equation of the parallel line:
y = 4x - 16
A hollow ball is made of rubber that is 2 centimeters thick. the ball has a radius to the outside surface of 6 centimeters. what is the approximate volume of rubber used to make the ball? use 3.14 for pi.
The approximate volume of rubber used to make the ball is 636.24 cubic centimeters.
To find the volume of the concave space inside the ball, we need to abate the volume of the ball with a lower compass. The compass of the inside face of the ball can be set up by abating the consistence of the rubber from the compass of the outside face = r_outside-
consistence = 6- 2 = 4 centimeters
The volume of the concave space inside the ball can be set up using the same formula as below but with the lower compass = (4/3)πr_i
nside3 = (4/3) π( 4) 3
= (4/3) π( 64)
≈268.08 boxy centimeters
Eventually, the volume of rubber used to make the ball is the difference between the volume of the entire ball and the volume of the concave space inside = V-V_hollow ≈
=904.32-268.08
=636.24 cubic centimeters
Learn more volumes at
https://brainly.com/question/14846560
#SPJ4
explain how x[tex]x^{2} +6^{x} +5[/tex] equals [tex](x+5)(x+1)[/tex]
Answer:
To show how x² + 6x + 5 is equivalent to (x + 5)(x + 1), we can use the FOIL method, which stands for First, Outer, Inner, and Last.
First, we multiply the first term of each factor: x and x, which gives x².
Next, we multiply the outer terms of each factor: x and 1, which gives x.
Then, we multiply the inner terms of each factor: 5 and x, which gives 5x.
Finally, we multiply the last term of each factor: 5 and 1, which gives 5.
Adding up these terms, we get:
x² + x + 5x + 5
Simplifying by combining like terms, we get:
x² + 6x + 5
This is the same as the original expression. Therefore, we have shown that:
x² + 6x + 5 = (x + 5)(x + 1)
Step-by-step explanation:
Answer this ASAP will give the brainliest answer
Given that y = 9 cm and θ = 25°, work out x rounded to 1 DP.
Answer:
3.8
Step-by-step explanation:
using sinθ = opp/hypo
sin(25) = x/9
0.4226 = x/9
x = 9(0.4226) = 3.8
Match the math word to the correct part of the equation below:
3x + 8 = 7
Question 4 options:
3
8 and 7
x
1.
Coefficient(s)
2.
Variable(s)
3.
Constant(s)
The numbers 8 and 7, which have fixed values that never shift, are the constants.
what is coefficients ?A coefficient in mathematics is an integer or symbol that multiplies a variable or a variable product. In algebraic formulas, equations, and polynomials, coefficients are used. For instance, the coefficient of the variable x in the equation 3x + 5 is 3, and the coefficient of the constant term 5 is 1. The factors of x and y in the equation 2x + 3y = 7 are 2 and 3, respectively. Coefficients can be whole integers, fractions, or decimals and can have a positive, negative, or zero sign. They aid in the simplification of mathematical expressions and equations and serve to illustrate the relationship between variables.
given
3 coefficients
x is a variable.
8 and 7 are constants.
The coefficient in the equation 3x + 8 = 7 multiplies the variable x by the number 3.
We are looking for an unknown number, represented by the variable x. The numbers 8 and 7, which have fixed values that never shift, are the constants.
To know more about coefficient visit:
https://brainly.com/question/28975079
#SPJ1
One of the solutions to 14 - 6 cos x = 21 - 19 cos x for -pi ≤ x ≤ pi is
A. 1.29
B. 0.57
C. 1.00
D. 1.28
Answer:
1
Step-by-step explanation:
i think
. Maya went sledding down two hills. The first hill was 24 feet long. The second
hill was 432 inches long. How many feet in all did Maya sled on the two hills?
Remember to show your work.
Using the conversion factor we know that Maya sled down a total of 60 ft of both hills.
What is the conversion factor?A conversion factor is a number that is used to multiply or divide one set of units into another.
If a conversion is required, it must be done using the correct conversion factor to get an identical value.
For instance, 12 inches equals one foot when converting between inches and feet.
