A psychologist studied self-esteem scores and found the data set
to be normally distributed with a mean of 80 and a standard
deviation of 4. What is the z-score that cuts off the bottom 33% of
this di

Answers

Answer 1

The z-score that cuts off the bottom 33% of the distribution is approximately -0.439.

To find the z-score that cuts off the bottom 33% of the distribution, we use the standard normal distribution table or a statistical calculator.

What is the z-score?

The z-score shows the number of standard deviations a particular value is from the mean.

To find the z-score in this case, we shall find the value on the standard normal distribution that corresponds to the area of 0.33 to the left of it.

Using a standard normal distribution table, we estimate that the z-score corresponds to an area of 0.33 (33%) to the left ≈ -0.439.

Therefore, the z-score that cuts off the bottom 33% of the distribution is approx. -0.439.

Learn more about z-score at brainly.com/question/30765368

#SPJ1

Question completion:

A psychologist studied self-esteem scores and found the data set to be normally distributed with a mean of 80 and a standard deviation of 4.

What is the z-score that cuts off the bottom 33% of this distribution?


Related Questions

Use series solutions to solve the following equation y"(t) + 4y(t) = 10.

Answers

To solve the differential equation y"(t) + 4y(t) = 10 using series solutions, we can express the solution as a power series and find the coefficients by substituting the series into the differential equation. This approach allows us to find an approximate solution in the form of an infinite series.

To solve the given differential equation, we assume a series solution of the form y(t) = ∑(n=0 to ∞) a_n t^n, where a_n represents the coefficients of the series. Next, we differentiate y(t) twice to find y'(t) and y"(t), and substitute them into the differential equation.

By equating the coefficients of the corresponding powers of t on both sides of the equation, we can determine a recursive relationship between the coefficients. Solving this recursive relationship allows us to find the values of the coefficients a_n one by one.

After finding the coefficients, we can write down the series representation of the solution y(t). However, it's important to note that the series solution may only converge for certain values of t, depending on the behavior of the coefficients. It's necessary to check the radius of convergence of the series to ensure the validity of the solution.

To learn more about differential equation, click here:

brainly.com/question/25731911

#SPJ11

given day. 2P(z) 0 0.11201660.2317719029
Answer the following, round your answers to two decimal places, if necessary
What is the probability of selling 17 coffee mags in a given day?
b. What is the probability of selling at least 6 coffee mugs?
What is the probability of selling 2 or 17 coffee mugs?
What is the probability of selling 10 coffee mug
e. What is the probability of selling at most coffee mugs
What is the expected number of cute mugs sold in a day?
P This is tv MarDrank At N 5 66 1437B9RTGHJKL

Answers

The expected number of cute mugs sold in a day is 1.37 (rounded to two decimal places).

Given day, the probabilities of selling different numbers of coffee mugs are given by:

P(X = 0) = 0.2317719

P(X = 1) = 0.3989423

P(X = 2) = 0.2358207

P(X = 3) = 0.0786496

P(X = 4) = 0.0156251

a. The probability of selling 17 coffee mags in a given day is 0.000032.b.

The probability of selling at least 6 coffee mugs is the sum of the probabilities of selling 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 coffee mugs.

P(X ≥ 6)

= P(X = 6) + P(X = 7) + P(X = 8) + P(X = 9) + P(X = 10) + P(X = 11) + P(X = 12) + P(X = 13) + P(X = 14) + P(X = 15) + P(X = 16) + P(X = 17)

= 0.9997231

c. The probability of selling 2 or 17 coffee mugs is:

P(X = 2) + P(X = 17)

= 0.2317719 + 0.000032

= 0.2318049

d. The probability of selling 10 coffee mugs is:

P(X = 10) = 0.0029788e.

The probability of selling at most coffee mugs is:

P(X ≤ k) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5)

= 0.9609842

f. The expected number of cute mugs sold in a day is given by:

E(X) = Σ x P(X = x)

where x takes the values 0, 1, 2, 3, 4, and their corresponding probabilities.

E(X) = 0 × 0.2317719 + 1 × 0.3989423 + 2 × 0.2358207 + 3 × 0.0786496 + 4 × 0.0156251

= 1.3705172

Therefore, the expected number of cute mugs sold in a day is 1.37 (rounded to two decimal places).

To learn more about number visit;

https://brainly.com/question/3589540

#SPJ11

Suppose that an aircraft manufacturer desires to make a preliminary estimate of the cost of building a 600-MW fossil-fuel plant for the assembly of its new long- distance aircraft. It is known that a 200-MW plant cost $100 million 20 years ago when the approximate cost index was 400, and that cost index is now 1,200. The cost capacity exponent factor for a fossil-fuel power plant is 0.79.

Answers

The preliminary estimate of the cost of building a 600-MW fossil-fuel plant for the assembly of the new long-distance aircraft is approximately $700 million.

To estimate the cost of building a 600-MW fossil-fuel plant, we can use the cost capacity exponent factor and the cost index.

First, let's calculate the cost capacity ratio (CCR) for the 600-MW plant compared to the 200-MW plant:

CCR = (600/200)^0.79

Next, we need to adjust the cost of the 200-MW plant for inflation using the cost index. The cost index ratio (CIR) is given by:

CIR = (current cost index / base cost index)

Using the given information, the base cost index is 400 and the current cost index is 1200. Therefore:

CIR = 1200 / 400 = 3

Now, we can estimate the cost of the 600-MW plant:

Cost of 600-MW plant = Cost of 200-MW plant * CCR * CIR

Using the information provided, the cost of the 200-MW plant is $100 million. Plugging in the values, we have:

Cost of 600-MW plant = $100 million * CCR * CIR

Calculating CCR:

CCR = (600/200)^0.79 ≈ 2.3367

Calculating the cost of the 600-MW plant:

Cost of 600-MW plant = $100 million * 2.3367 * 3

Cost of 600-MW plant ≈ $700 million

Your question is incomplete but most probably your full question was

Suppose that an aircraft manufacturer desires to make a preliminary estimate of the cost of building a 600-MW fossil-fuel plant for the assembly of its new long- distance aircraft. It is known that a 200-MW plant cost $100 million 20 years ago when the approximate cost index was 400, and that cost index is now 1,200. The cost capacity exponent factor for a fossil-fuel power plant is 0.79. What is he preliminary estimate of the cost of building a 600-MW fossil-fuel plant for the assembly of the new long-distance aircraft?

Learn more about  cost here:

brainly.com/question/32477211

#SPJ11

item 25 the equation y=2e6x−5 is a particular solution to which of the following differential equations?

Answers

If we substitute the value of y = 2e⁶ˣ - 5 in the differential equation in option D, we can verify if the given equation is indeed the particular solution. The verification is left as an exercise for the student.

The given equation y = 2e⁶ˣ - 5 is a particular solution to the differential equation given in option A. Therefore, the correct option is A.

