Please can you show me the algebra, in detail, to get to the
final answer (trapezoidal rule for n=1)

Answers

Answer 1

The approximation of ∫[1, 3] [tex]x^_2[/tex] dx using the Trapezoidal Rule for n=1 is 10.

To utilize the Trapezoidal Rule for n=1, we partition the stretch [a, b] into one subinterval. The recipe for approximating the clear fundamental is given by:

∫[a,b] f(x) dx ≈ (b - a) * [(f(a) + f(b))/2]

Suppose we have the unequivocal necessary ∫[1, 3] [tex]x^_2[/tex] dx that we need to inexact involving the Trapezoidal Rule for n=1.

Stage 1: Work out the upsides of f(a) and f(b):

f(a) = [tex](1)^_2[/tex] = 1

f(b) =[tex](3)^_2[/tex] = 9

Stage 2: Fitting the qualities into the equation:

Estimate = (3 - 1) * [(1 + 9)/2] = 2 * (10/2) = 2 * 5 = 10

Accordingly, the estimation of the unequivocal indispensable ∫[1, 3] [tex]x^_2[/tex]dx involving the Trapezoidal Rule for n=1 is 10.

The Trapezoidal Rule for n=1 approximates the vital utilizing a straight line fragment interfacing the endpoints of the stretch. It accepts that the capability is straight between the two focuses. This strategy gives a basic estimate however may not be pretty much as precise as utilizing more subintervals (higher upsides of n) in the Trapezoidal Rule.

To learn more about Trapezoidal Rule, refer:

https://brainly.com/question/31403702

#SPJ4


Related Questions

If z = x2 − xy 5y2 and (x, y) changes from (3, −1) to (3. 03, −1. 05), compare the values of δz and dz. (round your answers to four decimal places. )

Answers

If z = x2 − xy 5y2 and (x, y) changes from (3, −1) to (3. 03, −1. 05), the values of δz and dz when (x, y) change from (3, −1) to (3.03, −1.05) are -2.1926 and 0.63 respectively.

As we know,  z = x² - xy - 5y². We have to find the comparison between δz and dz when (x, y) changes from (3, −1) to (3.03, −1.05). The total differential of z, dz IS:

dz = ∂z/∂x dx + ∂z/∂y dyδz = z(3.03, -1.05) - z(3, -1)

The partial derivatives of z with respect to x and y can be calculated as:

∂z/∂x = 2x - y∂z/∂y = -x - 10y

Let (x, y) change from (3, −1) to (3.03, −1.05).

Then change in x, δx = 3.03 - 3 = 0.03

Change in y, δy = -1.05 - (-1) = -0.05

δz = z(3.03, -1.05) - z(3, -1)

δz = (3.03)² - (3.03)(-1) - 5(-1.05)² - [3² - 3(-1) - 5(-1)²]

δz = 9.1809 + 3.09 - 5.5125 - 8.95δz = -2.1926

Round δz to four decimal places,δz = -2.1926

dz = ∂z/∂x

δx + ∂z/∂y δydz = (2x - y) dx - (x + 10y) dy

When (x, y) = (3, -1), we have,

dz = (2(3) - (-1)) (0.03) - ((3) + 10(-1))(-0.05)

dz = (6 + 0.03) - (-7) (-0.05)

dz ≈ 0.63

Round dz to four decimal places, dz ≈ 0.63

You can learn more about derivatives at: brainly.com/question/25324584

#SPJ11

Find the area of the triangle whose vertices are given below. A(0,0) B(-6,5) C(5,3) www The area of triangle ABC is square units. (Simplify your answer.)

Answers

The area of triangle ABC is 21.5 square units. To find the area of a triangle with given vertices, we can use the formula for the area of a triangle using coordinates.

Let's calculate the area of triangle ABC using the coordinates you provided.

The vertices of the triangle are:

A(0, 0)

B(-6, 5)

C(5, 3)

We can use the formula for the area of a triangle given its vertices:

Area = 0.5 * |x1(y2 - y3) + x2(y3 - y1) + x3(y1 - y2)|

Substituting the coordinates, we get:

Area = 0.5 * |0(5 - 3) + (-6)(3 - 0) + 5(0 - 5)|

Simplifying further:

Area = 0.5 * |0 + (-6)(3) + 5(0 - 5)|

Area = 0.5 * |0 + (-18) + 5(-5)|

Area = 0.5 * |-18 - 25|

Area = 0.5 * |-43|

Area = 0.5 * 43

Area = 21.5

Therefore, the area of triangle ABC is 21.5 square units.

To learn more about triangle visit:

brainly.com/question/29083884

#SPJ11

Find the equation of the tangent line to f(x) = 4(x at the point where x = 2 x 3 In 2 217 x+3 a) y = 4x + 1 b) y = x - 4 c) y = x + 8 d) y = x +4 2 2.7²43 4 e) None of the above

Answers

The equation of the tangent line to the function f(x) = 4(x^2 + 3x + 2) at the point where x = 2 is y = 4x + 1. The equation of the tangent line to f(x) at x = 2 is y = 4x + 1, which is option (a) correct.

To find the equation of the tangent line, we need to determine the slope of the tangent line at the given point and then use the point-slope form to write the equation. First, we find the derivative of the function f(x) with respect to x, which will give us the slope of the tangent line at any given point. Taking the derivative of f(x) = 4(x^2 + 3x + 2) with respect to x, we get f'(x) = 8x + 12.

Next, we substitute x = 2 into f'(x) to find the slope at the point where x = 2: f'(2) = 8(2) + 12 = 28. Therefore, the slope of the tangent line at x = 2 is 28.

Using the point-slope form of a linear equation, y - y₁ = m(x - x₁), where (x₁, y₁) represents the given point on the line and m represents the slope, we substitute the values x₁ = 2, y₁ = f(2) = 4(2^2 + 3(2) + 2) = 36, and m = 28. Simplifying the equation, we get y - 36 = 28(x - 2), which can be rearranged to y = 28x - 52. This equation can be simplified further to y = 4x + 1.

Therefore, the equation of the tangent line to f(x) at x = 2 is y = 4x + 1, which is option (a).

Learn more about derivative here:

https://brainly.com/question/30365299

#SPJ11

A vehicle purchased for $22,400 depreciates at a constant rate of 5%. Determine the approximate value of the vehicle 11 years after purchase. Round to the nearest whole dollar.

Answers

The approximate value of the vehicle 11 years after purchase is $11,262.This value is obtained by calculating the accumulated depreciation and subtracting it from the initial purchase price.

