n 3n2 + n. 2. For every integer n > 1, prove that Σ(6i – 2) 1=1

Answers

Answer 1

Answer:

Here the answer

Step-by-step explanation:

Hope you get it

N 3n2 + N. 2. For Every Integer N > 1, Prove That (6i 2) 1=1

Related Questions

find the coordinate vector of w relative to the basis = {u1 , u2 } for 2 . a. u1 = (2, −4), u2 = (3, 8); w = (1, 1) b. u1 = (1, 1), u2 = (0, 2); w = (a, b)

Answers

a. The coordinate vector of w relative to the basis {u1, u2} for 2 is (-5/14, 3/7).To find the coordinate vector of w relative to the basis {u1, u2} for 2, we need to use the formula:(w1, w2) = c1(u1) + c2(u2)where (w1, w2) is the coordinate vector of w relative to the basis {u1, u2} for 2, c1 and c2 are scalars and (u1, u2) is the basis for 2. Plugging in the values we get:(1, 1) = c1(2, -4) + c2(3, 8)Solving for c1 and c2 using the matrix method we get:c1 = -5/14 and c2 = 3/7Therefore, the coordinate vector of w relative to the basis {u1, u2} for 2 is (-5/14, 3/7).

b. The coordinate vector of w relative to the basis {u1, u2} for 2 is (a, (b-2a)/2).To find the coordinate vector of w relative to the basis {u1, u2} for 2, we need to use the formula:(w1, w2) = c1(u1) + c2(u2)where (w1, w2) is the coordinate vector of w relative to the basis {u1, u2} for 2, c1 and c2 are scalars and (u1, u2) is the basis for 2. Plugging in the values we get:(a, b) = c1(1, 1) + c2(0, 2)Solving for c1 and c2 we get:c1 = a and c2 = (b-2a)/2Therefore, the coordinate vector of w relative to the basis {u1, u2} for 2 is (a, (b-2a)/2).

Know more about coordinate vector here:

https://brainly.com/question/12630376

#SPJ11

The half-life of a radioactive element can be modelled by M = M0 (1/8)t/18, where M0 is the elapsed time in hours, and M is the mass that remains after time t.
a) What is the half-life of the element?
b) If the initial mass of the element is 500 g. How much element remains after 2 days?
c) How long will it talk for the element to reduce to one sixteenth of its initial mass?

Answers

Given: The half-life of a radioactive element can be modeled by M = M0 (1/8)t/18, where M0 is the elapsed time in hours, and M is the mass that remains after time t. Formula for half-life is given by: A = A₀ (1/2)^(t/h)Where A₀ = initial mass of the substance, A = remaining mass of the substance, t = elapsed time, h = half-life of the substance

a) What is the half-life of the element? Given, M = M₀ (1/8)^(t/18)Let's compare this with the formula for half-life, A = A₀ (1/2)^(t/h)On comparing, A₀ = M₀, A = M, (1/2) = (1/8), h = 18We know that for both the formulae to be equal, h = ln2/λSo, ln2/λ = 18 => λ = ln2/18 => h = 18/ln2 = 25.05 hours. Therefore, the half-life of the element is 25.05 hours.

b) If the initial mass of the element is 500 g. How much element remains after 2 days? Given, initial mass, A₀ = 500 g, elapsed time, t = 2 days = 48 hours. We know that A = A₀ (1/2)^(t/h)Putting the values, A = 500 (1/2)^(48/25.05) => A = 171.62 g. Therefore, the remaining mass of the element after 2 days is 171.62 g.

c) How long will it take for the element to reduce to one-sixteenth of its initial mass? Given, A₀ = 500 g, A = A₀/16 = 31.25 g. We know that A = A₀ (1/2)^(t/h)Putting the values, 31.25 = 500 (1/2)^(t/25.05) => (1/16) = (1/2)^(t/25.05)Taking log on both sides, log(1/16) = log[(1/2)^(t/25.05)] => -4 = t/25.05 => t = -100.2 hours. Time cannot be negative, so it will take 100.2 hours for the element to reduce to one-sixteenth of its initial mass. An alternate method can be used where we can replace 1/2 with 1/8 in the formula A = A₀ (1/2)^(t/h). In that case, h will be 75.2 hours. By putting the values in the equation, we get t = 100.2 hours. The result is the same as the above method.

Learn more about half life of a radioactive element:

https://brainly.com/question/1160651

#SPJ11

For questions 8, 9, 10: Note that x² + y² = 1² is the equation of a circle of radius 1. Solving for y we have y = √1-², when y is positive. 8. Compute the length of the curve y-√1-² between x = 0 and x = 1 (part of a circle.)

Answers

To compute the length of the curve y = √(1 - x²) between x = 0 and x = 1, we use the formula for the arc length of a curve. In this case, we can treat y as a function of x and integrate the square root of (1 + (dy/dx)²) over the given interval.

The formula for the arc length of a curve is given by the integral of √(1 + (dy/dx)²) dx. In this case, the equation of the curve is y = √(1 - x²). To find dy/dx, we take the derivative of y with respect to x, which gives dy/dx = -x/√(1 - x²).

Now we can compute the length of the curve between x = 0 and x = 1. Substituting the expression for dy/dx into the formula for arc length, we have ∫√(1 + (-x/√(1 - x²))²) dx from 0 to 1. Evaluating this integral will give us the length of the curve.

To learn more about  derivatives click here :

brainly.com/question/29144258

#SPJ11




Use the method of undetermined coefficients to find a general solution to the system x'(t) = Ax(t) + f(t), where A and f(t) are given. 7 10 A= f(t) = 53 - 7 .. X(t) =

Answers

Therefore, the general solution of x'(t) = Ax(t) + f(t) is:

x(t) = c1e^(7/10+i)t [1/i, 1] + c2e^(7/10-i)t [-1/i, 1] + (400/49) t + (2800/343)

The given system is x'(t) = Ax(t) + f(t), where A and f(t) are given. We are to use the method of undetermined coefficients to find a general solution to the given system. The given values of A and f(t) are: A = 7 10 and f(t) = 53 - 7.

The general solution of x'(t) = Ax(t) is x(t) = c1e^λ1t v1 + c2e^λ2t v2 where λ1, λ2 are eigenvalues and v1, v2 are eigenvectors of A. We can find the eigenvalues and eigenvectors of A as follows:

Let λ be an eigenvalue of A. Then we have:

|A - λI| = 0

where I is the identity matrix. We have:

|A - λI| = |7/10 - λ   1|
                          |-1      7/10 - λ|

= (7/10 - λ)^2 + 1

Therefore, the eigenvalues of A are:

λ1 = 7/10 + i and λ2 = 7/10 - i.