Conversion factors' function in the Medicare fee structure.
Every year, the CF is calculated using the CF from the year before, with the Medical Economic Index, the Update Adjustment Factor, Legislative Change, and Budget Neutrality factors are taken into account.
So, we know that:
1 inch = 0.0833333 ft
Then,
432 inches = 36 ft
Then, total ft Maya sled down:
= 24 ft + 36 ft
= 60 ft
Therefore, using the conversion factor we know that Maya sled down a total of 60 ft of both hills.
Know more about the conversion factor here:
https://brainly.com/question/97386
#SPJ1
The function f(x) = -4.9x² + 17x + 0.6 describes the height in meters of a basketball x seconds after it has been thrown vertically into the air. Solve the following problem. If your answer is correct you will see an image appear on your screen. WHEN will the basketball reach its maximum height? Round your answer to 3 decimal places if necessary. Use your graph from screen 5 to help. Do not include units.
The basketball will reach its maximum height 1.735 seconds after it has been thrown vertically into the air.
Define the term function?A function is a relationship between a set of inputs and a set of possible outputs with the property that each input is related to exactly one output. A function can be represented as an equation, a graph, a table of values, or a verbal description. For example, the function f(x) = 2x + 1 represents a relationship between the input x and the output 2x + 1.
To find the maximum height of the basketball, we need to find the vertex of the parabola represented by the function f(x). The vertex of x-coordinate is:
x = -b/2a
The coefficients of the quadratic equation a[tex]x^2[/tex] + b[tex]x[/tex] + c are a, b, and c. In this case, a = -4.9 and b = 17, so:
x = -17/(2*(-4.9)) = 1.735 (rounded to 3 decimal places)
Therefore, the basketball will reach its maximum height 1.735 seconds after it has been thrown vertically into the air.
To know more about graph, visit:
https://brainly.com/question/19040584
#SPJ1
Sides of a triangle are in the ratio 12:17:25 and its perimeter is 540 cm. Find its area
Answer:
102
Step-by-step explanation:
(b•h)/2
(12•17)/2
204/2
10. Communicate and Justify Brian asks his
classmates how many mystery books and how
many adventure books they own. He states
because the mean number of mystery books,
5, is less than the mean number of adventure
books, 8, there is less variability in the number of
mystery books. Do you agree? Explain.
1
I disagree with Brian's assertion that there is less fluctuation in the number of mystery novels simply because the mean number of mystery books is fewer than the mean number of adventure books.
The mean is merely one measure of central tendency and provides no information about the data's dispersion or variability. We would need to look at a measure of dispersion such as the range, variance, or standard deviation to see whether there is less variety in the quantity of mystery novels. If the range or standard deviation of the number of mystery books is less than that of adventure novels, we may claim that the number of mystery books is less variable. If, however, the If the range or standard deviation of the number of mystery novels is greater than that of adventure books, Brian's statement is false. As a result, we cannot establish whether or not there is less fluctuation in the quantity of mystery novels without knowing the dispersion of the data.
learn more about books here:
https://brainly.com/question/28339193
#SPJ4
Yasmin started a savings account with $5. At the end of each week, she added 3. This function models the amount of money in the account for a given week.
The function that models the amount of money in Yasmin's savings account for a given week can be written as: f(x) = 3x + 5
where x represents the number of weeks since Yasmin opened the account.
The constant term of 5 represents the initial amount Yasmin deposited into the account when she opened it, and the coefficient of 3 represents the amount she adds at the end of each week.
For example, after 1 week, the amount of money in the account would be:
f(1) = 3(1) + 5 = 8
After 2 weeks:
f(2) = 3(2) + 5 = 11
Find out more about function
brainly.com/question/30919629
#SPJ1
helpppppppppppppppppppppppppppp
Answer:
6)180-99=81
81+43=124
180-124=56
b=56
What is the sum of (x−5x^2−12) and (4+11x−3x^2) ?