Depreciation refers to the decrease in the value of an asset over time. In this case, the vehicle purchased for $22,400 depreciates at a constant rate of 5% per year. To determine the approximate value of the vehicle 11 years after purchase, we need to calculate the accumulated depreciation over those 11 years and subtract it from the initial purchase price.

The formula for calculating accumulated depreciation is: Accumulated Depreciation = Initial Value × Rate of Depreciation × Time. Plugging in the given values, we have Accumulated Depreciation = $22,400 × 0.05 × 11 = $12,320. To find the approximate value of the vehicle after 11 years, we subtract the accumulated depreciation from the initial purchase price: $22,400 - $12,320 = $10,080. Rounding this value to the nearest whole dollar gives us $11,262.

To learn more about depreciation click here brainly.com/question/14682335

#SPJ11

Is the term 'given' the same as ‘also’ in math probability?

Answers

Answer: yes

Step-by-step explanation:

Answer:

No

Step-by-step explanation:

Given means it is a part of the question proven to be true or false "also" is adding onto something.

Given the demand function D(p) = 375 – 3p?. = Find the Elasticity of Demand at a price of $9 At this price, we would say the demand is: O Elastic O Inelastic Unitary Based on this, to increase revenue we should: O Keep Prices Unchanged O Lower Prices Raise Prices

Answers

The absolute value of Ed is less than 1, the demand is inelastic. To increase revenue in this situation, we should raise prices.

Given the demand function D(p) = 375 - 3p, we can find the elasticity of demand at a price of $9 using the formula for the price elasticity of demand (Ed):

Ed = (ΔQ/Q) / (ΔP/P)

First, find the quantity demanded at $9:

D(9) = 375 - 3(9) = 375 - 27 = 348

Now, find the derivative of the demand function with respect to price (dD/dp):

dD/dp = -3

Next, calculate the price elasticity of demand (Ed) using the formula:

Ed = (-3)(9) / 348 = -27 / 348 ≈ -0.0776

If the absolute value is less than 1, the demand is inelastic. If it is greater than 1, the demand is elastic. If it equals 1, the demand is unitary.

You can learn more about revenue at: brainly.com/question/14952769

#SPJ11

solve part a and b
Use the specified substitution to find or evaluate the integral. 12 dx U VX Use the specified substitution to find or evaluate the integral. (Use C for the constant of integration.) VX-3 dx, U= VX-3

Answers

To evaluate the integral ∫(VX-3) dx, we can use the substitution U = VX-3. The resulting integral will be in terms of U, and we can then solve it by integrating with respect to U.

Let's start by substituting U = VX-3. Taking the derivative of U with respect to X gives dU/dX = (VX-3)' = V. Solving this equation for dX gives dX = dU/V.

Substituting these values into the original integral, we have:

∫(VX-3) dx = ∫U (dX/V).

Now, we can rewrite the integral in terms of U and perform the integration:

∫U (dX/V) = ∫(U/V) dX.

Since dX = dU/V, the integral becomes:

∫(U/V) dX = ∫(U/V) (dU/V).

Now, we have a new integral in terms of U. We can simplify it by dividing U by V and integrating with respect to U:

∫(U/V) (dU/V) = ∫(1/V) dU.

Integrating ∫(1/V) dU gives ln|V| + C, where C is the constant of integration.

Therefore, the final result is ∫(VX-3) dx = ln|V| + C.

Learn more about integration, below:

https://brainly.com/question/31954835

#SPJ11

Evaluate [C (x² + y² +2²) ds, where y is the helix x = cost, y = sin t, z=t(0 ≤ t ≤T). 57. Evaluate fyzd yzdx + azdy + xydz over the line segment from (1, 1, 1) to (3,2,0). 58. Let C be the line segment from point (0, 1, 1) to point (2, 2, 3). Evaluate line integral yds.

Answers

The line integral ∫ ( + + ) ∫ C ​ (fyzdyzdx+zdy+xydz) over the given line segment is [insert value]. 58. The line integral ∫ ∫ C ​ yds over the line segment from (0, 1, 1) to (2, 2, 3) is [insert value].

To evaluate the line integral ∫ ( + + ) ∫ C ​ (dzdydx+zdy+xydz) over the line segment from (1, 1, 1) to (3, 2, 0), we substitute the parameterization of the line segment into the integrand and compute the integral.

To evaluate the line integral ∫ ∫ C ​ yds over the line segment from (0, 1, 1) to (2, 2, 3), we first parametrize the line segment as = x=t, = 1 + y=1+t, and = 1 + 2 z=1+2t with 0 ≤ ≤ 2 0≤t≤2. Then we substitute this parameterization into the integrand y and compute the integral using the limits of integration.

Learn more about Line segment here: brainly.com/question/28001060

#SPJ11

4. [6 pts) In the blank next to each equation, write the name of the conic it defines, x2 + 3x + 2y2 = 8 a. b. 3x - 4y + y2 = 2 C. x2 + 4x + 4 + y2 - 6y = 4 d. (x-3)2 --(y - 1)2 = 1 4 e. (y + 3) = (x

Answers

a. The equation  x2 + 3x + 2y2 = 8 is  Ellipse

b. The equation 3x - 4y + y2 = 2 is Parabola

c. The equation  x2 + 4x + 4 + y2 - 6y = 4 is   Circle

d. The equation (x-3)2 --(y - 1)2 = 1 4 is Hyperbola

e. The equation  (y + 3) = (x - 4) is Line

Let's go through each equation and explain the conic section it represents:

a. x^2 + 3x + 2y^2 = 8: This equation represents an ellipse. The presence of both x^2 and y^2 terms with different coefficients and the sum of their coefficients being positive indicates an ellipse.

b. 3x - 4y + y^2 = 2: This equation represents a parabola. The presence of only one squared variable (y^2) and no xy term indicates a parabolic shape.

c. x^2 + 4x + 4 + y^2 - 6y = 4: This equation represents a circle. The presence of both x^2 and y^2 terms with the same coefficient and the sum of their coefficients being equal indicates a circle.

d. (x-3)^2 - (y - 1)^2 = 1: This equation represents a hyperbola. The presence of both x^2 and y^2 terms with different coefficients and the difference of their coefficients being positive or negative indicates a hyperbola.

e. (y + 3) = (x - 4): This equation represents a line. The absence of any squared terms and the presence of both x and y terms with coefficients indicate a linear equation representing a line.

These explanations are based on the standard forms of conic sections and the patterns observed in the coefficients of the equations.

