Can a single atom be considered a molecule?
A:only if the atom is found in water
B:no, it takes two or more atoms bonded to create a molecule
C:only if it is an oxygen atom floating in the air
D:yes, all atoms are made up of many different molecules

Answers

Answer 1
Answer is B. Atoms must be bonded together to create molecules.

Related Questions

A bicycle racer rides from a starting marker to a turnaround marker at 10 m/s. She then rides back along the same route from the turnaround marker to the starting marker at 16 m/s. What is her average speed for the whole race?

Answers

Answer:

12.31 m/s

Explanation:

If we recall from the previous knowledge we had about speed,

we will know that:

speed = distance/ time.

As such:

The average speed of the rider bicycle is

average speed = total distance/ total time

Mathematically, it can be computed as:

[tex]v_{avg} = \dfrac{d+d}{\dfrac{d}{v_1}+ \dfrac{d}{v_2}}[/tex]

[tex]v_{avg} = \dfrac{2d}{\dfrac{d}{10 \ m/s}+ \dfrac{d}{16 \ m/s}}[/tex]

[tex]v_{avg} = \dfrac{2}{\dfrac{1}{10 \ m/s}+ \dfrac{1}{16 \ m/s}}[/tex]

[tex]v_{avg} = \dfrac{2}{\dfrac{13}{80 \ m/s}}[/tex]

[tex]\mathbf{v_{avg} =12.31 \ m/s}[/tex]

1.How much work does it take to get a 2Kg ball moving 15m/s if it starts from rest?

2. If a force of 235N was added to the ball, through what distance would this force have to act to give the ball a velocity of 15m/s

Answers

Well Hmm how much you tell me it’s your work lol

at what speed does the kg ball move ?

Answers

Answer:  Choice A) 2 meters per second

=======================================================

Explanation:

The smaller ball has momentum of

p = m*v

p = (1 kg)*(4 m/s)

p = 4 kg*m/s

All of this momentum transfers into the larger ball because the smaller ball comes to a complete stop.

For the larger ball, we have p = 4 and m = 2. Let's find v.

p = m*v

4 = 2*v

4/2 = v

2 = v

v = 2 m/s which is why the answer is choice A

The larger ball moves at a speed of 2 meters per second. The speed is cut in half compared to the smaller ball because the larger ball has more inertia (aka more mass), and therefore it takes more energy to move it. If you apply the same energy to each, then the smaller object moves faster.

Our Sun’s mass is 1.0 and our Earth’s mass is 2.0. The distance is standard as given on the simulation. Describe the path of the Earth.

Answers

Answer:

Earth orbits the Sun at an average distance of 149.60 million km (92.96 million mi), and one complete orbit takes 365.256 days (1 sidereal year), during which time Earth has traveled 940 million km (584 million mi).

Explanation:

To understand and apply the formula τ=Iα to rigid objects rotating about a fixed axis. To find the acceleration a of a particle of mass m, we use Newton's second law: F net=ma , where F net is the net force acting on the particle.To find the angular acceleration α of a rigid object rotating about a fixed axis, we can use a similar formula: τnet=Iα, where τnet=∑τ is the net torque acting on the object and I is its moment of inertia.
Part A:
Assume that the mass of the swing bar, is negligible. Find the magnitude of the angular acceleration α of the seesaw.
Express your answer in terms of some or all of the quantities m1, m2, l, as well as the acceleration due to gravity g.
Part B:
Now consider a similar situation, except that now the swing bar itself has mass mbar.Find the magnitude of the angular acceleration α of the seesaw.
Express your answer in terms of some or all of the quantities m1, m2, mbar, l, as well as the acceleration due to gravity g.

Answers

Answer:

Hello your question is incomplete attached below is the missing part of the question

In this problem, you will practice applying this formula to several situations involving angular acceleration. In all of these situations, two objects of masses m1 and m2 are attached to a seesaw. The seesaw is made of a bar that has length l and is pivoted so that it is free to rotate in the vertical plane without friction. Assume that the pivot is attached tot he center of the bar.

You are to find the angular acceleration of the seesaw when it is set in motion from the horizontal position. In all cases, assume that m1>m2.I

answer : part A = 2*[(M1 - M2)/(M1 + M2)]*g/L

              part A = attached below

Explanation:

Part A :

Assuming that mass of swing is negligible

α = T/I

where ; T = torque, I = inertia,

hence T =  L/2*9*(M1 - M2)

also;  I = [tex]M1*(L/2)^2 + M2*(L/2)^2[/tex]=  ( M1 + M2) * (L/2)^2

Finally the magnitude of the angular acceleration α

α = 2*[(M1 - M2)/(M1 + M2)]*g/L

Part B attached below

A rectangular reflecting pool is 85.0 ft wide and 120 ft long. What is the area of the pool in square meters?