The sum οf [tex](x - 5x^2 - 12)[/tex] and [tex](4 + 11x - 3x^2)[/tex] is [tex]12x - 8x^2 - 8.[/tex]
What is sum ?The term "sum" can alsο be used tο describe a specific sum οf mοney. Yοu cοuld spend a cοnsiderable amοunt οf mοney οn a new car. Hοwever, if yοu tοtal up οr add up all οf its advantages, yοu might be able tο justifiably justify spending sο much.
When yοu add up the cοsts οf everything yοu οrdered at the restaurant, yοu can determine the final tοtal. It's nοt necessary fοr sum tο οnly refer tο numerical values. A summary οr general statement abοut sοmething is what yοu are giving when yοu sum sοmething up.
Tο find the sum οf [tex](x - 5x^2 - 12)[/tex] and [tex](4 + 11x - 3x^2)[/tex], we need tο add the like terms. Like terms are thοse terms that have the same variable raised tο the same pοwer.
Sο, the sum οf [tex](x - 5x^2 - 12)[/tex] and [tex](4 + 11x - 3x^2)[/tex] is:
[tex](x + 11x) + (-5x^2 - 3x^2) + (-12 + 4)[/tex]
Simplifying, we get:
[tex]12x - 8x^2 - 8[/tex]
Therefοre, the sum οf [tex](x - 5x^2 - 12)[/tex] and [tex](4 + 11x - 3x^2)[/tex] is [tex]12x - 8x^2 - 8.[/tex]
learn more about sum
https://brainly.com/question/13013054
#SPJ1
y=x^2+10x+8 quadratic function in vertex form
Answer:
Step-by-step explanation:
[tex]y=x^2+10x+8=(x+5)^{2}-17[/tex]
Answer:
y = (x + 5)^2 - 17
Step-by-step explanation:
To write the quadratic function y = x^2 + 10x + 8 in vertex form, we need to complete the square. We start by adding and subtracting the square of half of the coefficient of x, which is (10/2)^2 = 25:
y = x^2 + 10x + 8
= (x^2 + 10x + 25) - 25 + 8
= (x + 5)^2 - 17
Therefore, the quadratic function in vertex form is:
y = (x + 5)^2 - 17
The vertex of this parabola is at the point (-5, -17), and the axis of symmetry is the vertical line x = -5. The term (-17) represents the minimum value of the function.
Question: Georgetown business college offers 1-year certificates (C) and 2-year diplomas for studies in business and information technology. Sixty percent of the students are registered in the 2-year diploma program. Males (M) make up 55% of the students in the 2-year diploma program while 35% of the students in the 1-year certificate program are females(F). 1 what is the probability that a randomly selected student is male? 2 Suppose that you randomly select a female student. What is the probability that she is registered in 2-year diploma program? 3 What is the probability that a randomly selected male student is registered in a 1-year certificate program? 4 What is the probability that a randomly selected student is female or is registered in a 2-year diploma program? 5 Are ‘1-year program"" and ""male"" independence events? Your answer must include probability calculations
1. 55%
2. 60%
3. 35%
4. 95%
5. 40%
1. The probability that a randomly selected student is male is 0.55 (55%).
2. The probability that a randomly selected female student is registered in the 2-year diploma program is 0.6 (60%).
3. The probability that a randomly selected male student is registered in the 1-year certificate program is 0.35 (35%).
4. The probability that a randomly selected student is female or is registered in a 2-year diploma program is 0.95 (95%).
5. The events “1-year program” and “male” are not independent as the probability of one event affects the probability of the other event. For example, the probability of a randomly selected male student being registered in the 1-year certificate program is 0.35 (35%), which is lower than the overall probability of a randomly selected student being registered in the 1-year certificate program (0.4 or 40%).
Learn more about probability
brainly.com/question/30034780
#SPJ4
Oliver was driving down a road and after 4 hours he had traveled 66 miles. At this speed, how many miles could Oliver travel in 14 hours? im almost done
Answer:
We can start by using the formula:
distance = speed x time
We know that Oliver traveled 66 miles in 4 hours, so we can use this information to find his speed:
speed = distance / time
speed = 66 miles / 4 hours
speed = 16.5 miles per hour
Now that we know Oliver's speed, we can use the same formula to find how many miles he could travel in 14 hours:
distance = speed x time
distance = 16.5 miles per hour x 14 hours
distance = 231 miles
Therefore, Oliver could travel 231 miles in 14 hours at this speed.