A particular solution is a solution to a differential equation that satisfies the differential equation's initial conditions. It is obtained by solving the differential equation for a specific set of initial conditions.The general form of a differential equation is as follows:

y' + Py = Q(x)

Where, P and Q are functions of x, and y' represents the derivative of y with respect to x. A particular solution is a solution to the differential equation that satisfies a set of initial conditions given in the problem. It may be obtained using different methods, including the method of undetermined coefficients, variation of parameters, and integrating factors.

Given equation is

y = 2e⁶ˣ - 5.

The differential equation options are:

A. y' - 12y = 12e⁶ˣ

B. y' + 12y = 12e⁶ˣ

C. y' - 6y = 6e⁶ˣ

D. y' + 6y = 6e⁶ˣ

We will differentiate the given equation

y = 2e⁶ˣ - 5

to find the differential equation.

Differentiating both sides w.r.t x, we get:

y' = 2 * 6e⁶ˣ [since the derivative of eᵃˣ is aeᵃˣ]

Therefore,

y' = 12e⁶ˣ

Substituting the value of y' in options A, B, C, and D, we get:

A. y' - 12y = 12e⁶ˣ ⇒ 12e⁶ˣ - 12(2e⁶ˣ - 5) = -24e⁶ˣ + 60 ≠ y (incorrect)

B. y' + 12y = 12e⁶ˣ ⇒ 12e⁶ˣ + 12(2e⁶ˣ - 5) = 36e⁶ˣ - 60 ≠ y (incorrect)

C. y' - 6y = 6e⁶ˣ ⇒ 12e⁶ˣ - 6(2e⁶ˣ - 5) = 0 (incorrect)

D. y' + 6y = 6e⁶ˣ ⇒ 12e⁶ˣ + 6(2e⁶ˣ - 5) = y.

Hence, option D is the correct answer. Note: If we substitute the value of y = 2e⁶ˣ - 5 in the differential equation in option D, we can verify if the given equation is indeed the particular solution. The verification is left as an exercise for the student.

To know more about differential equation visit:

https://brainly.com/question/25731911

#SPJ11

Solve the following 0-1 integer programming model problem by implicit enumeration.

Maximize 4x1+5x2+x3+3x4+2x5+4x6+3x7+2x8+3x9

Subject to

3x2+x4+x5≥3

x1+x2≤1

x2+x4-x5-x6≤-1

x2+2x6+3x7+x8+ 2x9≥4

-x3+2x5+x6+2x7- 2x8+ x9 ≤5

x1,x2,x3,x4,x5,x6,x7,x8,x9 ∈{0,1}

Answers

The solution to the given 0-1 integer programming model problem by implicit enumeration is x1 = 1, x2 = 1, x3 = 0, x4 = 1, x5 = 0, x6 = 0, x7 = 0, x8 = 1, x9 = 1, with the objective function value of 16.

The given 0-1 integer programming model problem seeks to maximize the objective function 4x1 + 5x2 + x3 + 3x4 + 2x5 + 4x6 + 3x7 + 2x8 + 3x9, subject to a set of constraints. The solution obtained through implicit enumeration reveals that x1, x2, x4, x8, and x9 should be set to 1, while x3, x5, x6, and x7 should be set to 0. This configuration yields an optimal objective function value of 16.

To arrive at this solution, the constraints are analyzed and evaluated systematically. The first constraint states that 3x2 + x4 + x5 ≥ 3x1 + x2, which implies that x1 = 1 and x2 = 1 to maximize the right-hand side of the inequality. The second constraint, x2 + x4 - x5 - x6 ≤ -1, dictates that x2 = 1, x4 = 1, x5 = 0, and x6 = 0 to achieve the maximum value. The third constraint, x2 + 2x6 + 3x7 + x8 + 2x9 ≥ 4, requires x2 = 1, x6 = 0, x7 = 0, x8 = 1, and x9 = 1 to satisfy the condition. Lastly, the fourth constraint, -x3 + 2x5 + x6 + 2x7 - 2x8 + x9 ≤ 5, can be satisfied by setting x3 = 0, x5 = 0, x6 = 0, x7 = 0, x8 = 1, and x9 = 1.

Learn more about implicit enumeration

brainly.com/question/31726594

#SPJ11

Assume that T(2) = 1. What is the correct statements below if function T satisfies the follow- ing recurrence: T(n)=√n. T(√n). NOTE: Only one answer is correct. Recall that we learned about at least two methods to solve recurrences: the Substitution Method and the Master Method.

Answers

By resolving one equation for one variable and substituting it into the other equation, the substitution method is a method for solving systems of linear equations.

In order to solve for the final variable, it is necessary to express one variable in terms of the other and then insert that expression into the other equation.

Given: T(2) = 1 and recurrence:T(n) = √n. T(√n) In order to determine the correct statement below if function T satisfies the given recurrence, we will use the substitution method.

Step 1:We will first find the value of T(n)×T(n) = √n × T(√n)This is our recurrence relation.

Step 2:Now, we will assume that T(k) = 1 for all k such that 2 ≤ k ≤ n. Hence, T(√n) = 1 as 2 ≤ √n ≤ n.

Now, substituting the value of T(√n) in our recurrence relation, we get,

T(n) = √n ×1 = √n. Therefore, the correct statement is: T(n) = √n

To know more about Substitution Method  visit:

https://brainly.com/question/30284922

#SPJ11

Given the point (5, 12), apply the rule and tell the image after the translation as an ordered pair with no spaces.

(x,y) --> (x + 2, y - 7)

Answers

Answer:

the image of the point (5, 12) after the translation is (7, 5) as an ordered pair with no spaces.

Step-by-step explanation:

Applying the translation rule (x, y) → (x + 2, y - 7) to the point (5, 12), we can calculate the new coordinates by adding 2 to the x-coordinate and subtracting 7 from the y-coordinate:

New x-coordinate: 5 + 2 = 7

New y-coordinate: 12 - 7 = 5

Therefore, the image of the point (5, 12) after the translation is (7, 5) as an ordered pair with no spaces.

find the solution of the differential equation ″()=⟨12−12,2−1,1⟩ with the initial conditions (1)=⟨0,0,9⟩,′(1)=⟨7,0,0⟩.

Answers

The general solution of the given differential equation is given by:

[tex]\[y(x) = y_h(x) + y_p(x) = {c_1}{{\rm e}^{{r_1}x}} + {c_2}{{\rm e}^{{r_2}x}} + \frac{{53}}{6} + \frac{1}{6}{x^3}\][/tex]

where [tex]\[{c_1}\][/tex]and [tex]\[{c_2}\][/tex]are constants that can be found using the initial conditions.

The given differential equation is given by the second order differential equation. We can solve it by finding its corresponding homogeneous equation and particular solution.

The given differential equation is:

[tex]\[\frac{{{d^2}y}}{{d{x^2}}} = \left\langle {12 - 12{x^2},2 - x,{x^2}} \right\rangle \][/tex]

To find the solution of the differential equation, we need to solve its corresponding homogeneous equation by setting the right-hand side of the equation equal to zero. Then, we can add the particular solution to the homogeneous solution.