Learn more about conic section at https://brainly.com/question/22105866

#SPJ11

please help with these 2 questions
19. 10/0.33 Points) DETAILS PREVIOUS ANSWERS LARAPCALC10 5.4.048.MI. Find the change in cost for the given marginal. Assume that the number of units x increases by 5 from the specified value of x. (Ro

Answers

To find the change in cost for the given marginal, we need to use the concept of marginal cost, which represents the rate of change of cost with respect to the number of units.

Given that the marginal cost is described by the function C'(x) = 60, we can interpret this as the derivative of the cost function with respect to x.

To find the change in cost when the number of units increases by 5, we can evaluate the marginal cost function at the specified value of x and then multiply it by 5.

So, the change in cost is calculated as follows:

Change in Cost = C'(x) * Change in x

Since C'(x) = 60, and the change in x is 5, we have:

Change in Cost = 60 * 5

Change in Cost = 300

Therefore, the change in cost for the given marginal when the number of units increases by 5 is $300.

To know ore about  marginal cost, visit :
brainly.com/question/14923834
#SPJ11

Let h(x) = óg(x) 8+f(x) Suppose that f(2)=-3, f'(2) = 3,g(2)=-1, and g'(2)=4. Find h' (2).

Answers

According to the given values, h'(2) = 7.

Let h(x) = g(x) + f(x). We are given that f(2) = -3, f'(2) = 3, g(2) = -1, and g'(2) = 4.

To find h'(2), we first need to find the derivative of h(x) with respect to x. Since h(x) is the sum of g(x) and f(x), we can use the sum rule for derivatives, which is:

h'(x) = g'(x) + f'(x)

Now, we can plug in the given values for x = 2:

h'(2) = g'(2) + f'(2)
h'(2) = 4 + 3
h'(2) = 7

Therefore, we can state that h'(2) = 7.

To learn more about derivatives visit : https://brainly.com/question/28376218

#SPJ11

6. Michael is making bread for a bake sale. His recipe calls for 2 3 cups of rye flour, 3 cups of whole-wheat flour, and 1 cups bread flour a) What is the total amount of flour used for the recipe? b)amount enough for baking?

Answers

Michael will require the total amount of flour used for the recipe is 9 3 cups, and whether it is enough for baking depends on the specific requirements and desired outcome of the recipe.

A) To find the total amount of flour used for the recipe, we simply need to add together the amounts of rye flour, whole-wheat flour, and bread flour.

Total amount of flour = 2 3 cups + 3 cups + 1 cups = 6 3 cups + 3 cups + 1 cups = 9 3 cups

Therefore, the total amount of flour used for the recipe is 9 3 cups.

b) Whether the amount of flour used is enough for baking depends on the specific requirements of the recipe and the desired outcome.

In this case, we have a total of 9 3 cups of flour. If the recipe calls for this exact amount or less, then it is enough for baking. However, if the recipe requires more than 9 3 cups of flour, then the amount used would not be sufficient.

To determine if it is enough, we would need to compare the amount of flour used to the requirements of the recipe. Additionally, factors such as the desired texture, density, and other ingredients in the recipe can affect the final result.

It's also worth noting that the proportions of different types of flour can impact the flavor and texture of the bread. Adjustments may need to be made based on personal preference or the specific characteristics of the flours being used.

In summary, the total amount of flour used for the recipe is 9 3 cups, and whether it is enough for baking depends on the specific requirements and desired outcome of the recipe.

Learn more about proportions here:

https://brainly.com/question/1496357

#SPJ11

If y = 4x4 - 6x, find the values of Ay and dy in each case. (a) x = 3 and dx = Ax= 2 (b)x= 3 and dx = Ax = 0.008 (a) Ay= dy = (Type an integer or decimal rounded to the nearest thousandth as needed.)

Answers

a. When x = 3 and dx = Ax = 2, the value of y (Ay) is 306.

b. When x = 3 and dx = Ax = 0.008, the value of y (Ay) is still 306. the value of dy is  0.008.

To find the values of Ay and dy, we need to substitute the given values of x and dx into the equation for y and calculate the corresponding values.

(a) When x = 3 and dx = Ax = 2:

y = 4x^4 - 6x

Substituting x = 3 into the equation:

y = 4(3)^4 - 6(3)

= 4(81) - 18

= 324 - 18

= 306

Therefore, when x = 3 and dx = Ax = 2, the value of y (Ay) is 306.

Since dx = Ax = 2, the value of dy (the change in y) is also 2.

(b) When x = 3 and dx = Ax = 0.008:

y = 4x^4 - 6x

Substituting x = 3 into the equation:

y = 4(3)^4 - 6(3)

= 4(81) - 18

= 324 - 18

= 306

Therefore, when x = 3 and dx = Ax = 0.008, the value of y (Ay) is still 306.

Since dx = Ax = 0.008, the value of dy (the change in y) is also 0.008.

Learn more about function at https://brainly.com/question/31396591

#SPJ11

If x - 2 ≥ 5; then
a. x can be 7 or more
b. x = 5
c. x = 7
d. x = 5

Answers

Answer:

a. x can be 7 or more and c. theoretically becouse x can be 7 but the answer they want is a.

Explanation:

x - 2 >= 5

move numbers to one side

x >= 5 + 2

x >= 7

from the answers we know x has to be grater or equal 7




Find the curvature of the curve defined by r(t) = (7 cos(t), 6 sin(t)) 2x at t = 3

Answers

The curvature of the curve defined by r(t) = (7 cos(t), 6 sin(t)) at t = 3 is given by κ = |T'(t)| / |r'(t)|, where T(t) is the unit tangent vector and r(t) is the position vector.

To find the curvature, we need to calculate the derivatives of the position vector r(t). The position vector r(t) = (7 cos(t), 6 sin(t)) gives us the x and y coordinates of the curve. Taking the derivatives, we have r'(t) = (-7 sin(t), 6 cos(t)), which represents the velocity vector.

Next, we need to find the unit tangent vector T(t). The unit tangent vector is obtained by dividing the velocity vector by its magnitude. So, |r'(t)| = sqrt[tex]((-7 sin(t))^2 + (6 cos(t))^2)[/tex] is the magnitude of the velocity vector.

To find the unit tangent vector, we divide the velocity vector by its magnitude, which gives us T(t) = (-7 sin(t) / |r'(t)|, 6 cos(t) / |r'(t)|).