Now, we find the eigenvectors corresponding to each eigenvalue:

For λ1 = 7/10 + i, we have:

(A - λ1I)v1 = 0

or

[(7/10 - (7/10 + i))  1] [v1] = [0]
                                              [-1   (7/10 - (7/10 + i))]  [v2]   [0]

or

[0   1] [v1] = [0]
         [-1  -i] [v2]   [0]

or

v1 = [1/i, 1]

For λ2 = 7/10 - i, we have:

(A - λ2I)v2 = 0

or

[(7/10 - (7/10 - i))  1] [v1] = [0]
                                              [-1   (7/10 - (7/10 - i))]  [v2]   [0]

or

[0   1] [v1] = [0]
         [-1  i] [v2]   [0]

or

v2 = [-1/i, 1]

Therefore, the general solution of x'(t) = Ax(t) is:

x(t) = c1e^(7/10+i)t [1/i, 1] + c2e^(7/10-i)t [-1/i, 1]

To find the particular solution of x'(t) = Ax(t) + f(t), we use the method of undetermined coefficients. Since f(t) = 53 - 7t is a polynomial of degree 1, we assume the particular solution to be of the form:

[tex]x_p(t) = at + b[/tex]

where a and b are constants to be determined. We have:

x'_p(t) = a

and

x_p(t) = at + b

Therefore,

x'_p(t) = Ax_p(t) + f(t)

becomes

a = 7/10 a + (53 - 7t) and
0 = -a + 7/10 b

Solving these equations for a and b, we obtain:

a = 400/49 and b = 2800/343

Thus, the particular solution of x'(t) = Ax(t) + f(t) is:

x_p(t) = (400/49) t + (2800/343)

Therefore, the general solution of x'(t) = Ax(t) + f(t) is:

x(t) = c1e^(7/10+i)t [1/i, 1] + c2e^(7/10-i)t [-1/i, 1] + (400/49) t + (2800/343)

To know more about eigenvectors visit:

https://brainly.com/question/31043286

#SPJ11

The angle of elevation of the sun is decreasing at a rate of radians per hour. 1 3 How fast is the length of the shadow cast by a 10 m tree changing when the angle TU of elevation of τ/3 the sun is radian

Answers

To solve this problem, we can use related rates. Let's denote the length of the shadow cast by the tree as S and the angle of elevation of the sun as θ.

Given information:

The rate at which the angle of elevation of the sun is changing: dθ/dt = -1/3 radians per hour.

The length of the tree: T = 10 m.

The angle of elevation of the sun: θ = π/3 radians.

We want to find the rate at which the length of the shadow is changing, which is ds/dt.

We can set up the following equation using the tangent function:

tan(θ) = S/T

Differentiating both sides of the equation with respect to time t:

sec²(θ) * dθ/dt = (ds/dt)/T

Substituting the given values:

sec²(π/3) * (-1/3) = (ds/dt)/(10)

sec²(π/3) = 4/3

Now, we can solve for ds/dt:

(ds/dt) = (4/3) * (-1/3) * 10

ds/dt = -40/9 m/hr

Therefore, the length of the shadow cast by the 10 m tree is changing at a rate of -40/9 meters per hour when the angle of elevation of the sun is π/3 radians.

Learn more about  height and distance here:

https://brainly.com/question/25224151

#SPJ11

find the first five terms of the sequence of partial sums. (round your answers to four decimal places.) 1 2 · 3 2 3 · 4 3 4 · 5 4 5 · 6 5 6 · 7

Answers

The first five terms of the sequence of partial sums are: 1, 3, 6, 10, 15. To find the sequence of partial sums, we need to add up the terms of the given sequence up to a certain position. Calculate the first five terms of the sequence of partial sums:

1 2 · 3 2 3 · 4 3 4 · 5 4 5 · 6 5 6 · 7

The first term of the sequence of partial sums is the same as the first term of the given sequence: Partial sum 1: 1

The second term of the sequence of partial sums is the sum of the first two terms of the given sequence: Partial sum 2: 1 + 2 = 3

The third term of the sequence of partial sums is the sum of the first three terms of the given sequence: Partial sum 3: 1 + 2 + 3 = 6

The fourth term of the sequence of partial sums is the sum of the first four terms of the given sequence:Partial sum 4: 1 + 2 + 3 + 4 = 10

The fifth term of the sequence of partial sums is the sum of the first five terms of the given sequence:

Partial sum 5: 1 + 2 + 3 + 4 + 5 = 15

Therefore, the first five terms of the sequence of partial sums are:

1, 3, 6, 10, 15

To know more about Partial sums visit-

brainly.com/question/30339361

#SPJ11

A random variable X has a normal probability distribution with mean 30 and (12 mark standard deviation 1.5. Find the probability that P(27

Answers

To find the probability that [tex]\(P(27 < X < 33)\)[/tex], where [tex]\(X\)[/tex] is a normally distributed random variable with mean 30 and standard deviation 1.5, we can use the properties of the standard normal distribution.

First, we need to standardize the values 27 and 33. We can do this by subtracting the mean and dividing by the standard deviation:

[tex]\(z_1 = \frac{{27 - \mu}}{{\sigma}} = \frac{{27 - 30}}{{1.5}} = -2\)\(z_2 = \frac{{33 - \mu}}{{\sigma}} = \frac{{33 - 30}}{{1.5}} = 2\)[/tex]

Next, we can use a standard normal distribution table or a calculator to find the corresponding probabilities for these standardized values.

Using a standard normal distribution table, the probability of a standard normal random variable falling between -2 and 2 is approximately 0.9545.

Therefore, the probability that [tex]\(27 < X < 33\)[/tex] is approximately 0.9545.

Learn more about standard deviation here:

https://brainly.com/question/29115611

#SPJ11

if p(a) = 0.3, p(b) = 0.2, p(a and b) = 0.0 , what can be said about events a and b?

Answers

If p(a) = 0.3, p(b) = 0.2, and p(a and b) = 0.0, then we can say that events a and b are mutually exclusive.

When two events are said to be mutually exclusive or disjoint, it means that they cannot occur simultaneously. This can be demonstrated mathematically using the formula:

P(A and B) = 0If two events, A and B, are mutually exclusive, the probability of their joint occurrence is zero.

As a result, when p(a) = 0.3, p(b) = 0.2, and p(a and b) = 0.0, it implies that events a and b are mutually exclusive.

This means that when event A occurs, event B will not occur, and vice versa. In other words, the occurrence of event A excludes the occurrence of event B and the occurrence of event B excludes the occurrence of event A.