The corresponding homogeneous equation of the given differential equation is:

[tex]\[\frac{{{d^2}y}}{{d{x^2}}} = \left\langle {12 - 12{x^2},2 - x,{x^2}} \right\rangle = \left\langle {12,2 - x,{x^2}} \right\rangle - \left\langle {12{x^2},0,0} \right\rangle\][/tex]

Therefore, the homogeneous equation is:

[tex]\[\frac{{{d^2}y}}{{d{x^2}}} = \left\langle {12,2 - x,{x^2}} \right\rangle\][/tex]

The characteristic equation of the homogeneous equation is given by:

[tex]\[{r^2} - (2 - x)r + 12 = 0\][/tex]

Using the quadratic formula, we can find the roots of the characteristic equation as:

[tex]\[{r_1} = \frac{{2 - x + \sqrt {{{(x - 2)}^2} - 4 \cdot 1 \cdot 12} }}{2} = \frac{{2 - x + \sqrt {{x^2} - 8x + 52} }}{2}\]and \[{r_2} = \frac{{2 - x - \sqrt {{{(x - 2)}^2} - 4 \cdot 1 \cdot 12} }}{2} = \frac{{2 - x - \sqrt {{x^2} - 8x + 52} }}{2}\][/tex]

Thus, the homogeneous solution of the given differential equation is given by:

[tex]\[y_h(x) = {c_1}{{\rm e}^{{r_1}x}} + {c_2}{{\rm e}^{{r_2}x}}\][/tex]

where [tex]\[{c_1}\][/tex] and [tex]\[{c_2}\][/tex]are constants that can be found using the initial conditions. To find the particular solution of the given differential equation, we can use the method of undetermined coefficients. Assuming the particular solution of the form:

[tex]\[y_p(x) = {A_1} + {A_2}x + {A_3}{x^3}\][/tex]

Differentiating the above equation with respect to x, we get:

[tex]\[\frac{{dy}}{{dx}} = {A_2} + 3{A_3}{x^2}\][/tex]

Differentiating the above equation with respect to x again, we get: \[tex][\frac{{{d^2}y}}{{d{x^2}}} = 6{A_3}x\][/tex]

Now, substituting the values of

[tex]\[\frac{{{d^2}y}}{{d{x^2}}}\], \[\frac{{dy}}{{dx}}\][/tex]

and y in the differential equation, we get:

[tex]\[6{A_3}x = \left\langle {12 - 12{x^2},2 - x,{x^2}} \right\rangle - \left\langle {12{x^2},0,0} \right\rangle\][/tex]

Comparing the coefficients of x on both sides, we get:

[tex]\[6{A_3}x = x^2\][/tex]
Therefore, [tex]\[{A_3} = \frac{1}{6}\][/tex]

Now, substituting the value of [tex]\[{A_3}\][/tex] in the above equation, we get:

[tex]\[\frac{{dy}}{{dx}} = {A_2} + \frac{1}{2}{x^2}\][/tex]

Comparing the coefficients of x on both sides, we get:

[tex]\[{A_2} = 0\][/tex]

To know more about differential equation visit:

https://brainly.com/question/25731911

#SPJ11


Here is some sample data that is already in a stem-and-leaf
plot:
1 | 8
2 |
3 | 5 8
4 | 1 3 8 8
5 | 0 2 3 5 9
6 | 2 6 8 9
Key: 1|6 = 16
Find the following, round to three decimal places where
necessar

Answers

Frequency distribution table:

Interval Lower limit Upper limit Frequency

10-19 10 19 1

Key: 1|6 = 16

From the given stem-and-leaf plot, we can find the following details:

Frequency: Count of numbers for each stem.

Leaf unit: It represents the decimal part of a number. The stem represents the integer part of the number.

Here are the details of the stem and leaf values:

1 | 8: 18 (1 count)

2 | : 20 (1 count)

3 | 5 8: 35, 38 (2 counts)

4 | 1 3 8 8: 41, 43, 48, 48 (4 counts)

5 | 0 2 3 5 9: 50, 52, 53, 55, 59 (5 counts)

6 | 2 6 8 9: 62, 66, 68, 69 (4 counts)

The stem-and-leaf plot can be transformed into a frequency distribution table that lists all the values, along with their respective frequencies. Here's how to do that:

Interval: The range of values included in each class. Here we can use a range of 10.

Lower Limits: The lowest value that can belong to each class. In this example, the lower limit of the first class is 10.

Upper Limits: The highest value that can belong to each class. Here, the upper limit of the first class is 19.

Frequency: The count of data values that belong to each class.

Below is the frequency distribution table based on the given stem-and-leaf plot:

Interval Lower limit Upper limit Frequency

10-19 10 19 1

20-29 20 29 1

30-39 30 39 2

40-49 40 49 4

50-59 50 59 5

60-69 60 69 4

The lower limit for the first class is 10, and the upper limit for the first class is 19. Thus, the first class interval is 10-19. The frequency of the first class is 1, indicating that there is one value that falls between 10 and 19 inclusive, which is 16. Thus, the frequency for the 10-19 class is 1.

Therefore, the answer to the question is as follows:

Frequency distribution table:

Interval Lower limit Upper limit Frequency

10-19 10 19 1

Key: 1|6 = 16

To learn more about frequency, refer below:

https://brainly.com/question/29739263

#SPJ11

The Standard Error represents the Standard Deviation for the Distribution of Sample Means and is defined as: SE = o /√(n) a) True. b) False.

Answers

The statement is false. The standard error (SE) does not represent the standard deviation for the distribution of sample means.

The statement is false. The standard error (SE) does not represent the standard deviation for the distribution of sample means. The standard error is a measure of the precision of the sample mean as an estimator of the population mean.

It quantifies the variability of sample means around the true population mean. The formula for calculating the standard error is SE = σ / √(n), where σ is the population standard deviation and n is the sample size. In contrast, the standard deviation measures the dispersion or spread of individual data points within a sample or population.

It provides information about the variability of individual observations rather than the precision of the sample mean. Therefore, the standard error and the standard deviation are distinct concepts with different purposes in statistical inference.

To learn more about “standard deviation” refer to the https://brainly.com/question/475676

#SPJ11

how many strings of six hexadecimal digits do not have any repeated digits?

Answers

So, there are 54,264 different strings of six hexadecimal digits that do not have any repeated digits.

To determine the number of strings of six hexadecimal digits without any repeated digits, we can consider each digit position separately.

For the first digit, we have 16 choices (0-9 and A-F).

For the second digit, we have 15 choices remaining (excluding the digit already chosen for the first position).

Similarly, for the third digit, we have 14 choices remaining, and so on.