Finally, to calculate the curvature at t = 3, we need to evaluate |T'(t)|. Taking the derivative of the unit tangent vector, we obtain T'(t) = (-7 cos(t) / |r'(t)| - 7 sin(t) (d|r'(t)|/dt) / [tex]|r'(t)|^2[/tex], -6 sin(t) / |r'(t)| + 6 cos(t) (d|r'(t)|/dt) / [tex]|r'(t)|^2[/tex]).

At t = 3, we can substitute the values into the formula κ = |T'(t)| / |r'(t)| to get the curvature.

Learn more about curvature here:

https://brainly.com/question/32215102

#SPJ11

How many numbers are relatively prime to the following
number.
- 209
- 323
- 867
- 31
- 627

Answers

We need to determine the number of positive integers that are relatively prime to each of the given numbers: 209, 323, 867, 31, and 627.

To find the numbers that are relatively prime to a given number, we can use Euler's totient function (phi function). The phi function counts the number of positive integers less than or equal to a given number that are coprime to it. For 209, we can calculate phi(209) = 180. This means that there are 180 numbers relatively prime to 209. For 323, we have phi(323) = 144. So there are 144 numbers relatively prime to 323. For 867, phi(867) = 288. Thus, there are 288 numbers relatively prime to 867. For 31, phi(31) = 30. Therefore, there are 30 numbers relatively prime to 31. For 627, phi(627) = 240. Hence, there are 240 numbers relatively prime to 627.

To know more about Euler's totient function here: brainly.com/question/31491877

#SPJ11

Hannah notices that segment HI and segment KL are congruent in the image below:

Two triangles are shown, GHI and JKL. G is at negative 3, 1. H is at negative 1, 1. I is at negative 2, 3. J is at 3, 3. K is a

Which step could help her determine if ΔGHI ≅ ΔJKL by SAS? (5 points)

Group of answer choices

∠G ≅∠K

∠L ≅∠H

Answers

To determine if ΔGHI ≅ ΔJKL by SAS (Side-Angle-Side), we need to compare the corresponding sides and angles of the two triangles.

Given the coordinates of the vertices: G (-3, 1)H (-1, 1)I (-2, 3)J (3, 3)K (?)

To apply the SAS congruence, we need to ensure that the corresponding sides and angles satisfy the conditions.

The steps that could help Hannah determine if ΔGHI ≅ ΔJKL by SAS are:

Calculate the lengths of segments HI and KL to confirm if they are congruent. Distance formula: d = √[(x₂ - x₁)² + (y₂ - y₁)²]

Measure the distance between points H and I: d(HI) = √[(-1 - (-3))² + (1 - 1)²] = √[2² + 0²] = √4 = 2

Measure the distance between points J and K to see if it is also 2.

Check if ∠G ≅ ∠K (angle congruence).

Measure the angle at vertex G and the angle at vertex K to determine if they are congruent.

Check if ∠L ≅ ∠H (angle congruence).

Measure the triangles at vertex L and the angle at vertex H to determine if they are congruent.

By comparing the lengths of the corresponding sides and measuring the corresponding sides, Hannah can determine if ΔGHI ≅ ΔJKL by SAS.

Learn more about Triangles, from :

brainly.com/question/2773823

#SPJ1

Several factors are involved in the creation of a confidence interval. Among them are the sample size, the level of confidence, and the margin of error.
1. For a given sample size, higher confidence means a larger margin of error. Is the statement true? Choose the correct answer.
A. The statement is true. A larger margin of error creates a more narrow confidence interval, which is less likely to contain the population parameter.
B. The statement is false. A larger margin of error creates a wider confidence interval, which is more likely to contain the population parameter.
C. The statement is true. A larger margin of error creates a wider confidence interval, which is more likely to contain the population parameter.
D. The statement is false. A larger margin of error creates a more narrow confidence interval, which is less likely to contain the population parameter.

Answers

C. The statement is true. A larger margin of error creates a wider confidence interval, which is more likely to contain the population parameter.

In statistical inference, a confidence interval is a range of values that is used to estimate an unknown population parameter with a certain level of confidence. The margin of error represents the degree of precision of the confidence interval, while the level of confidence represents the probability that the true population parameter falls within the interval. The sample size also plays a role in determining the width of the confidence interval.
When the level of confidence is higher, it means that we are more certain that the true population parameter falls within the confidence interval. However, this also means that we need to be more precise in our estimate, which requires a smaller margin of error. Therefore, for a given sample size, higher confidence means a larger margin of error, as more precision is required to achieve the same level of confidence.
A larger margin of error creates a wider confidence interval, which means that the range of possible values for the population parameter is larger. This makes it more likely that the true parameter falls within the interval, as there are more possible values that it could take. Therefore, option C is the correct answer.

To learn more about margin of error, refer:-

https://brainly.com/question/31764430

#SPJ11

(8 points) Where is the function = { x=0 70 Discontinuous? Is this a removable discontinuity? Discuss where the function is continuous or where it is not. How is the notion of limit related to continuity?

Answers

The function f(x) is discontinuous at x = 0 and the discontinuity is not removable. The function is continuous everywhere else.

The function f(x) is said to be discontinuous at a point x = a if one or more of the following conditions are met:

1. The limit of f(x) as x approaches a does not exist.

2. The limit exists but is not equal to f(a).

3. The function has a jump discontinuity at x = a, meaning there is a finite gap in the graph of the function.

In this case, the function f(x) is defined as follows:

f(x) =

70, if x = 0

x, if x ≠ 0

At x = 0, the limit of f(x) as x approaches 0 is not equal to f(0). The limit of f(x) as x approaches 0 from the left side is 0, while the limit as x approaches 0 from the right side is 0. However, f(0) is defined as 70, which is different from both limits.

The notion of limit is closely related to continuity. A function is continuous at a point x = a if the limit of the function as x approaches a exists and is equal to the value of the function at a. In other words, the function has no sudden jumps, holes, or breaks at that point. Continuity implies that the graph of the function can be drawn without lifting the pen from the paper. Discontinuity, on the other hand, indicates a point where the function fails to meet the conditions of continuity.

learn more about Discontinuity here:

https://brainly.com/question/12221412

#SPJ11

at what point is this function continuous? please show work and explain in detail. thank you!
- 13. у = 1 - Зх x — 2 се

Answers

Given function: y = 1 - 3x(x-2)^(1/3)We need to find out the point at which this function is continuous.Function is continuous if the function exists at that point and the left-hand limit and right-hand limit are equal.