Learn more about the probability at:

https://brainly.com/question/14051468

#SPJ11

A student claims that the population mean of weight of HKUST students is NOT 58kg. A random sample of 16 students are tested and the sample mean is 60kg. Assume the weight is normally distributed with the population standard deviation as 3.3kg. We will do a hypothesis testing at 1% level of significance to test the claim. a. Set up the null hypothesis and alternative hypothesis. b. Which test should we use: Upper-tail test? Or Lower-tail test? Or Two-sided test? c. Which test should we use: z-test or t-test or Chi-square test? Find the value of the corresponding statistic (i.e., the z-statistic, or t-statistic, or the Chi-square statistic) d. Find the p-value. e. Should we reject the null hypothesis? Use the result of (d) to explain the reason.

Answers

a. The null hypothesis (H0): The population mean weight of HKUST students is 58kg    The alternative hypothesis (H1): The population mean weight of HKUST students is not 58kg.

b. We should use a two-sided test because the alternative hypothesis is not specific about the direction of the difference.

c. We should use a t-test because the population standard deviation is not known and we are working with a small sample size (n = 16).

To find the t-statistic, we can use the formula:

t = (sample mean - population mean) / (sample standard deviation / √n)

In this case, the sample mean is 60kg, the population mean is 58kg, the population standard deviation is 3.3kg, and the sample size is 16.

d. Using the given values, we can calculate the t-statistic as follows:

t = (60 - 58) / (3.3 / √16)

 = 2 / (3.3 / 4)

 = 2 / 0.825

 = 2.42

To find the p-value, we need to compare the t-statistic to the critical value associated with the 1% level of significance and the degrees of freedom (n - 1 = 16 - 1 = 15). Using a t-table or statistical software, we find that the critical value for a two-sided test at 1% level of significance is approximately 2.947.

e. Since the absolute value of the t-statistic (2.42) is less than the critical value (2.947), we fail to reject the null hypothesis. This means that there is not enough evidence to support the claim that the population mean weight of HKUST students is not 58kg.

Learn more about absolute value here: brainly.com/question/32387257

#SPJ11


1. (a) For the point (r, 0) = (3, 7/2), find its rectangular coordinates. (b) For a point (x,y)= (-1, 1), find its polar coordinates."

Answers

(a) Rectangular coordinates represent the position of a point in a Cartesian coordinate system using the coordinates (x, y). In this case, we are given the point (r, 0) = (3, 7/2).

The first coordinate, 3, represents the position of the point along the x-axis. The second coordinate, 7/2, represents the position of the point along the y-axis.

Therefore, the rectangular coordinates of the point (r, 0) = (3, 7/2).

(b) Polar coordinates represent the position of a point in a polar coordinate system using the coordinates (r, θ). In this case, we are given the point (x, y) = (-1, 1).

To convert from rectangular coordinates to polar coordinates, we use the following formulas:

r = √(x² + y²)

θ = arctan(y/x)

Substituting the given values, we have:

r = √((-1)² + 1²) = √(1 + 1) = √2

θ = arctan(1/(-1)) = arctan(-1) = -π/4

Therefore, the polar coordinates of the point (x, y) = (-1, 1) are (√2, -π/4).

In summary, the rectangular coordinates of the point (3, 7/2) represent its position in a Cartesian coordinate system, and the polar coordinates of the point (-1, 1) represent its position in a polar coordinate system.

Learn more about coordinates here: brainly.com/question/22261383

#SPJ11

10.4
3s+2
(s-1)(s-2).
=
a. 5e2t - 8et
3t+2
d.
(t-1)(t-2)
b. 3 sint + 2e2t c. 8e2t-5et
e. 3tet + 2e2t

Answers

Using the property of Laplace transform, we can find the inverse Laplace transform of the above expression as follows:Laplace inverse of -1/(s - 1) = -e^t

We want to add and subtract 3s and 2 such that we can simplify the expression and get the result in a form that we can use to solve for partial fraction of the given expression.

So, we take the given expression as (10.4) :

\[\frac{3s+2}{(s-1)(s-2)}\]

Now, we need to write the given expression as the sum of two or more fractions, i.e. partial fractions, so we get

\[{\frac{3s+2}{(s-1)(s-2)}} = {\frac{A}{s-1}} + {\frac{B}{s-2}}\]

where A and B are constants to be determined. To determine the values of A and B, we need to clear the denominators on both sides by multiplying with (s - 1)(s - 2) on both sides.

So, we have \[3s+2 = A(s-2) + B(s-1)\]

Equating the coefficients of s on both sides, we get

3 = A + B......(1)

Equating the constant terms on both sides, we get 2 = -2A - B.....(2)

Solving the equations (1) and (2), we get A = -1 and B = 4.

Hence, we can write \[\frac{3s+2}{(s-1)(s-2)} = -{\frac{1}{s-1}} + {\frac{4}{s-2}}\]

Using the property of Laplace transform, we can find the inverse Laplace transform of the above expression as follows:

Laplace inverse of -1/(s - 1) = -e^t ,

Laplace inverse of 4/(s - 2) = 4e^(2t)

Hence, we have

\[L^{-1} ({\frac{3s+2}{(s-1)(s-2)}})

= -e^t + 4e^{2t}\]

To learn more about Laplace visit;

https://brainly.com/question/30759963

#SPJ11








1. A right circular cone has a diameter of 10/2 and a height of 12. What is the volume of the cone in terms of π? 200π 2400T

Answers

The volume of a right circular cone with a diameter of 10/2 and a height of 12 can be calculated using the formula V = (1/3)πr²h. The volume of the cone in terms of π is 200π.

In this case, the diameter of the cone is given as 10/2, which means the radius (r) is 5/2. The height (h) is given as 12. To find the volume, we substitute these values into the formula: V = (1/3)π(5/2)²(12). Simplifying further, we have V = (1/3)π(25/4)(12) = 200π. Therefore, the volume of the cone in terms of π is 200π. This means that the cone can hold 200π cubic units of volume, where π represents the mathematical constant pi.