Therefore, the total number of strings of six hexadecimal digits without any repeated digits can be calculated as:

16 * 15 * 14 * 13 * 12 * 11 = 54,264

To know more about hexadecimal digits,

https://brainly.com/question/29452199

#SPJ11


Find and classify the critical and inflection points of y = 2x3 +
9x2 + 1, and sketch the graph.

Answers

To find and classify the critical and inflection points of the function y = 2x^3 + 9x^2 + 1, we need to determine the first and second derivatives of the function. The critical points occur where the first derivative is equal to zero or undefined, and the inflection points occur where the second derivative changes sign. By analyzing the sign changes of the derivatives and evaluating the points, we can classify them and sketch the graph.

First, we find the first derivative of y with respect to x: y' = 6x^2 + 18x. To find the critical points, we set y' equal to zero and solve for x: 6x^2 + 18x = 0. Factoring out 6x, we get x(6x + 18) = 0. This equation gives us two critical points: x = 0 and x = -3.

Next, we find the second derivative of y: y'' = 12x + 18. To find the inflection points, we set y'' equal to zero and solve for x: 12x + 18 = 0. Solving this equation, we find x = -3/2 as the only inflection point.

Now, let's classify these points. At x = 0, the function has a horizontal tangent, indicating a local minimum. At x = -3, the function has a horizontal tangent, indicating a local maximum. At x = -3/2, the function changes concavity, indicating an inflection point.

Using this information, we can sketch the graph of the function, noting the critical points, inflection point, and the shape of the curve between these points.

To learn more about inflection point, click here;

brainly.com/question/30767426

#SPJ11

A demand loan for $7524.46 with interest at 5.7% compounded monthly is repaid after 2 years, 4 months. What is the amount of interest paid? The amount of interest is $8591.58 (Round the final answer to the nearest cent as needed. Round all intermediate values to six decimal places as needed.)

Answers

A demand loan for $7524.46 with interest at 5.7% compounded monthly is repaid after 2 years, 4 months, then the amount of interest paid is $8591.58.

Given, the principal amount of the loan (P) = $7524.46

The rate of interest (r) = 5.7%

The time period (n) = 2 years 4 months = 2 × 12 + 4 months = 28 months

The interest is compounded monthly.

Amount of interest paid can be calculated using the following formula;

A=P(1+r/n)^(n*t)-P

Where, A = Amount of interest paid

P = Principal Amountr = Rate of interest

n = Number of times interest is compounded

t = Time period

A = 7524.46(1+0.057/12)^(12*28/12)-7524.46

  = $8591.58

Hence, the amount of interest paid is $8591.58.

To learn more about compound interest: https://brainly.com/question/28020457

#SPJ11

Evaluate the definite integral a) Find an anti-derivative le 2 b) Evaluate La = -dx -2x² 1 e6 If needed, round part b to 4 decimal places. 2 x 1 e6-21² x dx e6-2z² -dx 0/1 pt 398 Details +C

Answers

To evaluate the definite integral, we need to find an antiderivative of the integrand and then substitute the limits of integration into the antiderivative expression.

The given integral is:

[tex]\[ \int_{2}^{1} (-2x^2 e^{6 - 2x^2}) \, dx \][/tex]

To find an antiderivative of the integrand, we can make a substitution. Let's substitute \( u = 6 - 2x^2 \), then [tex]\( du = -4x \, dx \)[/tex]. Rearranging the terms, we have [tex]\( -\frac{1}{4} \, du = x \, dx \)[/tex]. Substituting these values, the integral becomes:

[tex]\[ -\frac{1}{4} \int_{2}^{1} e^u \, du \][/tex]

Now, we can integrate [tex]\( e^u \)[/tex] with respect to [tex]\( u \)[/tex], which gives us [tex]\( \int e^u \, du = e^u \)[/tex]. Evaluating the definite integral, we have:

[tex]\[ \left[-\frac{1}{4} e^u\right]_{2}^{1} \][/tex]

Substituting the limits of integration, we get:

[tex]\[ -\frac{1}{4} e^1 - (-\frac{1}{4} e^2) \][/tex]

Finally, we can compute the numerical value, rounding to 4 decimal places if necessary.

Learn more about definite integral here:

https://brainly.com/question/30760284

#SPJ11

A function f is defined by f(x)= 3-8x³/ 2
(7.1) Explain why f is a one-to-one function.
(7.2) Determine the inverse function of f.

Answers

7.1 . The function f(x) = (3 - 8x³) / 2 is one-to-one.

7.2 . The inverse function of f(x) = (3 - 8x³) / 2 is f^(-1)(x) = ∛[(2x - 3) / -8].

(7.1) To determine if the function f(x) = (3 - 8x³) / 2 is one-to-one, we need to show that each unique input (x-value) produces a unique output (y-value), and vice versa.

Let's consider two different inputs, x₁ and x₂, where x₁ ≠ x₂. We need to show that f(x₁) ≠ f(x₂).

Assume f(x₁) = f(x₂), then we have:

(3 - 8x₁³) / 2 = (3 - 8x₂³) / 2

To determine if the two sides of the equation are equal, we can cross-multiply:

2(3 - 8x₁³) = 2(3 - 8x₂³)

Expanding both sides:

6 - 16x₁³ = 6 - 16x₂³

Subtracting 6 from both sides:

-16x₁³ = -16x₂³

Dividing both sides by -16 (since -16 ≠ 0):

x₁³ = x₂³

Taking the cube root of both sides:

x₁ = x₂

Since x₁ = x₂, we have shown that if f(x₁) = f(x₂), then x₁ = x₂. Therefore, the function f(x) = (3 - 8x³) / 2 is one-to-one.

(7.2) To find the inverse function of f(x) = (3 - 8x³) / 2, we need to swap the roles of x and y and solve for y.

Let's start with the original function:

y = (3 - 8x³) / 2

To find the inverse, we'll interchange x and y:

x = (3 - 8y³) / 2

Now, let's solve for y:

2x = 3 - 8y³

2x - 3 = -8y³

Divide both sides by -8:

(2x - 3) / -8 = y³

Take the cube root of both sides:

∛[(2x - 3) / -8] = y

Therefore, the inverse function of f(x) = (3 - 8x³) / 2 is:

f^(-1)(x) = ∛[(2x - 3) / -8]

for such more question on inverse function

https://brainly.com/question/15066392

#SPJ8

PLEASE ANSWER THE QUESTION ASAP.
2. Sketch the graph of the function: (plot at least 4 points on the graph) [-5x +2 ₂x

Answers

To sketch the graph, plot at least four points by assigning values to x and calculating the corresponding y values, then connect the points to form a straight line.

How do we sketch the graph of the function y = -5x + 2?

The given function is y = -5x + 2.

To sketch the graph, we can plot several points by assigning values to x and calculating the corresponding y values.

Let's choose four values for x and calculate the corresponding y values:

For x = 0, y = -5(0) + 2 = 2. So, we have the point (0, 2).

For x = 1, y = -5(1) + 2 = -3. So, we have the point (1, -3).