Answers

The area of the pool in square meters is 947.611008

A racecar makes 24 revolutions around a circular track of radius 2 meters in
162 seconds. Find the racecar's frequency

Answers

Answer:

[tex]0.15\: \mathrm{Hz}[/tex]

Explanation:

The frequency is of an object is given by [tex]f=\frac{1}{T}[/tex], where [tex]T[/tex] is the orbital period of the object.

Since the racecar makes 24 revolutions around a circular track in 162 seconds, it will take the racecar [tex]\frac{162}{24}=6.75\:\mathrm{s}[/tex] per revolution.

Therefore, the frequency of the racecar is [tex]\frac{1}{6.75}=\fbox{$0.15\:\mathrm{Hz}$}[/tex] (two significant figures).

The radius of the track is irrelevant in this problem.

Suppose a wheel with a tire mounted on it is rotating at the constant rate of 2.69 times a second. A tack is stuck in the tire at a distance of 0.331 m from the rotation axis. Noting that for every rotation the tack travels one circumference, find the tack's tangential speed.

Answers

Answer:

the tack's tangential speed is  5.59 m/s

Explanation:

Given that;

R = 0.331 m

wheel rotates 2.69 times a second which means, the wheel complete 2.69 revolutions in a second, so

ω = 2.69 rev/s × 2π/1s = 16.9 rad/s

using the relation of angular speed with tangential speed

tangential speed v of the tack is expressed as;

v = R × ω

so we substitute

v = 0.331 m × 16.9 rad/s

v = 5.59 m/s

Therefore, the tack's tangential speed is  5.59 m/s

A bat at rest sends out ultrasonic sound waves at 46.2 kHz and receives them returned from an object moving directly away from it at 21.8 m/s, what is the received sound frequency?
f= ? Hz

Answers

Answer:

f" = 40779.61 Hz

Explanation:

From the question, we see that the bat is the source of the sound wave and is initially at rest and the object is in motion as the observer, thus;

from the Doppler effect equation, we can calculate the initial observed frequency as:

f' = f(1 - (v_o/v))

We are given;

f = 46.2 kHz = 46200 Hz

v_o = 21.8 m/s

v is speed of sound = 343 m/s

Thus;

f' = 46200(1 - (21/343))

f' = 43371.4285 Hz

In the second stage, we see that the bat is now a stationary observer while the object is now the moving source;

Thus, from doppler effect again but this time with the source going away from the obsever, the new observed frequency is;

f" = f'/(1 + (v_o/v))

f" = 43371.4285/(1 + (21.8/343))

f" = 40779.61 Hz

true or false A person's speed around the Earth is faster at the poles than it is at the equator.

Answers

Answer:False

Explanation:The Earth rotates faster at the equator than at the poles.

what are ribosomes?

I'm tired. But I have insomnia. Big ugh moment. <.<.

Answers

Answer:

Ribosomes are organelles the make protein for the cell.

Two 0.60-kilogram objects are connected by a thread that passes over a light, frictionless pulley. The objects are initially held at rest. If a third object with a mass of 0.30 kilogram is added on top of one of the 0.60-kilogram objects and the objects are released, the magnitude of the acceleration of the 0.30-kilogram object is most nearly:______

Answers

Answer:

2 m/s²

Explanation:

From the given information:

The first mass m_1 = 0.6 kg

The second mass m_2 = 0.3 kg

The magnitude for the acceleration of 0.3 kg is:

a = net force/ effective mass

Mathematically, it can be computed as follows:

[tex]a = \dfrac{F}{m}[/tex]

[tex]a = \dfrac{(m_2 +m_1 -m_1) }{(m_2+m_1+m_1)}(g)[/tex]

[tex]a = \dfrac{0.3 +0.6 -0.6}{(0.3 +0.6+0.6)}(9.8)[/tex]

a ≅ 2 m/s²

Which action will leave the dump trucks inertia unchanged?? PLEASE ANSWER FAST!!!
A. add gas
B. increase force applied to engine

Answers

Answer:

B.

Explanation:

A safety plug is designed to melt when the pressure inside a metal tank becomes too high. A gas
at 51.0 atm and a temperature of 23.0°C is contained in the tank, but the plug melts when the
pressure reaches 75.0 atm. What temperature did the gas reach?

Answers

The plug is 6 but u have to divert by the scale to form 5 .C

WHat does that mean?