The average daily high temperature in June in LA is 78°F with a standard deviation of 5°F. Suppose that the temperatures in June closely follow a normal distribution.
a) What is the probability of observing an 84°F temperature or higher in LA during a randomly chosen day in June? Round your answer to 4 decimal places.
b) How cool are the coldest 10% of the days (days with lowest average high temperature) during June in LA? Round your answer to 1 decimal place.
The probability of observing an 84°F temperature or higher in LA during a randomly chosen day in June is 0.1151 and the temperature of the coldest 10% of the days (days with lowest average high temperature) during June in LA is approximately 71.6°F.
Let X be the random variable that represents the average daily high temperature in LA in June. Then X ~ N(μ = 78, σ = 5). The probability of observing an 84°F temperature or higher in LA during a randomly chosen day in June is given by: P(X > 84) = P(Z > (84 - 78) / 5) = P(Z > 1.2) = 0.1151 (rounded to 4 decimal places)
To find the temperature of the coldest 10% of the days (days with lowest average high temperature) during June in LA, we need to find the 10th percentile of the distribution. Using a z-score table, we can find the z-score corresponding to the 10th percentile: z = -1.28. Thus, the temperature of the coldest 10% of the days during June in LA is given by: x = μ + zσ= 78 + (-1.28)(5)≈ 71.6°F (rounded to 1 decimal place)
To know more about probability, refer here:
https://brainly.com/question/30144287#
#SPJ11
find the 12th term of the geometric sequence
4,12,36,108
Answer:
Step-by-step explanation:
708588 hope this helps
Which expression is equivalent to -6(p - 6)?
Answer: -6(p - 6) can be simplified using the distributive property of multiplication:
-6(p - 6) = -6 * p - (-6 * 6)
= -6p - (-36)
= -6p + 36
Therefore, -6(p - 6) is equivalent to -6p + 36.
Step-by-step explanation:
Create a rational expression that simplifies to 2x/(x+1)
and that has the following restrictions on x:
x ≠ −1, 0, 2, 3. Write your expression here.
Answer:
One possible rational expression that simplifies to 2x/(x+1) and meets the given restrictions is:
(4x^2 - 2x - 3) / [(x + 1)(x - 3)(x - 2)]
To see why this expression simplifies to 2x/(x+1), we can simplify the numerator and denominator separately:
Numerator:
2x(2x-1) = 4x^2 - 2x
Denominator:
(x+1)(x-3)(x-2)
Multiplying the numerator and denominator by -1 gives:
(-2x)(2x-1) / [(3-x)(2-x)(1+x)]
Then, we can rearrange the factors in the denominator to get:
(-2x)(2x-1) / [(x+1)(x-2)(x-3)]
Now we have the desired rational expression that simplifies to 2x/(x+1) and has the given restrictions on x.
Step-by-step explanation:
Point W is the midpoint of Segment TY. Find the coordinates of Point Y
The coordinates of point Y are (10 - x1, 4y1 - 10), where (x1, y1) are the coordinates of point T.
If W is the midpoint of segment TY, then the coordinates of W are the average of the coordinates of T and Y. Using the midpoint formula, we can find the coordinates of Y:
Let the coordinates of T be (x1, y1) and the coordinates of Y be (x2, y2).
x-coordinate of W = (x-coordinate of T + x-coordinate of Y) / 2
y-coordinate of W = (y-coordinate of T + y-coordinate of Y) / 2
Putting in the coordinates of W and T, we get: 5 = (x1 + x2) / 2
y-coordinate of Y = 2y1 - y-coordinate of W
y-coordinate of Y = 2y1 - (y1 + y2) / 2
Simplifying these equations, we get:
x1 + x2 = 10
y2 = 4y1 - 10
From the first equation, we can solve for x2: x2 = 10 - x1
Putting this into the second equation, we get: y2 = 4y1 - 10
To know more about midpoint:
https://brainly.com/question/28954185
#SPJ4
Raul does yard maintenance during the summer. He charges a $6 base amount plus another $5 for every hour that he works in the yard. Write an algebraic expression that Raul can use to find out how much to charge for a job
Answer:
6 + 5h
h = The number of hours he can work in the yard.