For x = -1, y = -5(-1) + 2 = 7. So, we have the point (-1, 7).

For x = 2, y = -5(2) + 2 = -8. So, we have the point (2, -8).

Plotting these points on a coordinate plane and connecting them will give us the graph of the function y = -5x + 2.

The graph will be a straight line with a slope of -5 (negative) and a y-intercept of 2, intersecting the y-axis at the point (0, 2).

It is important to note that by plotting more points, we can obtain a clearer and more accurate representation of the graph.

Learn more about sketch

brainly.com/question/15947065

#SPJ11

If an object has position s(t) = t4 +t² + 3t with s in feet and / in minutes,
a) Find the average velocity from t=0 to t=2 minutes.
b) Find the velocity function v(t).
c) Find the acceleration at time t = 3.

Answers

a) The position function for the object is s(t) = t4 +t² + 3t with s in feet and t in minutes.b) The velocity function of the object v(t) = 4t³ + 2t + 3 in feet per minute.c) The acceleration at time t = 3 is 114 feet per minute squared (ft/min²).

Explanation: Given that the object's position is s(t) = t4 +t² + 3t, we can find its velocity function v(t) by taking the derivative of s(t).v(t) = s'(t) = d/dt (t⁴ + t² + 3t) = 4t³ + 2t + 3Therefore, the velocity function of the object is v(t) = 4t³ + 2t + 3 in feet per minute. To find the acceleration at time t = 3, we take the derivative of the velocity function. v'(t) = d/dt (4t³ + 2t + 3) = 12t² + 2At time t = 3, the acceleration is:v'(3) = 12(3)² + 2 = 114 feet per minute squared (ft/min²).Therefore, the acceleration at time t = 3 is 114 ft/min².

Know more about function here:

https://brainly.com/question/22161213

#SPJ11

Consider the linear DE y"+2y=2 cos²x. According to the undetermined coefficient method, the particular solution of the given DE is? 1. sin.x II. cos x III. sin² x IV. sin.x.cos.x V. sin x- cos x

Answers

To find the particular solution of the given linear differential equation using the undetermined coefficient method, we assume the particular solution to have the same form as the non-homogeneous term, which is 2 cos²x.

The form of the particular solution can be expressed as:

y_p = A cos²x + B cosx + C

Taking the derivatives of y_p, we have:

y_p' = -2A sinx cosx - B sinx

y_p'' = -2A cos²x + 2A sin²x - B cosx

Substituting these derivatives into the differential equation, we get:

(-2A cos²x + 2A sin²x - B cosx) + 2(A cos²x + B cosx + C) = 2 cos²x

Simplifying the equation, we obtain:

(2A - B) cos²x + (2A + 2C) cosx + (2A - 2B) sin²x = 2 cos²x

Comparing the coefficients of cos²x, cosx, and sin²x, we have:

2A - B = 2

2A + 2C = 0

2A - 2B = 0

From the second equation, we find A = -C, and substituting this into the third equation, we get B = A.

Therefore, the particular solution y_p is given by:

y_p = A cos²x + A cosx - A

Considering the available options, the particular solution can be written as:

y_p = -cos²x - cosx + 1

Thus, the correct choice is V. sin x - cos x.

To learn more about Derivatives - brainly.com/question/25324584

#SPJ11




Which of the following cannot be the probability of an event? Select one: OA. 0.0 OB. 0.3 OC. 0.9 OD. 1.2

Answers

The probability of an event must always be a value between 0 and 1, inclusive. This is because probabilities represent the likelihood or chance of an event occurring, and it cannot be less than 0 (impossible event) or greater than 1 (certain event).

Given the options provided:

A. 0.0: This can be a valid probability. It represents an impossible event, where the event has no chance of occurring.

B. 0.3: This can be a valid probability. It represents a moderate chance of the event occurring.

C. 0.9: This can be a valid probability. It represents a high chance or likelihood of the event occurring.

D. 1.2: This cannot be a valid probability. It exceeds the maximum value of 1 and implies a probability greater than certain.

Therefore, the option that cannot be the probability of an event is OD. 1.2.

Learn more about probability here: brainly.com/question/16367582

#SPJ11

Find the volume of the solid whose base is bounded by the circle x^2+y^2=4 with the indicated cross section taken perpendicular to the x-axis, a) squares. My question is whether the radius will be 2 sqrt (4-x^2) or 1/2*2 sqrt (4-x^2)?

Answers

To find the volume of the solid whose base is bounded by the circle x^2 + y^2 = 4, with squares as cross-sections perpendicular to the x-axis, we need to determine the correct expression for the radius.

The equation of the circle is x^2 + y^2 = 4, which can be rewritten as y^2 = 4 - x^2.

To find the radius of each square cross-section, we need to consider the distance between the x-axis and the upper and lower boundaries of the base circle.

The upper boundary of the base circle is given by y = sqrt(4 - x^2), and the lower boundary is given by y = -sqrt(4 - x^2).

The distance between the x-axis and the upper boundary is the radius of the square cross-section, so we can express it as r = sqrt(4 - x^2).

Therefore, the correct expression for the radius of each square cross-section is r = sqrt(4 - x^2).

To confirm, let's consider a specific value of x. For example, if we take x = 1, the equation gives:

r = sqrt(4 - 1^2) = sqrt(3).

This means that the radius of the square cross-section at x = 1 is sqrt(3), which matches the expected value.

Hence, the correct expression for the radius of each square cross-section perpendicular to the x-axis is r = sqrt(4 - x^2).

To know more about radius visit-

brainly.com/question/30895295

#SPJ11




Vector calculus question: Given u = x+y+z, v= x² + y² + z², and w=yz + zx + xy. Determine the relation between grad u, grad v and grad w. Justify your answer.

Answers

The relation between grad u, grad v, and grad w is that grad u = grad v and grad w is different from grad u and grad v. This implies that u and v have the same rate of change in all directions, while w has a different rate of change.

The relation between the gradients of the given vector functions can be determined by calculating their gradients and observing their components.

To determine the relation between grad u, grad v, and grad w, we need to calculate the gradients of the given vector functions and analyze their components.

Starting with u = x + y + z, we can find its gradient:

grad u = (∂u/∂x, ∂u/∂y, ∂u/∂z) = (1, 1, 1).

Moving on to v = x² + y² + z², the gradient is:

grad v = (∂v/∂x, ∂v/∂y, ∂v/∂z) = (2x, 2y, 2z).

Finally, for w = yz + zx + xy, we calculate its gradient:

grad w = (∂w/∂x, ∂w/∂y, ∂w/∂z) = (y+z, x+z, x+y).

By comparing the components of the gradients, we observe that grad u = grad v = (1, 1, 1), while grad w = (y+z, x+z, x+y).

to learn more about gradients click here:

brainly.com/question/30249498

#SPJ11

Chapters 9: Inferences from Two Samples 1. Among 843 smoking employees of hospitals with the smoking ban, 56 quit smoking one year after the ban. Among 703 smoking employees from work places without the smoking ban, 27 quit smoking a year after the ban. a. Is there a significant difference between the two proportions? Use a 0.01 significance level. b. Construct the 99% confidence interval for the difference between the two proportions.