To know more about right circular cone, click here: brainly.com/question/14797735

#SPJ11

Question 2. (12 Marks in total, 3 marks per part). Find the distribution functions of (i) Z+= max {0, Z}, (ii) X = min{0, Z}, (iii) |Z), and (iv) -Z in terms of the distribution function G of the rand

Answers

Let's find the distribution functions of (i) Z+ = max {0, Z}, (ii) X = min{0, Z}, (iii) |Z|, and (iv) -Z in terms of the distribution function G of the random variable Z:(i) Z+ = max {0, Z}Let Y = max {0, Z} => Y ≤ 0 if and only if Z ≤ 0. We have the probability: P(Y\leq y) = P(max(0, Z)\leq y) = P(Z \leq y) 1_{y\geq 0}+ 1_{y< 0}Thus, the distribution function of Y is:F_Y(y) = \begin{cases} G(y) & y>0 \\ 0 & y \leq 0 \end{cases}

The density of Y is:f_Y(y) = G(y)1_{y>0} (ii) X = min{0, Z}Let Y = min {0, Z} => Y ≤ 0 if and only if Z ≤ 0. We have the probability:P(Y\leq y) = P(min(0, Z)\leq y) = P(Z \leq 0)1_{y\leq 0}+ P(Z\geq y)1_{y>0} Thus, the distribution function of Y is:F_Y(y) = \begin{cases} 0 & y<0 \\ 1-G(y) & y\geq 0 \end{cases}

The density of Y is:f_Y(y) = G(y)1_{y<0} (iii) |Z|Let Y = |Z| => Y ≤ y if and only if -y\leq Z \leq y We have the probability:P(Y\leq y) = P(|Z|\leq y) = P(-y\leq Z \leq y)Thus, the distribution function of Y is:F_Y(y) = G(y) - G(-y)T

he density of Y is:f_Y(y) = g(y) + g(-y) (iv) -ZLet Y = -Z => Y ≤ y if and only if Z ≥ -y. We have the probability:P(Y\leq y) = P(-Z \leq y) = P(Z \geq -y)Thus, the distribution function of Y is:F_Y(y) = 1-G(-y)

The density of Y is:f_Y(y) = g(-y)1_{y<0}

To know about density visit:

https://brainly.com/question/29775886

#SPJ11

Convert from polar to rectangular coordinates (9, π/6). (Round your answer to 2 decimal places where needed.) x= y= Convert from polar to rectangular coordinates (3, 3π/4). (Round your answer to 2 decimal places where needed.) x= y= Convert from polar to rectangular coordinates (0, π/4)
(Round your answer to 2 decimal places where needed.) x= y= Convert from polar to rectangular coordinates (10,− π/2). (Round your answer to 2 decimal places where needed.) x= y=

Answers

The coordinates in rectangular form are listed below:

(r, θ) = (9, π / 6): (x, y) = (7.79, 4.5)

(r, θ) = (3, 3π / 4): (x, y) = (- 2.12, 2.12)

(r, θ) = (0, π / 4): (x, y) = (0, 0)

(r, θ) = (10, - π / 2): (x, y) = (0, - 10)

How to convert coordinates in polar form into rectangular form

In this question we must convert four coordinates in polar form into rectangular form, this conversion is defined by following expression:

(r, θ) → (x, y), where:

x = r · cos θ, y = r · sin θ

Where:

r - Normθ - Direction, in radians.

Now we proceed to find the rectangular coordinates for each case:

(r, θ) = (9, π / 6)

(x, y) = (9 · cos (π / 6), 9 · sin (π / 6))

(x, y) = (7.79, 4.5)

(r, θ) = (3, 3π / 4)

(x, y) = (3 · cos (3π / 4), 3 · sin (3π / 4))

(x, y) = (- 2.12, 2.12)

(r, θ) = (0, π / 4)

(x, y) = (0 · cos (π / 4), 0 · sin (π / 4))

(x, y) = (0, 0)

(r, θ) = (10, - π / 2)

(x, y) = (10 · cos (- π / 2), 10 · sin (- π / 2))

(x, y) = (0, - 10)

To learn more on rectangular coordinates: https://brainly.com/question/31904915

#SPJ1

Question2. In the following linear system, determine all values of a for which the resulting linear system has (a) no solution; (b) a unique solution; (c) infinitely many solutions: x + 2y + z = 1 y +

Answers

The linear system has infinitely many solutions.

Given linear system of equations is: x + 2y + z = 1

                                                      y + z = ax + y + z

                                                              = 2(a)

No solution To determine whether the given linear system has no solution, we need to check if the rank of the coefficient matrix is equal to the rank of the augmented matrix.

Let's find the augmented matrix, add all the coefficients on both sides of the equal sign, and arrange the coefficients in the matrix form as follows:   1 2 1 | 1 0 1 1 | a 1 1 | 2

Adding -1 times R1 to R2 and -2 times R1 to R3,

  we get:1 2 1 | 1 0 1 1 | a -2 -1 | 1

Subtracting -2 times R2 from R3,

        we get the matrix:1 2 1 | 1 0 1 1 | a 0 1 | a - 3

           Adding -2 times R3 to R2 and subtracting R3 from R1, we get

 the matrix:1 2 0 | a - 3 0 1 | a - 3 0 0 | a - 2

Therefore, if a = 2, the linear system has no solution as the rank of the coefficient matrix is 2 and the rank of the augmented matrix is 3.

(b) Unique solution To determine whether the given linear system has a unique solution, we need to check if the rank of the coefficient matrix is equal to the number of unknowns.

The coefficient matrix is given by the first two columns of the matrix we have obtained in part (a). So, the rank of the coefficient matrix is 2. Also, we have two unknowns.

Therefore, the linear system has a unique solution if the rank of the coefficient matrix is equal to the number of unknowns.

(c) Infinitely many solutions To determine whether the given linear system has infinitely many solutions, we need to check if the rank of the coefficient matrix is less than the number of unknowns. We already know that the rank of the coefficient matrix is 2, which is less than the number of unknowns (3).

Therefore, the linear system has infinitely many solutions.

Learn more about  linear system

brainly.com/question/29175254

#SPJ11

Rate (Per Day) Frequency Below .100
Rate (per day) Frequency
Below .100 12
.100-below .150 20
.150-below .200 23
.200-below .250 15
.250 or more 13
: An article, "A probabilistic Analysis of Dissolved Oxygen-Biochemical Oxygen Demand Relationship in Streams," reports data on the rate of oxygenation in streams at 20 degrees Celsius in a certain region. The sample mean and standard deviation were computed as; xbar = .173 and Sx = .066 respectively. Based on the accompanying frequency distribution (on the left), can it be concluded that the oxygenation rate is normally distributed variable. Conduct a chi-square test at alpha = .05

a. State the null and alternate hypothesis of the test

b. Briefly described the approach you need to use to calculate expected values to perform the Chi-Square contrast

c. What is the conclusion, do you reject or accept the null (also be sure to address the questions on the Answer Sheet as well)

Answers

The answers are:

a. Null hypothesis (H0): The oxygenation rate in streams is normally distributed. Alternative hypothesis (H1): The oxygenation rate in streams is not normally distributed.b. The approach involves calculating expected values for each category assuming a normal distribution.c. The conclusion is based on comparing the calculated chi-square test statistic to the critical chi-square value: if the calculated value is greater, the null hypothesis is rejected; if it is less or equal, the null hypothesis is not rejected.

a. The null and alternative hypotheses for the chi-square test in this case are as follows:

Null hypothesis (H0): The oxygenation rate in streams is normally distributed.