Answers

It means to get rid of something

In the equation for the gravitational force between two objects, which quantity must be squared?
•mi
•m2
•G
•d

Answers

Answer:

d

Explanation:

The quantity that must be squared in the equation of gravitational force is distance d.

According to the universal gravitational law, the square of the distance between two objects is inversely proportional to the force of gravity.

Therefore, the quantity to be squared is d

The formula is given as:

  Fg  = [tex]\frac{G m_{1} m_{2} }{d^{2} }[/tex]  

So d is the quantity that must be squared

A pingpong ball has 2 kg/s of momentum when
thrown 8 m/s. Find the mass of the ball.

Answers

Answer:

0.25 kg

Explanation:

p = mv

2 = m(8)

2/8 = m(8)/8 *cancels

m = 1/4 OR 0.25 kg

A 12-kg object is moving rightward with a constant velocity of 4 m/s. How much net force is required to keep the object moving with
the same speed and in the same direction?

Answers

c an s and yes ihavetotypemore

There are two different isotopes; X and Y, both contain the same number of radioactive substances. If sample X
has a longer half-life than Y, compare their rate of radioactive decay.
O A. Rate does not depend on half-life
B. Both of their rates are equal
O C. X has a smaller rate than Y
O D. X has a greater rate than Y​

Answers

Answer:

Half life refers to the time for 1/2 of the radioactive atoms to decay.

Suppose that X has a half life of 10 days and Y has a half life of 20 days

If both start out with 1000 radioactive atoms then after 20 days

X would have 250 radioactive atoms and Y would have 500 atoms

The rate of decay is greater for the shorter half life:

In the example given X  must have the smaller rate of decay because it has a longer half life.

A small rock is thrown vertically upward with a speed of 17.0m/s from the edge of the roof of a 26.0m tall building. The rock doesn't hit the building on its way back down and lands in the street below. Air resistance can be neglected.
Part A
What is the speed of the rock just before it hits the street?
Express your answer with the appropriate units.
Part B
How much time elapses from when the rock is thrown until it hits the street?
Express your answer with the appropriate units.

Answers

Answer:

A) v = 28.3 m/s

B) t =  4.64 s

Explanation:

A)

Assuming no other forces acting on the rock, since the accelerarion due to gravity close to the surface to the Earth can be taken as constant, we can use one of the kinematic equations in order to get first the maximum height (over the roof level) that the ball reaches:

        [tex]v_{f}^{2} - v_{o}^{2} = 2* g* \Delta h (1)[/tex]

Taking into account that at this point, the speed of the rock is just zero, this means vf=0 in (1), so replacing by the givens and solving for Δh, we get:

       [tex]\Delta h = \frac{-v_{o} ^{2}}{2*g} = \frac{-(17.0m/s)^{2} }{2*(-9.8m/s2)} = 14.8 m (2)[/tex]

So, we can use now the same equation, taking into account that the initial speed is zero (when it starts falling from the maximum height) and that the total vertical displacement is the distance between the roof level and the ground (26.0 m) plus the maximum height that we have just found in (2) , 14.8m:Δh = 26.0 m + 14. 8 m = 40.8 m (3)Replacing now in (1), we can solve for vf, as follows:

       [tex]v_{f} =\sqrt{2*g*\Delta h} = \sqrt{2*9.8m/s2*40.8m} = 28.3 m/s (4)[/tex]

B)

In order to find the total elapsed from when the rock is thrown until it hits the street, we can divide this time in two parts:1) Time elapsed from the the rock is thrown, until it reaches to its maximum height, when vf =02) Time elapsed from this point until it hits the street, with vo=0.For the first part, we can simply use the definition of acceleration (g in this case), making vf =0, as follows:

       [tex]v_{f} = v_{o} + a*\Delta t = v_{o} - g*\Delta t = 0 (5)[/tex]

Replacing by the givens in (5) and solving for Δt, we get:

       [tex]\Delta t = \frac{v_{o}}{g} = \frac{17.0m/s}{9.8m/s2} = 1.74 s (6)[/tex]

For the second part, since we know the total vertical displacement from (3), and that vo = 0 since it starts to fall, we can use the kinematic equation for displacement, as follows:

       [tex]\Delta h = \frac{1}{2} * g * t^{2} (7)[/tex]

Replacing by the givens and solving for t in (7), we get:

       [tex]t_{fall} =\sqrt{\frac{2*\Delta h}{g}} = \sqrt{\frac{2*40.8m}{9.8m/s2} } = 2.9 s (8)[/tex]

So, total time is just the sum of (6) and (8):t = 2.9 s + 1.74 s = 4.64 s

Two spherical objects have masses of 100 kg and 200 kg. Their centers are
separated by a distance of 40 cm. Find the gravitational attraction between
them.