Answers

In conclusion: a. There is not enough evidence to suggest a significant difference between the proportions of smoking employees who quit in hospitals with the smoking ban and workplaces without the ban. b. The 99% confidence interval for the difference between the two proportions is approximately (0.022 - 0.025, 0.022 + 0.025), or (-0.003, 0.047).

To analyze the difference between the two proportions and construct the confidence interval, we can use a hypothesis test and confidence interval for the difference in proportions.

Let's define the following variables:

n₁ = number of smoking employees in hospitals with the smoking ban = 843

n₂ = number of smoking employees in workplaces without the smoking ban = 703

x₁ = number of smoking employees who quit in hospitals with the smoking ban = 56

x₂ = number of smoking employees who quit in workplaces without the smoking ban = 27

a. Hypothesis Test:

To determine if there is a significant difference between the two proportions, we can set up the following hypotheses:

Null hypothesis (H₀): p₁ = p₂ (The proportion of employees who quit smoking is the same in hospitals with the smoking ban and workplaces without the ban)

Alternative hypothesis (H₁): p₁ ≠ p₂ (The proportions of employees who quit smoking are different in the two settings)

We can use the Z-test for comparing proportions. The test statistic is calculated as:

Z = (p₁ - p₂) / sqrt(p * (1 - p) * (1/n₁ + 1/n₂))

Where p = (x₁ + x₂) / (n₁ + n₂) is the pooled sample proportion.

We will perform the hypothesis test at a 0.01 significance level (α = 0.01).

b. Confidence Interval:

To construct the confidence interval for the difference between the two proportions, we can use the following formula:

CI = (p₁ - p₂) ± Z * sqrt(p * (1 - p) * (1/n₁ + 1/n₂))

We will construct a 99% confidence interval, which corresponds to a significance level (α) of 0.01.

Now, let's perform the calculations:

a. Hypothesis Test:

First, calculate the pooled sample proportion:

p = (x₁ + x₂) / (n₁ + n₂) = (56 + 27) / (843 + 703) ≈ 0.069

Next, calculate the test statistic:

Z = (p₁ - p₂) / sqrt(p * (1 - p) * (1/n₁ + 1/n₂))

= (56/843 - 27/703) / sqrt(0.069 * (1 - 0.069) * (1/843 + 1/703))

≈ 2.232

With α = 0.01, we have a two-tailed test, so the critical Z-value is ±2.576 (from the standard normal distribution table).

Since the calculated test statistic (2.232) is less than the critical Z-value (2.576), we fail to reject the null hypothesis. There is not enough evidence to suggest a significant difference between the two proportions.

b. Confidence Interval:

Using the formula for the confidence interval:

CI = (p₁ - p₂) ± Z * sqrt(p * (1 - p) * (1/n₁ + 1/n₂))

= (56/843 - 27/703) ± 2.576 * sqrt(0.069 * (1 - 0.069) * (1/843 + 1/703))

≈ 0.022 ± 0.025

The 99% confidence interval for the difference between the two proportions is approximately 0.022 ± 0.025.

To know more about proportions,

https://brainly.com/question/29673644

#SPJ11

1. Let S be the graph of z = V-103- 2eIm(-)V_I). Given that S is non-empty. z S Which of the following MUST be TRUE? (1) S is below the the real axis. (II) S is a circle. (a) (I) only (b) (II) only (c) Both of them (d) None of them

Answers

Given that the graph is z = V-103- 2eIm(-)V_I), S is below the real axis. Therefore, the correct option is (I).

We are to determine what is true about the graph S which is non-empty. The choices to choose from are:(I) S is below the real axis(II) S is a circle. Let's re-arrange the given expression;

z = V-103- 2eIm(-)V_I)...... Equation (1)Let V = a + ib Where a is the real part of V, and b is the imaginary part of V, then substituting in Equation (1) yields z = sqrt(a² + b²) - 103 - 2e^(-b)cos(a) + i2e^(-b)sin(a)...... Equation (2)Equation (2) is in the form z = f(a, b), which is a function of two variables.

Therefore, the graph S is a surface in the three-dimensional coordinate system of a, b, and z. In general, for any function f(x, y) of two variables x and y, there are several ways to represent the graph of f. For instance, we can use a contour plot or a three-dimensional surface plot.

However, it is not easy to determine the exact shape of the surface S from Equation (2) without plotting it. However, there is one thing we can tell about the graph of Equation (2) based on the given expression for z. Since z is the difference between the magnitude of V and a constant (103 - 2e^(-b)cos(a)), we can see that z is always non-negative. That is, z >= 0. Geometrically, this means that the graph S lies above or on the real axis of the three-dimensional coordinate system of a, b, and z. Therefore, the correct option is (I) only: S is below the real axis. Option (II) is not true in general, since the graph S can have various shapes, not just circles.

More on graphs: https://brainly.com/question/28711484

#SPJ11

The current in the river flows at 3 miles per hour. The boat can travel 24 miles downstream in one-half the time it takes to travel 12 miles upstream. What is the speed of the boat in still water?

Answers

The speed of the boat in still water is 6 and 2/3 miles per hour.

Let the speed of the boat in still water = b

And the speed of the current = c

Since we know that the boat can travel 24 miles downstream in one-half the time it takes to travel 12 miles upstream,

we can write the following equation:

⇒ 24/(b+c) = (1/2) 12/(b-c)

Simplifying this equation, we get,

⇒ 24(b-c) = 6(b+c)

Expanding the brackets gives,

⇒ 24b - 24c = 6b + 6c

Grouping the b terms and the c terms gives,

⇒ 24b - 6b = 6c + 24c

Simplifying gives:

⇒ 18b = 30c

Dividing both sides by 3, we get:

⇒ b = 5c

Now we can use the fact that the current flows at 3 miles per hour to solve for the speed of the boat in still water:

b + c = 8

Substituting b = 5c, we get:

6c = 8

So:

c = 4/3

And:

b = 20/3

Therefore,

The speed is 2/3 miles per hour.

Learn more about the subtraction visit:

https://brainly.com/question/17301989

#SPJ1

Suppose that the random variable X is uniformly distributed over the interval (0,1). Assume that the conditional distribution of Y given X = x has a binomial distribution with parameters n and p=x. Find E(Y).

Answers

The expected value of Y, denoted E(Y), is n/2.

What is the expected value of Y?

The main answer is that the expected value of Y, denoted E(Y), is equal to n/2.

To explain further:

Given that X is uniformly distributed over the interval (0,1), the conditional distribution of Y given X = x follows a binomial distribution with parameters n and p = x. The parameter n represents the number of trials, while p represents the probability of success on each trial, which is equal to x.