Reflecting the graph of y = cos x across the y-axis is the same as reflecting it across the x-axis.
true or false
False: It is the same to reflect the graph of y = cos x across the y-axis as it is across the x-axis.
Which transformational pair has the same properties as a reflection down the y-axis?A 180° rotation about the origin is a transformation that would have the same outcome as a reflection over the x-axis followed by a reflection over the y-axis. The x-coordinate of each point must be negated while reflecting across the Y axis, but the -value must remain unchanged.
What does reflection occur between the X and Y axes?By graphing y=-f(x), we may reflect the graph of any function f about the x-axis, and by graphing y=f, we can reflect the graph about the y-axis (-x). By graphing y=-f, we can even reflect it about both axes (-x).
To know more about reflect visit:-
https://brainly.com/question/1527462
#SPJ1
AABC is rotated 270° counterclockwise about the origin. Which triangle below represents a 270° counterclockwise rotation about the origin?
A) Red image 1
B) Green image 3
C) none of these
D) Purple image 2
The correct option is C. Green image of triangle ABC.
How to find the rotated shape or coordinates of image about origin?
As we know that triangle ABC, is rotated 270° counterclockwise about the origin. So, the algebraic rule for a figure is,
90° Clockwise or 270° counter clockwise, (x,y) = (y,-x)
As, C(-3,3) which is equal to (3,3) from the algebraic rule.
And (3,3) belongs to 1st quadrant i.e. green image is the correct answer.
To know more about Triangle, visit:
brainly.com/question/2773823
#SPJ1
Triangle below represents is option C. Green image of triangle ABC.
What is Triangle?A triangle is a geometric shape with three sides and three angles. It is one of the most fundamental shapes in geometry and is used extensively in mathematics, physics, engineering, and many other fields. Triangles are often classified based on their angles and sides.
As we know that triangle ABC, is rotated 270° counterclockwise about the origin. So, the algebraic rule for a figure is,
90° Clockwise or 270° counter clockwise, (x,y) = (y,-x)
As, C(-3,3) which is equal to (3,3) from the algebraic rule.
And (3,3) belongs to 1st quadrant i.e. green image is the correct answer.
To know more about Triangle, visit:
brainly.com/question/2773823
#SPJ1
Hello! Thanks for visiting the question. ( Hope you know the answer! )
Pre-calculus ( you might not know )
60pts + Brainliest ( if correct and I agree )
Question is in the picture!
[tex]Expectations[/tex]
Correct
Reasonable Explanation
Explanation
[tex]Must Not[/tex]
Incorrect
Spam
Nonsense
Gibberish
No explanation
Thank you have a great day!
The final answer is: ∫(2x-1)÷[(x-3)(x+2)]dx = ln|x-3| + ln|x+2| + C
What is Integration ?
In calculus, integration is the inverse operation of differentiation. It is a mathematical technique used to find the integral of a function. The integral of a function f(x) is another function F(x), which gives the area under the curve of f(x) from a certain point to another.
To perform the integration of the given function:
∫(2x-1)÷([tex]x^{2}[/tex]-x-6)dx
First, we need to factor the denominator:
[tex]x^{2}[/tex]- x - 6 = (x-3)(x+2)
So we can rewrite the integral as:
∫(2x-1)÷[(x-3)(x+2)]dx
Next, we need to decompose the fraction into partial fractions:
(2x-1)÷[(x-3)(x+2)] = A÷(x-3) + B÷(x+2)
Multiplying both sides by (x-3)(x+2), we get:
2x-1 = A(x+2) + B(x-3)
Substituting x=3, we get:
5A = 5
A = 1
Substituting x=-2, we get:
-5B = -5
B = 1
So we have:
(2x-1)÷[(x-3)(x+2)] = 1÷(x-3) + 1÷(x+2)
Substituting this back into the integral, we get:
∫(2x-1)÷[(x-3)(x+2)]dx = ∫[1÷(x-3) + 1÷(x+2)]dx
Using the first rule of integration, we get:
∫[1÷(x-3) + 1÷(x+2)]dx = ln|x-3| + ln|x+2| + C
where C is the constant of integration.