Alternative hypothesis (H1): The oxygenation rate in streams is not normally distributed.

b. To calculate the expected values for the chi-square test, you need to follow these steps:

1. Calculate the total frequency of the data.

2. Calculate the expected frequency for each category by assuming the oxygenation rate is normally distributed.

3. Compute the chi-square test statistic by summing the squared differences between the observed and expected frequencies divided by the expected frequencies.

c. To determine the conclusion of the chi-square test at alpha = 0.05, compare the calculated chi-square test statistic to the critical chi-square value from the chi-square distribution table with the appropriate degrees of freedom (number of categories minus 1).

- If the calculated chi-square test statistic is greater than the critical chi-square value, reject the null hypothesis and conclude that the oxygenation rate is not normally distributed.

- If the calculated chi-square test statistic is less than or equal to the critical chi-square value, fail to reject the null hypothesis and conclude that there is not enough evidence to suggest that the oxygenation rate is not normally distributed.

Note: Without the specific values for the calculated chi-square test statistic and the critical chi-square value, it is not possible to provide a definitive conclusion in this case.

For more such questions on null hypothesis:

https://brainly.com/question/25263462

#SPJ8

Consider the following linear program. 5A + 6B Min s.t. 1A + 3B ≥ 9 1A + 1B 27 A, B ≥ 0 Identify the feasible region. B 10 8 6 4 B A 10 co 8 6 4 2 8 2 4 6 10 8 2 4 6 10 Find the optimal solution u

Answers

It is clear that (9, 0) is the optimal solution as it provides the maximum value for the given objective function.

How to find?The given constraints are 1A + 3B ≥ 9 and 1A + 1B ≤ 27. Here is the feasible region of the given linear program. B 10 8 6 4 B A 10 co 8 6 4 2 8 2 4 6 10 8 2 4 6 10. We can solve it graphically from the feasible region as shown above.It can be observed that the corner points are (0, 3), (9, 0), (3, 6), and (4.5, 3).

When we substitute these values into 5A + 6B, we get the following results:

Corner Point Value of A Value of B 5A + 6B (0, 3) 0 3 18 (9, 0) 9 0 45 (3, 6) 3 6 33 (4.5, 3) 4.5 3 34.5 .

From the above, it is clear that (9, 0) is the optimal solution as it provides the maximum value for the given objective function.

To know more on Constraints visit:

https://brainly.com/question/32387329

#SPJ11

the mpg for a certain compact car is normally distributed with a mean of 31 and a standard deviation of 0.8. what is the probability that the mpg for a randomly selected compact car would be less than 32?

Answers

The probability that the mpg for a randomly selected compact car would be less than 32 is 0.9772.

To solve this problem, we can use the standard normal distribution formula:

z = (x - μ) / σ

where x is the value we are interested in, μ is the mean, and σ is the standard deviation.

Substituting the values we have:

z = (32 - 31) / 0.8 = 1.25

Using a standard normal distribution table or calculator, we can find that the probability of a z-score less than 1.25 is 0.9772. Therefore, the probability that the mpg for a randomly selected compact car would be less than 32 is 0.9772.

The given problem states that the mpg for a certain compact car is normally distributed with a mean of 31 and a standard deviation of 0.8. The question asks for the probability that the mpg for a randomly selected compact car would be less than 32. We can use the standard normal distribution formula to calculate the z-score, which is 1.25. Using a standard normal distribution table or calculator, we find that the probability of a z-score less than 1.25 is 0.9772. Therefore, the probability that the mpg for a randomly selected compact car would be less than 32 is 0.9772.

Know more about probability here:

https://brainly.com/question/32004014

#SPJ11

The sampling distribution of a statistic is:

a. the probability that we obtain the statistic in repeated random samples.

b. the mechanism that determines whether randomization was effective.

c. the distribution of values taken by a statistic in all possible samples of the same sample size.

d. the extent to which the sample results differ systematically from the truth.

e. none of these

Answers

The sampling distribution of a statistic is: c. the distribution of values taken by a statistic in all possible samples of the same sample size.

The sampling distribution of a statistic refers to the distribution of values that the statistic takes on when calculated from all possible samples of the same sample size taken from a population. It represents the variability or spread of the statistic's values across different samples. The sampling distribution is important because it allows us to make inferences about the population parameter based on the observed sample statistic. By understanding the distribution of the statistic, we can estimate the parameter and assess the uncertainty associated with our estimation.

To know more about sampling distribution,

https://brainly.com/question/14364727

#SPJ11

Solve the following inequality problem and choose the interval notation of the solution: (31 – 4) < 4 or 5(x + 6) <4 a. (-0,6) b. [4,6) c. [4.6) d. -004] e. (-0.4) f. (--0,6] g.(4,6] h. (4,6)

Answers

The interval notation of the solution  (31 – 4) < 4 or 5(x + 6) <4 is (4,6). The given inequality is (31 – 4) < 4 or 5(x + 6) < 4. We need to solve the given inequality and choose the interval notation of the solution. Hence, option i is correct

Inequality (31 – 4) < 4 or 5(x + 6) < 4 can be written as

27 < 4

or 5x + 30 < 4

or 5x < -26

or 5x < -26 - 30

or 5x < -56

or x < -56/5

or x < -11.2.

The solution of the given inequality is x < -56/5 or x < -11.2.

Interval notation of the solution is (-∞, -11.2).

Hence, option i is correct.

The interval notation of the solution is (4,6).

To know more about interval notation,  refer

https://brainly.com/question/30766222

#SPJ11


Determine whether each of the following integers is a prime
a) 33337777
b) 10001
c) 159
d) 498371

Answers

The integer which is a prime number is d) 498371.

A prime integer is an integer that can only be divided by 1 and itself.

It is an integer greater than 1 that cannot be formed by multiplying two smaller integers.

We can use the following steps to determine whether the given integers are prime.

Step 1: Divide the integer by the integers greater than 1 and smaller than the integer itself.

Step 2: If the remainder is zero in any case, then the integer is not prime. Otherwise, it is prime.

Determine whether each of the following integers is a prime:

a) Divide 33337777 by integers greater than 1 and less than 33337777.33337777 is divisible by 7, 11, 13, 37, and other integers. Therefore, it is not a prime number.

b) Divide 10001 by integers greater than 1 and less than 10001.10001 is divisible by 73. Therefore, it is not a prime number.

c) Divide 159 by integers greater than 1 and less than 159.159 is divisible by 3, 53. Therefore, it is not a prime number.

d) Divide 498371 by integers greater than 1 and less than 498371.498371 is not divisible by any integer except 1 and 498371. Therefore, it is a prime number.

Thus, the correct answer is d) 498371.