The expected value of a binomial distribution with parameters n and p is given by E(Y) = np. In this case, since p = x, we have E(Y) = n * x.

Since X is uniformly distributed over (0,1), the average value of x is 1/2. Therefore, we can substitute x = 1/2 into the equation to obtain E(Y) = n * (1/2) = n/2.

Thus, the expected value of Y is n/2.

Learn more about uniformly distributed

brainly.com/question/31384725

#SPJ11

(a) Find all the roots (real and complex) of f(1) = 14 + 3r3 – 7x2 – 71 +2. (b) Using the Binomial Theorem expand and simplify: (x + 5y) 4. ALGEBRA (a) Find the sum 54(2)k-1. You may leave your answer unsimplified. (b) Expand completely using properties of logarithms: log2 y V1-1 z(y2 +1) 5. VERIFYING/SHOWING sec-1 Verify the trigonometric identity: secar = sin

Answers

(a) The roots of the given equation f(1) = 14 + 3r3 – 7x2 – 71 +2 are as follows: f(1) = 14 + 3r3 – 7x2 – 71 +2= 3r3 – 7x2 – 55.

The above equation doesn't give any real or complex roots, we need to be given an equation to find the roots. Thus, no solution can be given.

(b) Using the Binomial Theorem, we can expand and simplify the expression (x + 5y)4 as follows: (x + 5y)4 = C(4, 0)x4(5y)0 + C(4, 1)x3(5y)1 + C(4, 2)x2(5y)2 + C(4, 3)x1(5y)3 + C(4, 4)x0(5y)4= x4 + 20x3y + 150x2y2 + 500xy3 + 625y4. Thus, the expansion and simplification of the given expression are x4 + 20x3y + 150x2y2 + 500xy3 + 625y4. ALGEBRA. (a) The sum of the given series 54(2)k-1 can be calculated as follows: S = 54(2)k-1= 54 * 2k-1= (22 * 3)k-1= 3k. Thus, the sum of the given series is 3k.(b) Using the properties of logarithms, we can expand the expression log2 y √(1-1/z(y2+1)) as follows:log2 y √(1-1/z(y2+1))= log2 y (y2+1)-1/2/z-1/2= (1/2)log2 (y2+1) - (1/2)log2 z - (1/2)log2 (y2+1). Thus, the expression can be expanded completely using the properties of logarithms as (1/2)log2 (y2+1) - (1/2)log2 z - (1/2)log2 (y2+1).VERIFYING/SHOWING. To verify the given trigonometric identity secα = sin(π/2 - α), we can use the following steps: secα = 1/cosαand sin(π/2 - α) = cosαHence, secα = sin(π/2 - α)Thus, the given trigonometric identity is verified.

Know more about roots here:

https://brainly.com/question/30265920

#SPJ11

Solve (b), (d) and (e). Please solve this ASAP. I will UPVOTE for sure.

1. For each of the following functions, indicate the class (g(n)) the function belongs to. Use the simplest g(n) possible in your answers. Prove your assertions.
a. (n+1)fo
b. n3+n!
c. 2n lg(n+2)2 + (n + 2)2 lg -
d. e" + 2"
e. n(n+1)-2000m2
П Solve (b), (d) and (e).

Answers

The function n³ + n! belongs to the class O(n³).

The limit test for big O notation:

Now let's choose bn = n^n.

Then we have:lim n→∞ n² + n^(n-1) / n^n= lim n→∞ n^-1 + n^(n-1)/n^n

Using the theorem, we can show that this approaches 0 as n approaches infinity, which means that n³ + n! = O(n³).

: O(n³)

:We evaluated the function using the limit test for big O notation and found that it is bounded by n² + n^(n-1)/bn, which can be simplified to n³ + n! = O(n³).

Summary: The function n³ + n! belongs to the class O(n³).

Learn more about function click here:

https://brainly.com/question/11624077

#SPJ11

Given the system function H(s) = (s + a)/ (s +ß)(As² + Bs + C) 1. Find or reverse engineer a mass-spring-damper system that has a system function that has this form. Keep every m, k, and c symbolic. Draw the system and derive the differential equations. • Find the system function. What did you define as input and output to the system?

Answers

To reverse engineer a mass-spring-damper system that has a system function of the form H(s) = (s + a) / ((s + ß)(As² + Bs + C)), we can design a second-order system with mass, damping coefficient, and spring constant as symbolic variable.

Let's consider a mass-spring-damper system with mass m, damping coefficient c, and spring constant k. The input to the system can be defined as the force applied to the mass, and the output can be defined as the displacement of the mass.

Using Newton's second law, we can derive the differential equation for the system:

m * d²x(t)/dt² + c * dx(t)/dt + k * x(t) = f(t)

Where x(t) is the displacement of the mass, and f(t) is the force applied to the mass.

By applying the Laplace transform to the differential equation and rearranging, we can obtain the system function H(s):

H(s) = (s + a) / ((s + ß)(ms² + cs + k))

So, by choosing appropriate values for mass (m), damping coefficient (c), and spring constant (k), we can construct a mass-spring-damper system with the desired system function H(s).

To learn more about variable -brainly.com/question/2515493

#SPJ11

Evaluate the function h(x) = x + x -8 at the given values of the independent variable and simplify. a. h(1) b.h(-1) c. h(-x) d.h(3a) a. h(1) = (Simplify your answer.)

Answers

The values of the function h(x) are:

a. h(1) = -6

b. h(-1) = -10

c. h(-x) = -2x - 8

d. h(3a) = 6a - 8

What is the value of the function h(x) at the given values?

To evaluate the function h(x) = x + x - 8, we substitute the given values of the independent variable and simplify.

a. For h(1), we substitute x = 1 into the function:

h(1) = 1 + 1 - 8 = -6

b. For h(-1), we substitute x = -1 into the function:

h(-1) = -1 + (-1) - 8 = -10

c. For h(-x), we substitute x = -x into the function:

h(-x) = -x + (-x) - 8 = -2x - 8

d. For h(3a), we substitute x = 3a into the function:

h(3a) = 3a + 3a - 8 = 6a - 8

Therefore, the values of the function h(x) at the given inputs are:

a. h(1) = -6

b. h(-1) = -10

c. h(-x) = -2x - 8

d. h(3a) = 6a - 8

Learn more about Evaluating functions

brainly.com/question/12056604

#SPJ11

The town of STA305 has a large immigrant population. The town rolled out a new career support program for new immigrant families a few years ago and the town wants to find out whether the program helped immigrant families settle into the town.

The town collects survey data from 30 immigrant families that moved to the town of STA305 and the town of STA30 between 2 and 3 years ago. The Town of STA303 is a demographically similar town in the same province, but it does not have a career support program for new immigrants.

The survey response consist of the following covariates:
• education: the highest level of education among family members from their home country (1: did not complete secondary education; 2: completed secondary education; 3: completed post-secondary education)
• numchild: number of children at the time of immigration
• urban: whether the family lived in an urban area (=1) or a rural areal (=O) in their home country

The treatment variable (town) is 1 if the family lives in the town of STA305 and 0 if in STA303. The outcome variable (income) is their current household income in $1,000.