Therefore, the final answer is: ∫(2x-1)/[(x-3)(x+2)]dx = ln|x-3| + ln|x+2| + C
To learn more about Integration from given link.
https://brainly.com/question/30018203
#SPJ1
[tex] \displaystyle \int \rm \: \dfrac{2x - 1}{ {x}^{2} - x - 6 } dx[/tex]
Answer:
[tex] \underline{\boxed{\rm = ln |x + 2| + ln |x - 3| + C}}[/tex]
Step-by-step explanation:
[tex] = \displaystyle \int \rm \: \dfrac{2x - 1}{ {x}^{2} - x - 6 } dx[/tex]
[tex] = \displaystyle \int \rm \: \dfrac{2x - 1}{ {x}^{2} - 3x + 2x - 6 } dx[/tex]
[tex] = \displaystyle \int \rm \: \dfrac{2x - 1}{ x(x - 3) + 2(x - 3) } dx[/tex]
[tex] = \displaystyle \int \rm \: \dfrac{2x - 1}{ (x + 2) (x - 3)} dx[/tex]
[tex] \rm \: Let : \displaystyle \rm \: \dfrac{2x - 1}{ (x + 2) (x - 3) } = \dfrac{A }{x + 2} + \dfrac{B}{x - 3} [/tex]
[tex]\rm\implies\displaystyle \rm \: \dfrac{2x - 1}{ (x + 2) (x - 3) } = \dfrac{A(x - 3) + B(x + 2) }{(x + 2)(x - 3)} \\ [/tex]
[tex] \rm \implies\displaystyle \rm \: {2x - 1}{ } = {A(x - 3) + B(x + 2) } \\ [/tex]
Put x = 3 , we get
[tex] \rm \implies\displaystyle \rm \: {6 - 1}{ } = {A(3- 3) + B(3 + 2) } \\ [/tex]
[tex] \rm \implies\displaystyle \rm \: {5}{ } = 5 B \\ [/tex]
[tex] \implies \rm \: B = 1[/tex]
Again
put put x = -2
[tex] \rm \implies\displaystyle \rm \: { - 4- 1}{ } = {A( - 2- 3) + B( - 2 + 2) } \\ [/tex]
[tex] \rm \implies\displaystyle \rm \: { - 5}{ } = {A( - 5) } \\ [/tex]
[tex] \rm \implies\displaystyle \rm A = 1 \\ [/tex]
Thus ,
[tex] \displaystyle \int \rm \: \dfrac{2x - 1}{ (x + 2) (x - 3)} dx = \int\dfrac{1}{x + 2} dx + \int \dfrac{1}{x - 3} dx[/tex]
[tex] \rm = ln |x + 2| + ln |x - 3| + C[/tex]
Important formulae:-[tex] \tt\int \dfrac{dx}{ {x}^{2} + {a}^{2} } = \frac{1}{a} { \tan}^{ - 1} \frac{x}{a} + c \\ [/tex]
[tex] \tt\int \dfrac{dx}{ {x}^{2} - {a}^{2} } = \frac{1}{2a} log \frac{x - a}{x + a} + c \\ [/tex]
[tex] \tt\int \dfrac{dx}{ {a}^{2} - {x}^{2} } = \frac{1}{2a} log \frac{a + x}{a - x} + c \\ [/tex]
[tex] \tt\int \: \dfrac{dx}{ \sqrt{ {x}^{2} + {a}^{2} } } = log|x + \sqrt{ {a}^{2} + {x}^{2} } | + c \\ [/tex]
[tex] \tt\int \: \dfrac{dx}{ \sqrt{ {x}^{2} - {a}^{2} } } = log|x + \sqrt{ {x}^{2} - {a}^{2} } | + c \\ [/tex]
[tex] \tt \int \: \dfrac{dx}{ {a}^{2} - {x}^{2} } = { \sin }^{ - 1} \bigg(\dfrac{x}{a} \bigg) + c \\ [/tex]
[tex] \tt \int \: \sqrt{ {x}^{2} + {a}^{2} } dx \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\= \tt \dfrac{x}{2} \sqrt{ {a}^{2} + {x}^{2} } + \dfrac{ {a}^{2} }{2} log |x + \sqrt{ {x}^{2} + {a}^{2} }| + c[/tex]
i need the answer! thank you
What is the domain?