#SPJ11

Let us know more about prime number : https://brainly.com/question/4184435.

Let G be the interval (1/4, [infinity]). Let a be the operation on G such that, for all x, y = G, x u y = 4xy - (x+y) +1/2. i. Write down the identity element e for (G, a). You need not write a proof of the identity law. [4 marks] ii. Prove the inverse law for (G, ¤). [8 marks]

Answers

The identity element for a binary operation in a set S is an element e in S such that for any element an in S, the operation with a and e gives a.

(i) We must locate an element x in G such that for each y in G, x u y = y u x = y in order to identify the identity element e for the operation and on G.

Take into account the formula x u y = 4xy - (x + y) + 1/2.

We are looking for an element x such that for any y in G, x u y = y.

When x = e is substituted into the equation, we get e u y = 4ey - (e + y) + 1/2.

We want this expression to be equal to y in order to satisfy the identity law. By condensing the formula, we arrive at 4ey - e - y + 1/2 = y.

With the terms rearranged, we get 4ey - e - y = y - 1/2.

The constant term on the left side must equal the constant term on the right side since this equation needs to hold for all y in G. The coefficient of y on the left side must be equal to the coefficient of y on the right.

As a result, 4e - 1 = 1/2, giving us e = 3/8.

As a result, e = 3/8 is the identity element for the operation and on G.

ii. To demonstrate the existence of an element y in G such that x u y = y u x = e, where e is the identity element, for every x in G, we must demonstrate the existence of the inverse law for the operation and on G.

Let's think about element x in G at random. The element y must be located in G so that x u y = y u x = e = 3/8.

With the use of the an operation, x u y = 4xy - (x + y) + 1/2.

The formula 4xy - (x + y) + 1/2 = 3/8 must be solved.

To eliminate the fraction, multiply both sides of the equation by 8 to get 32xy - 8x - 8y + 1 = 3.

When the terms are rearranged, we get 32xy - 8x - 8y - 2 = 0.

In terms of y, this equation is a quadratic equation. When we use the quadratic formula, we obtain:

y = (8 ± sqrt(8^2 - 4(32)(-2)))/(2(32)).

Even more simply put, we have:

y = (8 ± sqrt(64 + 256))/64.

y = (8 ± sqrt(320))/64.

y = (8 ± 8sqrt(5))/64.

y = 1/8 ± sqrt(5)/8.

G being the range (1/4, [infinity]), the only legitimate

To know more about Binary Operation visit:

https://brainly.com/question/32558973

#SPJ11

A pharmaceutical company has developed a new drug. The government will approve this drug if and only if the probability that it has negative side effects is lower than or equal to 0.05. The common prior belief is Pr(negative side effects) = 0.2. The company does not know the true probability of side effects; it is responsible to conduct a lab experiment that provides information on this probability. The company can choose its own design of this experiment, but it must truthfully reveal the design and the result of the experiment to the government A design of the experiment can be described by the conditional probabilities Pr(passnegative side effects) and Prípassno negative side effects). Without loss of generality, assume that Pr(pass negative side effects) < Pripass|no side effects). The government observes these condition probabilities as well as the experiment outcome (pass or fail). It Bayesian updates its posterior belief based on this information and approves the drug if Pr(negative side effects)<=0.05. In a perfect Bayesian equilibrium, the company will choose Pripass negative side effects) = ? (Please round your answer to three decimal places if it contains a fraction.)

Answers

In this scenario, a pharmaceutical company has developed a new drug, and the government will approve it only if the probability of negative side effects is less than or equal to 0.05.

The company can design a lab experiment to gather information on the probability of side effects, which it must truthfully reveal to the government. The government updates its belief based on the experiment results and approves the drug if the updated probability of negative side effects is within the acceptable range. In a perfect Bayesian equilibrium, the company needs to choose the conditional probability Pr(pass negative side effects) to maximize its chances of getting the drug approved. To find the optimal conditional probability Pr(pass negative side effects) that the company should choose, we consider the government's decision-making process. The government updates its belief using Bayes' theorem, incorporating the prior belief (Pr(negative side effects) = 0.2), the experiment outcome, and the conditional probabilities provided by the company.

The company's objective is to maximize its chances of getting the drug approved by setting the conditional probability in a way that maximizes the posterior belief of the government satisfying the approval criterion (Pr(negative side effects) <= 0.05). To achieve this, the company needs to choose the conditional probability Pr(pass negative side effects) in such a way that it increases the posterior belief of the government while keeping it within the acceptable range.

The specific value of Pr(pass negative side effects) that achieves this objective can vary depending on the details of the experiment and the specific beliefs and preferences of the government. To find the optimal value, a detailed analysis considering the specific experiment design, information provided, and decision-making process of the government would be necessary.

Learn more about probability here: brainly.com/question/31828911

#SPJ11

What is f(x) = 8x2 + 4x written in vertex form?

f(x) = 8(x + one-quarter) squared – one-half
f(x) = 8(x + one-quarter) squared – one-sixteenth
f(x) = 8(x + one-half) squared – 2
f(x) = 8(x + one-half) squared – 4

Answers

The function f(x) = 8x² + 4x written in vertex form include the following: A. f(x) = 8(x + 0.25)² - 1/2.

How to determine the vertex form of a quadratic function?

In Mathematics, the vertex form of a quadratic function is represented by the following mathematical equation:

f(x) = a(x - h)² + k

Where:

h and k represents the vertex of the graph.a represents the leading coefficient.

In order to write the given function in vertex form, we would have to apply completing the square method as follows;

f(x) = 8x² + 4x

f(x) = 8[x² + 0.5x]

f(x) = 8[x² + 0.5x + (0.5/2)² - (0.5/2)²]

f(x) = 8[(x² + 0.5x + 1/16) - 1/16]

f(x) = 8[(x + 0.25)² - 1/16]

f(x) = 8(x + 0.25)² - 8/16

f(x) = 8(x + 0.25)² - 1/2

Read more on vertex here: brainly.com/question/14946018

#SPJ1

Complete Question:

What is f(x) = 8x² + 4x written in vertex form?

f(x) = 8(x + 0.25)² - 1/2

f(x) = 8(x + 0.25)² - 1/16

f(x) = 8(x + 0.5)² - 2

f(x) = 8(x + 0.5)² - 4

Answer:

d

Step-by-step explanation:

Following system of differential equations: D²x - Dy=t, (D+3)x+ (D+3)y= 2.

Answers

The given system of differential equations is D²x - Dy = t and (D+3)x + (D+3)y = 2. To solve this system, we can equate the corresponding coefficients. This leads to the following system of equations: D² + 3D + 1 = 0 and D + 1 = 0.