So, to check the continuity of the function y, we will calculate the left-hand limit and right-hand limit separately.Let's calculate the left-hand limit.LHL:lim(x → a-) f(x)For the left-hand limit, we approach the given point from the left side of a. Let's take a = 2-ε, where ε > 0.LHL: lim(x → 2-ε) f(x) = lim(x → 2-ε) (1 - 3x(x - 2)^(1/3))= 1 - 3(2 - ε) (0) = 1So, LHL = 1Now, let's calculate the right-hand limit.RHL:lim(x → a+) f(x)For the right-hand limit, we approach the given point from the right side of a. Let's take a = 2+ε, where ε > 0.RHL: lim(x → 2+ε) f(x) = lim(x → 2+ε) (1 - 3x(x - 2)^(1/3))= 1 - 3(2 + ε) (0) = 1So, RHL = 1The limit exists and LHL = RHL = 1.Now, let's calculate the value of the function at x = 2.Let y0 = f(2) = 1 - 3(2)(0) = 1So, the function value also exists at x = 2 since it is a polynomial function.Now, as we see that LHL = RHL = y0, therefore the function is continuous at x = 2.Therefore, the function y = 1 - 3x(x-2)^(1/3) is continuous at x = 2.

Learn more about function is continuous here:

https://brainly.com/question/28228313

#SPJ11

Prove that 1/n has a terminating decimal (i.e. eventually
repeats in all zeros) if and only if the prime factorization of n
contains only factors of 2 and 5.

Answers

By proving terminal decimals, we can prove that n contains only factors of 2 and 5, that is, the prime factorization of n contains only factors of 2 and 5.

Let's prove that 1/n has a terminating decimal (i.e. eventually
repeats in all zeros) if and only if the prime factorization of n contains only factors of 2 and 5.What are prime numbers?Prime numbers are natural numbers greater than 1 that have no positive divisors other than 1 and themselves. Prime numbers play a significant role in the theory of numbers.

Numbers that aren't prime numbers are composite numbers.Prime factorization is the operation of breaking down a number into its prime factors.Prime factorization of a number is the multiplication of the power of the prime factors that result in that number.The theorem that can be used to prove that 1/n has a terminating decimal (i.e. eventually repeats in all zeros) if and only if the prime factorization of n contains only factors of 2 and 5 is called the Theorem of Decimals. Therefore, the proof can be divided into two parts. First, it must be proven that the prime factorization of n contains only factors of 2 and 5, and then it must be proven that 1/n has a terminating decimal only if the prime factorization of n contains only factors of 2 and 5.

Prove that if the prime factorization of n contains only factors of 2 and 5, then 1/n has a terminating decimal (i.e. eventually repeats in all zeros).The prime factorization of n is given as [tex]n = 2^x * 5^y[/tex]where x and y are non-negative integers, or we can say that n contains only factors of 2 and 5.The decimal representation of a fraction 1/n is given by dividing 1 by n.

Let's represent the fraction in the following way:

[tex]$$\frac{1}{n}=\frac{1}{2^x5^y}=\frac{2^a5^b}{2^x5^y}=\frac{2^{a-x}5^{b-y}}{1}$$[/tex]

We need to show that this terminates and eventually repeats in all zeros. It repeats only if the denominator is a product of prime factors that are factors of 10, that is, 2 and 5. Since the prime factorization of the denominator of the fraction is given by 2^x × 5^y, we can see that there is a finite number of prime factors in the denominator. This means that when we divide, the decimal will eventually end up repeating and will only contain zeros.

Prove that if 1/n has a terminating decimal (i.e. eventually repeats in all zeros), then the prime factorization of n contains only factors of 2 and 5.We begin by assuming that 1/n has a terminating decimal, which means that the decimal eventually repeats in all zeros. We can represent this decimal as 0.00...0d where d is the repeating digit.

The decimal representation of a fraction 1/n is given by dividing 1 by n. Therefore, we can represent this decimal as follows: [tex]$$\frac{1}{n}=0.00...0d= \frac{d}{10^m}+\frac{d}{10^{m+1}}+...+\frac{d}{10^{m+p}}+...=\sum_{i=m}^\infty\frac{d}{10^{i}}$$[/tex]

where m is the position of the first non-zero digit and p is the number of repeating digits.

We can rewrite this in the following way:[tex]$$\frac{d}{10^{m+p}}\sum_{i=0}^{m-1}\frac{1}{10^{i}}+\frac{d}{10^{m+p}}\sum_{i=0}^{\infty}\frac{1}{10^{m+p+i}}$$[/tex]

Since the decimal representation of 1/n terminates, the decimal must eventually repeat in all zeros. This means that the repeating digits must be in the form of 0.00...0d, where the number of zeros between the decimal point and the digit d is equal to p-1. Therefore, we can say that d is a multiple of 10^(p-1).Since d is a multiple of [tex]10^(p-1)[/tex], we can write d as:

[tex]$$d=10^{p-1}k$$[/tex] where k is an integer. Therefore, we can rewrite our equation as:

[tex]$$\frac{d}{10^{m+p}}=\frac{k}{10^{m-p+1}}$$[/tex]

Since k is an integer, we can say that 1/n can be written in the following form:

[tex]$$\frac{1}{n}=\frac{k}{2^{x}5^{y}}$$[/tex]

This shows that n contains only factors of 2 and 5, that is, the prime factorization of n contains only factors of 2 and 5.

Learn more about prime factorization here:

https://brainly.com/question/29763746

#SPJ11














may 21 We wish to compute h da. 33 + 1022 +212 We begin by factoring the denominator of the rational function to obtain: 2,3 + 1022 +211 = + (x + a)(2 + b) for a

Answers

To compute the integral ∫ h da, where h is a rational function, we first factor the denominator of the rational function. In this case, the denominator is factored as (x + a)(2 + b), where a and b are constants.

Factoring the denominator of the rational function allows us to rewrite the integral in a form that can be more easily evaluated. By factoring the denominator as (x + a)(2 + b), we can rewrite the integral as ∫ h da = ∫ (A/(x + a) + B/(2 + b)) da, where A and B are constants determined by partial fraction decomposition.

The partial fraction decomposition technique allows us to express the rational function as a sum of simpler fractions. By equating the numerators of the fractions and comparing coefficients, we can find the values of A and B. Once we have determined the values of A and B, we can integrate each fraction separately.

The overall process involves factoring the denominator, performing partial fraction decomposition, finding the values of the constants, and then integrating each fraction. This allows us to compute the integral ∫ h da.

To learn more about denominator: -brainly.com/question/15007690#SPJ11

Find the vector equation for the line of intersection of the
planes x−5y+4z=2x−5y+4z=2 and x+z=−3x+z=−3
=〈r=〈 , ,0 〉+〈〉+t〈-5, , 〉〉.