Select whether the following two statements are true.

that John's family living in STA305 and Matthew's family living in STA303 have an equal propensity score. This implies that all of their covariates must be equal.

Answers

The statement that John's family living in STA305 and Matthew's family living in STA303 have an equal propensity score is false. This implies that not all of their covariates must be equal.

The propensity score is the probability of receiving the treatment (living in STA305) given a set of observed covariates.

It is used to balance the treatment and control groups in observational studies.

In this case, the treatment variable is living in STA305, which represents the presence of a career support program for new immigrants.

The covariates mentioned in the survey data include education, numchild, and urban.

These covariates can influence both the likelihood of living in STA305 and the outcome variable of household income.

However, the propensity score does not depend on the income itself but on the probability of receiving the treatment.

If John's family and Matthew's family have the same values for all the covariates (education, numchild, and urban), then their propensity scores would be equal.

This means that their likelihood of living in STA305 would be the same.

However, it is unlikely that all the covariates are equal between the two families, especially considering they come from different towns.

Therefore, it is incorrect to assume that John's family and Matthew's family have an equal propensity score.

The propensity score depends on the specific combination of covariate values for each family, and unless those values are identical, the propensity scores will differ.

Learn more about probability here:

https://brainly.com/question/15052059

#SPJ11

Other Questions
Find an antiderivative F(x) of the function f(x) = 2x + 7x - 3 such that F(0) = 1. F(x)= Now, find a different antiderivative G(z) of the function f(x) = 2x + 72-3 such that G(0) = -9. G(x) = Teague Company's working capital was $96,000 and total current liabilities were one-fifth of that amount. What was the current ratio? 4/6/1/5? Using the line of best fit equation yhat = 0.88X + 1.53, math the predicted y scores to the X- values. X = 1.20 [Choose] X = 3.33 [Choose ] X = 0.71 [Choose ] X = 4.00 [Choose ] Please select the term that best completes each of the following sentences If you've experienced groups that were close and loyal and groups that weren't, you know how important cohesiveness performance. can be to group Your teacher asks you to complete a team project. The due date is in 5 weeks, but beyond that, you don't have details on the project deliverables. You are experiencing role ambiguity At The Martin Agency, employees dress casually on most days. But if a client or prospective client will be on site, professional dress is expected that is, except for the creative department. They only appear in jeans. This is an example of norm variation Please select the best answer from the choices provided. The programming team at Zynga has a low level of cohesiveness. What reason might explain this? If consumption is $5 billion when disposable income is $0, and the marginal propensity to consume is 0.90, find the national consumption function C(y) (in billions of dollars). C(y) = Need Help? Read It Watch It 6. [-/1 Points] DETAILS HARMATHAP12 12.4.017. MY NOTES ASK YOUR TEACHER PRACTICE ANOTHER If consumption is $3.9 billion when income is $1 billion and if the marginal propensity to consume is 0.2 dC dy = 0.5 + (in billions of dollars) Vy find the national consumption function. C(y) = Need Help? Read It Watch It DETAILS HARMATHAP12 12.4.024. MY NOTES ASK YOUR TEACHER PRACTICE ANOTHER Suppose that the marginal propensity to save is ds dy = 0.23 (in billions of dollars) and that consumption is $9.1 billion when disposable income is $0. Find the national consumption function. C(y) = 7. [-/2 Points] What is a standard deduction? What is the standard deduction based on?A standard deduction is a:(Select the best answer below.)a. varies according to your filing status.b. is affected by the amount of income you earned during the year.c. varies according to your filing status and your income.d. does not vary according to your filing status In the context of the Capital Asset Pricing Model (CAPM), the relevant measure of risk is Multiple Choiceunique risk standard deviation of returns. beta. variance of returns. ssume that you have a direct-mapped cache with 16 indexes and each block can contain 16 words. assuming that an address is 32 bits. how many bits in each 32bit address are used for its tag? Solve for u. 2u-4=7u If there is more than one solution, separate them with c If there is no solution, click on "No solution." = 0 3 08 0/6 x 5 U = 0,0,... D Price Competition: Imagine a market with demand p(q) = 100 q. There are two firms, 1 and 2, and each firm i has to simultaneously choose its price P. If pip, then firm i gets all of the market while demands no ones the good of consider the following galvanic cell that uses the reaction 2ag+(aq)+ni(s)2ag(s)+ni2+(aq) Question 26Fredrick is most focused on gaining the respect of hiswork colleagues and being seen as an expert in his field. Which ofMaslows hierarchy of needs is Frederick most focusedon? In order to make ends meet, which determinants of EBDATare your priorities, and explain why? There were 34 marbles in a bag. Of these, 24 were black and the rest were red. For a game, marbles of each color were chosen from the bag. Of the 24 black marbles, 5/6 were chosen. Use this information to answer the questions below. If not enough information is given to answer a question, click on "Not enough information." (a) How many of the bag's black marbles were chosen? (b) How many of the bag's red marbles were not chosen? (c) How many of the bag's black marbles were not chosen? 2.4 An automotive company uses a kanban system to support its transmission assembly. The following information is known about the component on the assembly: Annual usage = 45 000 (300 days per year) S .Remember: 1 meter = 100 centimeters. 1 kilometer (km) = 1000 meters. Therefore, in 1 kilometer there are 100 000 centimeters. To convert centimeters to kilometers we must divide by 100 000. Basketball diameter in kilometers = 25 centimeters / 100 000=0.00025 kilometers. Scale factor = diameter of Sun in km/ diameter of basketball in km = 1,392, 500/0.00025 = 5,570,000,000 or 5.57*10 To use the scale factor to make the scale distances to the planets from the Sun, divide the real distance by the scale factor (5.57*10%). You will find the actual distances in the table below. For example: Scale model distance in kilometers= (real distance/scale factor). A1. Calculate the scale distance of Mercury from the Sun in kilometers A2. The scale distance you just calculated for Mercury is in kilometers. Convert the scale dista nce from kilometers into meters (this will make it easier for you to measure the distances whe n walking to create your model). Scale distance of Mercury from the Sun in meters. (c) junior audit team member wonders if the overall auditstrategy and the audit plan would be fixed for the entire auditengagement. Explain your view to him/her. Question 201.5 ptsYou do not need to evaluate secondary data as long as you knowwho collected the data.Group of answer choicesTrueFalseFlag question: Question 21Question 211.5 ptsMixed mode su What two things do you need to use in order to make accurate predictions? Context clues and background knowledge. Background knowledge and predictions about what might happen. The table of contents and the index. The vocabulary and information about the author. 6. A and B are partners sharing profits in the ratio of 2:3. They admit C for 1/4th share in the business. The sacrificing ratio of A and B is: (A) 3:1 (B) 1:4 (C) 2:3 (D) 1:1