Answers

Answer:

8.34 x 10⁻⁶N

Explanation:

Given parameters:

Mass 1  = 100kg

Mass 2 = 200kg

Distance of separation  = 40cm = 0.4m

Unknown:

Gravitational force of attraction between them  = ?

Solution:

To solve this problem, we use the expression below which is derived from the Newton's law of universal gravitation:

           Fg  = [tex]\frac{G x mass 1 x mass 2}{d^{2} }[/tex]

G is the universal gravitation constant = 6.67 x 10⁻¹¹

d is the separation

 Now;

  Fg = [tex]\frac{6.67 x 10^{-11} x 100 x 200}{0.4^{2} }[/tex]   = 8.34 x 10⁻⁶N

Plz help this is so confusing

Answers

Answer:

5 Km/h

Explanation:

From the question given above, the following data were obtained:

Distance travelled = 10 Km

Time = 2 hours

Speed =?

Speed is simply defined as the distance travelled per unit time. Mathematically, it can be represented as:

Speed = distance travelled /time.

With the above formula, we can obtain the speed at which the duck is travelling as follow:

Distance travelled = 10 Km

Time = 2 hours

Speed =?

Speed = distance travelled /time.

Speed = 10 / 2

Speed = 5 Km/h

Thus, the duck is travelling at a speed of 5 Km/h

The second law of thermodynamics imposes what limit on the efficiency of a heat engine?
A. The energy a heat engine must deposit in a cold reservoir is greater than or equal to the energy it extracts from a hot reservoir.
B. The energy a heat engine must deposit in a cold reservoir is greater than or equal to the energy extracted as useful work.
C. A heat engine must deposit some energy in a cold reservoir.

Answers

Answer:

C. A heat engine must deposit some energy in a cold reservoir.

Explanation:

The second law of thermodynamics says that "It is impossible to extract an amount of heat Q from a hot reservoir and use it all to do work W. Some amount of heat q must be exhausted to a cold reservoir."

This means that if we extract an amount of heat Q from the hot reservoir, the work W can never be exactly equal to Q, then there is a surplus of heat q that must be deposited in a cold reservoir.

Then we have the equation:

Q = W + q

From this we can conclude that the correct option is:

C. A heat engine must deposit some energy in a cold reservoir.

There will be always some energy that is not transformed into work, and is deposited in a cold reservoir.

C. A heat engine must deposit some energy in a cold reservoir.

The second law of thermodynamics says that "It is impossible to extract an amount of heat Q from a hot reservoir and use it all to do work W. Some amount of heat q must be exhausted to a cold reservoir". This means that if we extract an amount of heat Q from the hot reservoir, the work W can never be exactly equal to Q, then there is a surplus of heat q that must be deposited in a cold reservoir. Then we have the equation: Q = W + q There will be always some energy that is not transformed into work, and is deposited in a cold reservoir.

Therefore, option C is correct.

Learn more:

brainly.com/question/17172535

A car is traveling at a constant speed of 20 m/s for 3 seconds. Then the driver puts on the brakes. The total distance the car travels is 100 m. What is the total time the car was moving?

Answers

Answer:

15 seconds

Explanation:

If car was moving at 20m/s for 3 sec.

if car traveled 100m = 15 sec total

Assuming no friction, how does the initial gravitational potential energy of
the marble on a downward slope compare to the final kinetic energy?

a) they are the same
b) the initial gravitational potential energy is greater than the final kinetic energy
c) the initial gravitational potential energy is less then the final kinetic energy

Answers

Answer:

a) They are the same.

Explanation:

Assuming no friction, there should be no energy transfer and thus the Law of Conservation of Energy says:

[tex]PE=KE,\\mgh=\frac{1}{2}mv^2[/tex]

These types of problems also disregard any air resistance the surface of the object may cause. Therefore, no energy is transferred and from the Law of Conservation of Energy, [tex]100\%[/tex] of energy is preserved.

John runs 3 km north then walks 2 km south. What is his total distance traveled and displacement?

Answers

Answer:

the total distance is 5km and the displacement is 1km

Explanation:

The total distance would be the addition of John running both ways so 3 km, 2 km.

However since he only walked back from a distance of 3 km to 2 km, he would be displaced 1 km because displacement is more like the position from the original point.