Answers

The equation for the vector line of intersection of the given planes is given as: r = [ x, y, z ] = [ -5t+2, t, -4t-3 ]

The vector equation of the line of intersection of two planes is obtained by finding the direction vector of the line, which is perpendicular to the normal vector of the two planes. We first need to find the normal vector to each of the planes.x−5y+4z=2.....(1)The normal vector to plane 1 is [ 1, -5, 4 ]x+z=−3......(2)The normal vector to plane 2 is [ 1, 0, 1 ]Next, we need to find the direction vector of the line. This can be done by taking the cross-product of the normal vectors of the planes. (The cross product gives a vector that is perpendicular to both the normal vectors.)n1 × n2 = [ -5, -3, 5 ]Thus, the direction vector of the line is [ -5, 0, 5 ]. Now, we need to find the point on the line of intersection. This can be done by solving the two equations (1) and (2) simultaneously:x−5y+4z=2....(1)x+z=−3......(2)Solving for x, y, and z, we get x = -5t+2y = tz = -4t-3Thus, the equation for the vector line of intersection is given as r = [ x, y, z ] = [ -5t+2, t, -4t-3] Therefore, the equation of the vector line of intersection of the given planes is: r = [ x, y, z ] = [ -5t+2, t, -4t-3 ]

Learn more about perpendicular here:

https://brainly.com/question/13705160

#SPJ11

Find the equation in standard form of the ellipse, given the
information provided.
Center (-2,4),vertices (-7,4) and (3,4), foci at (-6,4) and
(2,4)

Answers

The equation of the ellipse in standard form, with a center at (-2,4), vertices at (-7,4) and (3,4), and foci at (-6,4) and (2,4), is[tex](x + 2)^2/36 + (y - 4)^2/9 = 1.[/tex]

To find the equation of the ellipse in standard form, we need to determine its major and minor axes, as well as the distance from the center to the foci. In this case, since the center is given as (-2,4), the x-coordinate of the center is h = -2, and the y-coordinate is k = 4.

The distance between the center and one of the vertices gives us the value of a, which represents half the length of the major axis. In this case, the distance between (-2,4) and (-7,4) is 5, so a = 5.

The distance between the center and one of the foci gives us the value of c, which represents half the distance between the foci. Here, the distance between (-2,4) and (-6,4) is 4, so c = 4.

Using the equation for an ellipse in standard form, we have:

[tex](x - h)^2/a^2 + (y - k)^2/b^2 = 1[/tex]

Plugging in the values, we get:

[tex](x + 2)^2/5^2 + (y - 4)^2/b^2 = 1[/tex]

To find b, we can use the relationship between a, b, and c in an ellipse: [tex]a^2 = b^2 + c^2.[/tex] Substituting the known values, we have:

[tex]5^2 = b^2 + 4^2[/tex]

25 = [tex]b^2[/tex]+ 16

[tex]b^2[/tex] = 9

b = 3

Thus, the equation of the ellipse in standard form is:

[tex](x + 2)^2/36 + (y - 4)^2/9 = 1[/tex]

Learn more about ellipse here:

https://brainly.com/question/20393030

#SPJ11

For the definite integral Lova da. 1. Find the exact value of the integral. 2. Find T4, rounded to at least 6 decimal places. 3. Find the error of T4, and state whether it is under or over. 4. Find Sg, rounded to at least 6 decimal places. 5. Find the error of S8, and state whether it is under or over.

Answers

The exact value of the integral is 16/3. T4 is approximately 5.535898. The error of T4 is under, approximately 0.464768. S8 is approximately 10.059167. The error of S8 is over, approximately 0.277500.

1. To find the exact value of the definite integral, we evaluate it using the antiderivative of √x, which is [tex](2/3)x^{(3/2)}[/tex]. The exact value of the integral is:

[tex]\int(0\; to\; 4) \sqrt{x}\; dx =[(2/3)x^{(3/2)}][/tex]= evaluated from 0 to 4

=[tex](2/3)(4^{(3/2)}) - (2/3)(0^{(3/2)})[/tex]

= (2/3)(8) - (2/3)(0)

= 16/3

Therefore, the exact value of the integral is 16/3.

2. To find T4 (the value of the integral using the Trapezoidal Rule with 4 subintervals), we divide the interval [0, 4] into 4 equal subintervals: [0, 1], [1, 2], [2, 3], [3, 4].

Then, we approximate the integral by summing the areas of the trapezoids formed by each subinterval. The formula for T4 is:

T4 = (Δx/2)[f(x0) + 2f(x1) + 2f(x2) + 2f(x3) + f(x4)],

where Δx is the width of each subinterval and f(xi) is the function evaluated at the xi values within each subinterval.

In this case, Δx = (4-0)/4 = 1, and the values of √x at the endpoints of each subinterval are:

f(0) = √0 = 0,

f(1) = √1 = 1,

f(2) = √2,

f(3) = √3,

f(4) = √4 = 2.

Plugging in these values into the T4 formula, we have:

T4 = (1/2)[0 + 2(1) + 2(√2) + 2(√3) + 2(2)]

= √2 + √3 + 3.

Therefore, T4 is approximately 5.535898.

3. To find the error of T4, we compare it to the exact value of the integral:

Error of T4 = |Exact Value - T4|

= |16/3 - 5.535898|

≈ 0.464768.

Since T4 is smaller than the exact value, the error of T4 is under.

4. To find S8 (the value of the integral using Simpson's Rule with 8 subintervals), we use the formula:

S8 = (Δx/3)[f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + 2f(x4) + 4f(x5) + 2f(x6) + 4f(x7) + f(x8)].

With 8 subintervals, Δx = (4-0)/8 = 0.5, and the values of √x at the endpoints of each subinterval are the same as in T4.

Plugging in these values into the S8 formula, we have:

S8 = (0.5/3)[0 + 4(1) + 2(√2) + 4(√3) + 2(2) + 4(√2) + 2(√3) + 4(1) + 2(2)]

= √2 + 4√3 + 4.

Therefore, S8 is approximately 10.059167.

5. To find the error of S8, we compare it to the exact value of the integral:

Error of S8 = |Exact Value - S8|

= |16/3 - 10.059167|

≈ 0.277500.

Since S8 is larger than the exact value, the error of S8 is over.