We can rearrange the second equation as follows: Dx + 3x + Dy + 3y = 2. Next, we can substitute the first equation into the rearranged second equation to eliminate the y terms. This gives us Dx + 3x + (Dt + y) + 3(Dt) = 2. Simplifying further, we have Dx + 3x + Dt + y + 3Dt = 2. Now, we can rearrange the terms to obtain the following equation: (D² + 3D + 1)x + (D + 1)y = 2.

Comparing this equation with the given equation, we can equate the corresponding coefficients. This leads to the following system of equations: D² + 3D + 1 = 0 and D + 1 = 0.

By solving these equations, we can find the values of D and substitute them back into the original equations to determine the solutions for x and y.

Learn more about differential equation here: brainly.com/question/1183311
#SPJ11

Suppose we carry out the following random experiments by rolling a pair of dice. For each experiment, state the discrete distribution that models it and find the numerical value of the parameters.
(a) Roll two dice and record if it is an even number or not
(b) Roll the two dice repeatedly, and count how many times we run the experiment before getting a sum of 7
(c) Roll the two dice 12 times and count how many times we get a sum of 7
(d) Roll the two dice repeatedly, and count the number of times we do not get a sum of two until this fourth time we do get a sum of 2

Answers

(a) When rolling a pair of dice and recording whether it is an even number or not, the discrete distribution that models this experiment is the Bernoulli distribution.

The Bernoulli distribution is characterized by a single parameter, usually denoted as p, representing the probability of success (in this case, rolling an even number). The value of p for this experiment is 1/2 since there are three even numbers (2, 4, and 6) out of the total six possible outcomes. Therefore, the parameter p for this experiment is 1/2, indicating a 50% chance of rolling an even number. Rolling a pair of dice and checking if it is an even number or not follows a Bernoulli distribution with a parameter p of 1/2. This means there is a 50% probability of rolling an even number.

Learn more about Bernoulli distribution here : brainly.com/question/32129510
#SPJ11

The function h(x) = (x + 7)² can be expressed in the form f(g(x)), where f(x) = x², and g(x) is defined below: g(x) =

Answers

The function [tex]h(x) = (x + 7)²[/tex] can be expressed in the form f(g(x)), where[tex]f(x) = x²[/tex], and [tex]g(x) = x + 7.[/tex]

Given function: [tex]h(x) = (x + 7)²[/tex]

To express the given function h(x) in the form of[tex]f(g(x))[/tex], we need to find an intermediate function g(x) such that [tex]h(x) = f(g(x)).[/tex]

Let's find the intermediate function [tex]g(x):g(x) = x + 7[/tex]

Therefore, we can express h(x) as:

[tex]h(x) = (x + 7)²\\= [g(x)]²\\= [x + 7]²[/tex]

Now, let's define [tex]f(x) = x²[/tex]

So, we can express h(x) in the form of f(g(x)) as:

[tex]f(g(x)) = [g(x)]²\\= [x + 7]²\\= h(x)[/tex]

Therefore, the function [tex]h(x) = (x + 7)²[/tex] can be expressed in the form f(g(x)), where[tex]f(x) = x²[/tex], and [tex]g(x) = x + 7.[/tex]

Know more about the functions here:

https://brainly.com/question/2328150

#SPJ11


explanation of how to get answer
5. What is the value of (2/2)(76)+273? A 18 B 1013 0 6/6 D 472+273 613 E

Answers

The value of the expression

(2/2)(76) + 273 = 349.

To find the value of the expression (2/2)(76) + 273, we start by simplifying the term (2/2)(76) to 76. This is because any number divided by itself is always equal to 1, so the fraction 2/2 simplifies to 1. Next, we add 76 and 273 to get 349. Therefore, the value of the expression

(2/2)(76) + 273 i= 349. The correct option is not listed, and the value of the expression is 349.

By simplifying the fraction and performing the addition, we obtain the final result of 349.

To know more about addition, visit:

https://brainly.com/question/31227635

#SPJ11













p(x) = 3x(5x³ - 4)
Find the degree and leading coefficient of the polynomial p(x) = 3x(5x³-4)

Answers

The degree and leading coefficient of the polynomial p(x) = 3x(5x³-4) is 4 and 15 respectively.

What is the degree of the polynomial?

The degree of a polynomial is the highest power of x in that given polynomial.

The given polynomial function;

P(x) = 3x(5x³ - 4)

The polynomial is simplified as follows;

3x(5x³ - 4) = 15x⁴ - 12x

The leading coefficient is the coefficient of the term with the highest power of x.

From the simplified polynomial expression;

the leading coefficient of the polynomial = 15the degree of the polynomial = 4

Learn more about degree of polynomial here: https://brainly.com/question/1600696

#SPJ4







The data show the number of tablet sales in millions of units for a 5-year period. Find the median. 108.2 17.6 159.8 69.8 222.6 O a. 108.2 Ob. 159.8 O c. 222.6 d. 175.0

Answers

The task is to find the median of tablet sales data given in millions of units for a 5-year period. The data values are: 108.2, 17.6, 159.8, 69.8, and 222.6. The options to choose from are: a) 108.2, b) 159.8, c) 222.6, and d) 175.0.

To find the median, we arrange the data values in ascending order and identify the middle value. If there is an odd number of data points, the median is the middle value. If there is an even number of data points, the median is the average of the two middle values.

Arranging the data in ascending order, we have: 17.6, 69.8, 108.2, 159.8, and 222.6.

Since there are five data points, which is an odd number, the median is the middle value, which is 108.2.

Comparing this with the options, we find that the correct answer is a) 108.2.

Therefore, the median of the tablet sales data is 108.2 million units.

Learn more about even number here:

https://brainly.com/question/13665423

#SPJ11

Other Questions
is 72 and has an IRA with a fair market value ofUseTable45 to determine her required minimum distribution. b) What penalty would she incur if she failed to take thedistribution? c) What penalty would she have paid if she had made an early withdrawal of $10,000 to take avacation? Referring to the prior question, if the lender requires an initial debt service coverage ratio of 1.2 and an annual interest rate of 7.5% on a 30 year fully amortized loan payable monthly, what is the maximum loan amount that can be borrowed against the property? a) $1,787,720 b) $2,157,420 c) $2,373,163 d) $2,574,317Previous question F3 50.2% 6 19 (Given its thermal conductivity k-0.49cal/(s-cm-C) : Ax= 2cm; At = 0.1s. The rod made in aluminum with specific heat of the rod material, c = 0.2174 cal/(gC); density of rod material, p= 2.7g/cm) (25 marks) Page 5 of 9 (a) Given a 2x2 matrix [4] =(3) Suggest any THREE integral values of x such that there are no real valued eigenvalues for A. (6 marks) (b) Calculate any ONE eigenvalue and the corresponding eigenvector of matrix [B]= -x 0 x -6 -2 0 19 5 -4 (Put x = smallest positive integral in part (a)) (10 marks) (c) Calculate [det[B] (Put x smallest positive integral in part (a).) (3 marks). (d) Write down the commands of Matlab for solving the equation below (for x= -1 in part (a), the answer for i and jare 1.2857 and 0.1429) -1i+5j-2 -21-3j=3 (6 marks) which section lets you change the copy right information from unknown to copyrighted or public domain? Shakib and Sunny both like oranges and their demand for oranges are as follows: Shakib: P= 50-5Q Sunny: P=200-100 a) Find the aggregate demand of oranges. b) Find the price elasticity of demand for both Shakib and Sunny at P=5. Which of the following would be of least concern to a company'sproviders of loan?A.Current share priceB.Short-term liquidityC.ProfitabilityD.The level of gearing The SLC zoo (not a real thing unfortunately) has lions, giraffes, and gorillas. 1/5 of the animals are lions and 6/10 of the animals are giraffes. What percentage are gorillas? for the following circuit, c = 1 f. select the values of r1 and rf to have a passband gain of -15 and a corner frequency of 200 hz. enter the value of r1 in ohms but omit units. Suppose that in a perfectly competitive industry, the market price of the product is $4. A firm is producing the output level at which average total cost equals marginal cost, both of which are $9. Average variable cost is $5. To maximize its profits in the short run, what would be the firms decision on the production (increase, or decrease, or totally shut down)? Explain your answer. ershwin Wallcovering Inc. shipped the wrong shade of paint to a customer. The customer agreed to keep the paint upon being offered a 15% price reduction. Gershwin would record this reduction by debiting sales returns and crediting: Multiple Choice Accounts receivable. Sales. Allowance for uncollectible accounts. Sales discounts. Which of the following subsets of P2 are subspaces of P2?A. {p(t) | p(3)=p(4)}B. {p(t) | p(t) is constant }C. {p(t) | p(t)=p(t) for all t}D. {p(t) | p(0)=0}E. {p(t) | p(t)+7p(t)+1=0} Pr 1 Sierra Department Store is located near the Village Shopping Mall. At the end of the company's fiscal year on Feb. 28, 20X1, the following amounts appeared in the Adjusted Trial Balance. Prepare a multi-step Income Statement (including a separation of selling expenses and administrative expenses and Other Revenues and Expenses, see page 304 in Chapter 6, Exhibit 11) for a great example), a Statement of Owner's Equity, and a Classified Balance Sheet (good example in Chapter 6 page 306, Exhibit 14). Debit Credit Accounts Payable Accounts Receivable Accumulated Depr-Store Building Accumulated Depr-Office Equipment Store Building Cash B. Swett, Capital (-0- Investments this year) Cost of Merchandise Sold Depr. Expense-Store Building Depr. Expense-Office Equipment B. Swett, Drawing Office Equipment Insurance Expense Interest Expense Interest Payable Interest Revenue Merchandise Inventory Mortgage Payable, Long Term Office Salaries Expense Prepaid Insurance Property Tax Expense Property Taxes Payable Sales Sales Safary Expense Sales Commissions Expense Sales Commissions Payable Utilities Expense Utilities Payable Totals 79,300 50,300 52,500 42,900 190,000 23,800 176,600 412,700 10,400 13,300 28,000 . 110,000 7,200 11,000 8,000 4,000 75,000 80,000 32,000 2,400 4,800 4,800 620,000 76,000 14,500 4,300 12,000 1,000 1,073,400 1,073,400 Use the graph of f to determine the following. Enter solutions using a comma-separated list, if necessary. If a solution does not exist, enter DNE. 10+ 8 6- 4- 2- 8 10 www Qo 6f(-1) = f(2)= (4) = Suppose that a certain population of bears satisfy the logistic equation dP dt where k > 0 is a constant, and t is in years. Assume the initial population at t = 0) is 25 (a) If the bear population is growing at a rate of 3 bears per year at t = 0, determine the intrinsic growth rate k. (b) Showing all work, solve the DE to find P(t). (Hint: Partial fraction decomposition will be useful here. Solve for P(t) explicitly.) alot As US treasury has a semi-annual coupon of 5% and matures in 20years. The yield to maturity is 7%. Assume USD 10 million as theface or maturity value.Calculate the present value of thecouponsCalc Let ai, be the entry in row i column j of A. Write the 3 x 3 matrix A whose entries are maximum of i and j. i column ; of A. Write the 3 x 3 matrix A whose entries are aij Letaijbe the entry in row i column j of A. Write the 3 x 3 matrix A whose entries areEdit View Insert Format Tools Table12pt vParagraphBIUA 22: i column j of A. Write the 3 x 3 matrix A whose entries are ajEdit View Insert Format Tools TableV12pt ParagraphBIUA 2 T2=maximum of i and j. # Please show solution in R codePlease perform a Students t-test of the null hypothesis that dat_one_sample is drawn from a Normal population with mean and hence median equal to 0.1 (not 0). Report the 95% confidence interval for the mean. Please do this whether or not your work in 1.a (histogram) and 1.b (Normal qq plot) indicates that the hypotheses making the one sample Students test a test of location of the mean are satisfied.dat_one_sample:0.29208181451.81E-060.29982829610.22706954372.1674753180.21301310480.41490566765.03E-050.65165241610.18330632260.025181048540.14463619060.063609527410.34936525140.0090464892090.093799253462.1082097540.19495230270.0032634590310.36500321310.00010482910170.029272944790.90512685390.37010466270.78835074260.22184273660.52068187890.79958539450.0001255490350.01128129422.0218100320.10883115040.0015681567950.013337150990.38161910.065598065740.03029286831.6593390560.88741438570.06095180558 A 1.5s shift in a 6-s control process implies an increase in defect level of:4.3 PPM.3.4 DPMO2700 ppm3.4%none of the above is trueABC company plans to implement SPC to monitor the output performance of its assmeply process, in terms of percentage of defective calculators produced per hour. Which of the following control chart should ABC use?A. X-bar chartB. R chartC. S chartD. p chartE. none of the above11. ABC Co. wants to estimate defective part per million (PPM) of its production process. They drew a sample of 1000 XYZ units and 80 defects were identified in 40 units. Previous quality records reveal that the number of potential defects within a unit of XYZ is 4. What is the PPM of the production process?A. 10,000B. 20,000C. 30,000D. 40,000E. None of the above is correct. what statement best describes hillerich & bradsby's erp system? Which of the following is true of activity-based costing?a.more cost poolsb.eliminates arbitrary allocationsc.same base as traditional costingd.less costly to use