Think about 2 km as a positive value for the first part of the question and a negative value for the second part.

which changes will increase the rate of reaction during combustion

Answers

Answer:

reducing temperature of the surrounding

Explanation:

combustion reactions are exothermic so they give off heat. reducing the temperature of the surrounding will enable more efficient energy transfer

A student asks the following question:
"If all things with mass have a gravitational field, why doesn't this glue bottle and
stapler, sitting on the counter, stick together because of gravitational forces?"
Which classmate answers correctly?
Ashton says that the gravitational fields between the bottle and the stapler
cancel out because of Newton's 3rd Law.
O Natalie says that all things with mass have a gravitational field, but the force is
very weak and cannot be perceived around small objects.
Xavier says the bottle and the stapler are way too small to have a gravitational
field.
Katherine says the bottle and the stapler have a strong gravitational field, and
would move towards each other quickly if there were no friction on the counter.

Answers

Answer:

  Natalie says that all things with mass have a gravitational field, but the force is very weak and cannot be perceived around small objects.

Explanation:

The force due to gravity is proportional to the mass of the object and inversely proportional to the square of the distance between objects. The Earth is so massive that the force due to its gravity is much greater than the force between objects on the counter.

If there were no friction, the objects might move toward each other, depending on what other masses were near them tending to cause them to move in other directions.

Natalie's explanation is about the best.

__

Additional comment

The universal gravitational constant was determined by Henry Cavendish in the late 18th century using lead balls weighing 1.6 pounds and 348 pounds. His experiment was enclosed in a large wooden box to minimize outside effects. While these masses are somewhat greater than those of a glue bottle and stapler, the experiment shows the force of gravity between "small" objects can be measured.

The speed limit on some segments of interstate 4 is 70 mph. What is this in km/h?

Answers

Answer:

112.63km/hr

Explanation:

The given dimension is :

         70mph

We are to convert this to km/hr

         1 mile  = 1.609km

         

so;

     70mph x 1.609    = 112.63km/hr

So,

  The solution is 112.63km/hr

A receiver catches a football on the 50.0 yard line and is tackled 5.42 seconds later on the 12 yard line. What
was the runner's average speed?

Answers

Answer:

7.01yard/sec

Explanation:

Given parameters:

Initial position  = 50yard

Final position = 12yard

Time  = 5.42s

Unknown:

Average speed of runner  = ?

Solution:

To solve this problem;

        Speed  = [tex]\frac{distance}{time}[/tex]  

Distance covered  = Initial position  - final position  = 50 - 12  = 38yards

So;

       Speed  = [tex]\frac{38}{5.42}[/tex]   = 7.01yard/sec

Other Questions
what is 46274648354846374 times 77466 WILL MARK BRAINLIEST TO THE PERSON WITH THE BEST ANSWER!!! PLEASE ANSWER ALL QUESTIONS AND PLEASE SHOW FULL SOLUTIONS! PLEASE MAKE SURE YOU DID IT RIGHT. I NEED EVIDENCE THAT SHOWS WHY ITS THE ANSWER. THANK YOU. what is the area of this circle pls help Who would most likely receive a business memo?A. A friendB. A coworkerC. A family member without e-mailD. An enemy By calling people "aliens", how does this allow the government to ignore these people's inalienable rights? A picture frame can hold a photograph that is 16 inches long and 12 inches wideWhat is the area of the photo that fits the frame? PLS HELP ME FAST!!!!!use one singular proper noun in a sentence Occurs when the rotation of the Earth causes air movement to curve land breeze sea breeze Coriolis effect Jolie purchased a concert ticket on a web site. The original price of the ticket was $110. She used a coupon code to receive a 15% discount. The web site applied a 10% service fee to the discounted price. Jolies ticket was less than the original price by what percent? all you need is in the photo If y = 4x + 3 is changed to y = 7x-1, how would the graph of the new function compare with the firstone? Describe its steepness and how it might shift. the 1 i marked i didnt mean to mark i need help with this Thought about earth science and what to learn about it Answer these two and get marked as barinliest!!! what is 8530 TYPE FAST The 49th parallel was set as the boundary between the United States and Canada by which event?A. Adams-Ons TreatyB.Convention of 1818C.Gadsden purchase D.Mexican Cession PLEASE HELP I WILL MARK BRAINLY 1.How much work does it take to get a 2Kg ball moving 15m/s if it starts from rest?2. If a force of 235N was added to the ball, through what distance would this force have to act to give the ball a velocity of 15m/s Which stage of HIV would a client with a CD4+ T-cell count of 325 cells/mm' be classified?Stage 1Stage 2Stage 3Stage 4ConfidentNot sure