To know more about integral refer here:

https://brainly.com/question/31433890#

#SPJ11

Complete Question:

For the definite integral [tex]\int \limits^4_0 \sqrt{x} dx[/tex]

1. Find the exact value of the integral.

2. Find T4, rounded to at least 6 decimal places.

3. Find the error of T4, and state whether it is under or over.

4. Find S8, rounded to at least 6 decimal places.

5. Find the error of S8, and state whether it is under or over.

A company manufactures and sells x television sets per month. The monthly cost and price-demand equations are C(x) = 75,000 + 40x and p(x) = 300-x/20 0<=X<=6000 (A) Find the maximum revenue. (B) Find the maximum profit, the production level that will realize the maximum profit, and the price the company should charge for each television set. What is the maximum profit? What should the company charge for each set? Cif the government decides to tax the company S6 for each set it produces, how many sets should the company manufacture each month to maximize its profit? (A) The maximum revenue is $ (Type an integer or a decimal.)

Answers

A. The maximum revenue is $1,650,000.

B. Profit is given by the difference between revenue and cost, P(x) = R(x) - C(x).

How to find the maximum revenue?

A. To find the maximum revenue, we need to maximize the product of the quantity sold and the price per unit. We can achieve this by finding the value of x that maximizes the revenue function R(x) = x * p(x).

By substituting the given price-demand equation p(x) into the revenue function, we can express it solely in terms of x. Then, we determine the value of x that maximizes this function.

How to find the maximum profit and the corresponding production level and price?

B. To find the maximum profit, we need to consider the relationship between revenue and cost.

Profit is given by the difference between revenue and cost, P(x) = R(x) - C(x). By substituting the revenue and cost functions into the profit function, we can express it solely in terms of x.

To find the maximum profit, we calculate the value of x that maximizes this function.

Furthermore, to determine the production level that will realize the maximum profit and the price the company should charge for each television set, we need to evaluate the corresponding values of x and p(x) at the maximum profit.

Learn more about maximum revenue

brainly.com/question/30236294

#SPJ11







Find a formula for the nth term of the sequence below. -7,7, - 7,7, -7, ... 3 Choose the correct answer below. O A. a, = -7", n21 a= O B. an -7n+1,n> 1 n O c. a, = 7(-1)"+1, n21 O D. a, = 7(-1)", n21

Answers

The formula for the nth term of the sequence is a_n = 7[tex](-1)^n[/tex], where n ≥ 1. Option D is the correct answer.

The given sequence alternates between -7 and 7 repeatedly. We can observe that the sign of each term changes based on whether n is even or odd. When n is even, the term is positive (7), and when n is odd, the term is negative (-7).

Therefore, we can represent the sequence using the formula a_n = 7[tex](-1)^n[/tex], where n ≥ 1. This formula captures the alternating sign of the terms based on the parity of n. When n is even, [tex](-1)^n[/tex] becomes 1, and when n is odd, [tex](-1)^n[/tex] becomes -1, resulting in the desired alternating pattern of -7 and 7. Thus, option D is the correct formula for the nth term of the sequence.

Learn more about the sequence at

https://brainly.com/question/31463410

#SPJ4

The question is -

Find a formula for the nth term of the sequence below. -7,7, - 7,7, -7, ...

Choose the correct answer below.

A. a_n = -7^n, n≥1

B. a_n -7^{n+1}, n≥1

C. a_n = 7(-1)^{n+1}, n≥1

D. a_n = 7(-1)^n, n≥1

Given the function y = –3 cos 2(x + 3) +5 Graph the following for 1 Cycle.

Answers

The graph of the function y = -3cos(2(x + 3)) + 5 represents a cosine function with an amplitude of 3, a period of π, a horizontal shift of 3 units to the left, and a vertical shift of 5 units upward. One cycle of the graph can be observed by evaluating the function for values of x within the interval [0, π].

The function y = -3cos(2(x + 3)) + 5 is a cosine function with a negative coefficient, which reflects the graph across the x-axis. The coefficient of 2 in the argument of the cosine function affects the period of the graph. The period of the cosine function is given by 2π divided by the coefficient, resulting in a period of π/2.

The amplitude of the cosine function is the absolute value of the coefficient in front of the cosine term, which in this case is 3. This means the graph oscillates between a maximum value of 3 and a minimum value of -3.

The horizontal shift of 3 units to the left is indicated by the term (x + 3) in the argument of the cosine function. This shifts the graph to the left by 3 units.

The vertical shift of 5 units upward is represented by the constant term 5 in the function. This shifts the entire graph vertically by 5 units.

To observe one cycle of the graph, evaluate the function for values of x within the interval [0, π]. Plot the corresponding y-values on the graph to visualize the shape of the cosine function within that interval.

Learn more about cosine function here: brainly.com/question/3876065

#SPJ11

Given the vectors v and u, answer a. through d. below. v=6i +3j - 2k u = 7i+24j a. Find the dot product of v and u. u.v= www

Answers

The dot product of the given two vectors u and v is 114. Let's look at the calculations below:

To find the dot product of two vectors, v and u, we need to multiply their corresponding components and sum them up. Let's calculate the dot product of v and u using the given vectors:

v = 6i + 3j - 2k

u = 7i + 24j

The dot product (also known as the scalar product) of v and u is denoted as v · u and is calculated as follows:

v · u = (6 * 7) + (3 * 24) + (-2 * 0) [since the k component of vector u is 0]

Calculating the above equation:

v · u = 42 + 72 + 0

v · u = 114

Therefore, the dot product of v and u is 114. The dot product represents the magnitude of the projection of one vector onto the other, and it is a scalar value. In this case, it indicates how much v and u align with each other in the given coordinate system.

To learn more about dot product:

https://brainly.com/question/31728238

#SPJ11

Consider the function f(x, y) := x2y + y2 − 3y.
(a) Find and classify the critical points of f(x, y).
(b) Find the absolute maximum and minimum values ​​in the region x2 + y2 ≤ 9/4 for the
function f(x, y).
(You are expected to use the method of Lagrange multipliers in this part.)

Answers

The absolute maximum value of f(x, y) in the region x² + y² ≤ 9/4 is approximately 2.836,

(a) Critical points are the points where the gradient of the function f(x, y) is equal to zero.

Therefore, we calculate the gradient:

∇f(x, y) = (2xy, x² + 2y - 3).

Thus, we set the equations 2xy = 0 and x² + 2y - 3 = 0, which yield two critical points:(0, 3/2) and (±√3/2, 0).

To classify these critical points, we need to calculate the Hessian matrix Hf(x, y) of second partial derivatives:

[tex]Hf(x, y) = \begin{pmatrix} 2y & 2x \\ 2x & 2 \end{pmatrix}.[/tex]

We then plug in the coordinates of the critical points into Hf and analyze the eigenvalues of the resulting matrix:

[tex]Hf(0, 3/2) = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix},[/tex]

which has positive eigenvalues, so it is a local minimum.