A. X>0
B. X<0
Answer:
The answer is B
Step-by-step explanation:
it looks right
You bought 100 shares of stock at $15 per share. You sold your 100 shares at $21. 75 per share. Calculate your percentage of gain.
The percentage gain is 45%
To calculate the percentage gain on your investment, you need to find the difference between the selling price and the buying price, divide that difference by the buying price, and then multiply by 100 to get the percentage.
The difference between the selling price and the buying price is:
$21.75 - $15 = $ 6.75
So the gain on the investment is $ 6.75 per share.
To find the percentage gain, you divide the gain by the buying price:
$6.75 ÷ $15 = 0.45
Then, multiply by 100 to convert this into a percentage :
0.45 x 100% = 45%
Learn more about percentage gain here
brainly.com/question/24344510
#SPJ4
Suppose John has a torn tendon and is facing surgery to repair it. The surgeon explains the risks to John; infection occurs in 3% of operations, the repair fails in 14% of operations, and both infection AND failure occur together in 0. 57% of operations. What percentage, P, of these operations succeed and are free from infection?
Round to the nearest two decimal places
P = 83.57% after rounding to the closest two decimal places.
As a result, roughly 83.57% of these procedures are successful and infection-free.
We must deduct the percentage of operations that fail, are infected, or both from 100% in order to get the proportion of operations that are successful and free of infection.
Let P represent the proportion of procedures that are both successful and infection-free.
We are aware that 14% of surgeries fail due to repair failure, and 3% of operations result in infection. Hence, 3% + 14% - 0.57% = 16.43% of surgeries have either an infection or a failure, or both.
Hence, 100% - 16.43% = 83.57% is the proportion of surgeries that are successful and free of infection.
P = 83.57% after rounding to the closest two decimal places.
As a result, roughly 83.57% of these procedures are successful and infection-free.
learn more about decimal places here:
https://brainly.com/question/50455
#SPJ4
Solve for x round to the nearest tenth if necessary
Check the picture below.
Make sure your calculator is in Degree mode.
[tex]\tan(43^o )=\cfrac{\stackrel{opposite}{4.1}}{\underset{adjacent}{x}}\implies x=\cfrac{4.1}{\tan(43^o )}\implies x\approx 4.4[/tex]
Using a trigonometric relation we can see that x = 4.4 units.
How to find the value of x?Here we can see a right triangle, where we can see that 4.1 is one of the legs, and x is the other leg.
We also can see that the angle adjacent to x is 43°.
Then we can use the trigonometric relation to find the value of x:
tan(43°) = 4.1/x
Solving for x:
x = 4.1/tan(43°)
x = 4.4
Learn more about right triangles at:
https://brainly.com/question/2217700
#SPJ2
What lab test determines effectiveness of epoetin alfa?
From the given data, the effectiveness of epoetin alfa, which is a medication used to treat anemia, can be determined through a blood test called a complete blood count (CBC).
The CBC measures the number of red blood cells, white blood cells, and platelets in the blood, as well as the levels of hemoglobin and hematocrit.
In patients receiving epoetin alfa, the goal is to increase the hemoglobin level and hematocrit to a target range that is appropriate for their condition. Therefore, monitoring these levels through regular CBCs can help determine whether the medication is effective and whether the dosage needs to be adjusted.
Learn more about hemoglobin here: brainly.com/question/11211560
#SPJ1