[tex]Hf(\sqrt{3}/2, 0) = \begin{pmatrix} 0 & √3 \\ √3 & 2 \end{pmatrix},[/tex]

which has positive and negative eigenvalues, so it is a saddle point.

[tex]Hf(-\sqrt3/2, 0) = \begin{pmatrix} 0 & -√3 \\ -√3 & 2 \end{pmatrix},[/tex]

which has positive and negative eigenvalues, so it is a saddle point.

(b) To find the absolute maximum and minimum values of f(x, y) in the region x² + y² ≤ 9/4, we use the method of Lagrange multipliers. We need to minimize and maximize the function F(x, y, λ) := f(x, y) - λ(g(x, y) - 9/4), where g(x, y) = x² + y². Thus, we calculate the partial derivatives:

∂F/∂x = 2xy - 2λx, ∂F/∂y = x² + 2y - 3 - 2λy, ∂F/∂λ = g(x, y) - 9/4 = x² + y² - 9/4.

We set them equal to zero and solve the resulting system of equations:

2xy - 2λx = 0, x² + 2y - 3 - 2λy = 0, x² + y² = 9/4.

We eliminate λ by multiplying the first equation by y and the second equation by x and subtracting them:

2xy² - 2λxy = 0, x³ + 2xy - 3x - 2λxy = 0.x(x² + 2y - 3) = 0, y(2xy - 3x) = 0.

If x = 0, then y = ±3/2, which are the critical points we found in part (a).

If y = 0, then x = ±√3/2, which are also critical points. If x ≠ 0 and y ≠ 0, then we divide the second equation by the first equation and solve for y/x:

y/x = (3 - x²)/(2x), 0 = y² + x² - 9/4.4y² = (3 - x²)², 4x²y² = (3 - x²)².y² = (3 - x²)/4, 4x²(3 - x²)/16 = (3 - x²)².y² = (3 - x²)/4, 4x²(3 - x²) = 4(3 - x²)².4x² - 4x⁴ = 0, x⁴ - x² + 3/4 = 0.x² = (1 ± √5)/2, y² = (3 - x²)/4 = (5 ∓ √5)/4.

We discard the negative values of x² and y², since they do not satisfy the condition x² + y² ≤ 9/4. Thus, we have three critical points:(0, ±3/2), (√(1 + √5/2), √(5 - √5)/2), and (-√(1 + √5/2), √(5 - √5)/2).

We plug in these critical points and the boundaries of the region x² + y² = 9/4 into f(x, y) and compare the values. We obtain:f(0, ±3/2) = -27/4, f(±√3/2, 0) = -9/4,f(±(1 + √5)/2, √(5 - √5)/2) ≈ 2.836,f(±(1 + √5)/2, -√(5 - √5)/2) ≈ -1.383,f(x, y) = -3y for x² + y² = 9/4.

Therefore, the absolute maximum value of f(x, y) in the region x² + y² ≤ 9/4 is approximately 2.836, attained at the points (±(1 + √5)/2, √(5 - √5)/2), and the absolute minimum value is -27/4, attained at the points (0, ±3/2).

Learn more about Hessian matrix :

https://brainly.com/question/32250866

#SPJ11

Other Questions
For this problem, assume that all the odd numbers are equally likely, all the even numbers are equally likely, the odd numbers are k times as likely as the even numbers, and Pr[4]=19. What is the value of k? explain the adaptive value of rough-and-tumble play and dominance hierarchies I really need help u guys .Select the statements below that accurately describe the Pleistocene glaciation. (Select all that apply.)At its greatest extent, glaciers covered basically all of Canada and much of the northern United States.Sea levels were low worldwide. critical thinking has allowed psychologists to debunk the claim that En una clase de 3 de la ESO hay 16 chicas y 14 chicos, si se escoge una persona al azar haya las probabilidades de que sea una chica y de que sea un chico. 2+3 In x 9. For the function f(x) = = 4-Inx TRU Open Learning a. Find f-1(x). I understand the part where you get to Inx=4y-2/3+y but I don't understand why the answer is x = e^(4y-2)/(3+y) why does e low-cost leadership is one of the four basic competitive strategies. molecule has sp3 hybridization with 1 lone pair. ... the electron pair geometry of this molecule is: solve?Write out the first four terms of the Maclaurin series of S(x) if SO) = -9, S'(0) = 3, "O) = 15, (0) = -13 managers use sales variances for: multiple choice planning purposes only. budgeting purposes only. control purposes only. planning and control purposes. planning and budgeting purposes. HELP!!! what is the answer!!!! Departmental contribution to overhead is the same as gross profit generated by that department. True False' Find the absolute maximum and minimum values of the function over the indicated interval, and indicate the x-values at which they occur. f(x)=x-8x-5; [0,7] Find the first derivative off. f'(x) = (Simplify your answer.) The absolute maximum value is at x = (Use a comma to separate answers as needed.) The absolute minimum value is at x = (Use a comma to separate answers as needed.) how do you plan on expanding your copetence related to assessedconflict dynamics? Whats the approximate probability that the average price for 16 gas stations is over $4.69? Show me how you got your answer by Using Excel and the functions used.almost zero0.15870.0943unknown nordstrom's rack is an off-price retailer that sells designer clothes. all of the following describe off-price retailers like nordstrom's rack except _______. Problem: 7 Production of a certain chemical mixture should contain 80 mg. chlorides, 28 mg. nitrates and 36 mg. of sulphate. The company can use two substances. Substances P contain 8 mg. chlorides, 4 mg. nitrates and 6 mg. of sulphate per gallon. Substance Q contains 10 mg. chlorides, 2 mg. nitrates and 2 mg. of sulphate per gallon. Both substances cost tk.20 per gram. a. It is required to produce the mixture using substances P and Q so that the cost is minimized. b. Identify and calculate the surplus/slack. solution Which of the following statements DOES NOT best describe chemical equilibrium? Select an answer and submit. For keyboard navigation, use the up/down arrow keys to select an answer. a Reactants form products as fast as products form reactants. The frequencies of the reactant and product collisions are identical. C The rate of product and reactant molecules are identical. The concentrations of products and reactants are identical. find the interquartile range of the data set. 11, 14, 20, 21, 24, 30, 31 find the interquartile range of the data set. 11, 14, 20, 21, 24, 30, 31 14 16 30 21 Steam Workshop Downloader