Answer:
19.47%
Explanation:
[tex]\frac{1.29}{1.29+5.35}[/tex]
Please recheck, for this answer may not be correct
Pressure is often defined as
Answer:
Pressure is often defined as a measure of force applied on an area, or over a unit area.
Explanation:
the gravitational force between two objects depends on the distance between the objects and each object?
Answer:
Gravitational force between two objects depends on: a. The weight of the objects c. The mass of each object b. The distance between the objects d. Both b and c Please select the best answer from the choices provided A B C D
✓d
Copper metal reacts with silver nitrate to produce silver metal and copper (II) nitrate.
the correct equation for this reaction is:
A: Cu + SiN—> Si + Cu2N
B: 2Cu + AgNO3–> Ag +
Cu(NO3)2
C: Cu + 2 AgNO3–> Ag + Cu(NO3)2
D:Cu + AgNO3–> Ag + CuNO3
Answer:
Cu + 2AgNO₃ → 2Ag + Cu(NO₃)₂
Explanation:
The reactants are:
Copper metal = Cu
Silver nitrate = AgNO₃
The products are:
Silver metal = Ag
Copper (II) nitrate = Cu(NO₃)₂
So, the reaction equation is given as;
Cu + 2AgNO₃ → 2Ag + Cu(NO₃)₂
This is a single displacement reaction
Compound A reacts with Compound B to form only one product, Compound C, and it's known the usual percent yield of C in this reaction is 72.%. Suppose 3.5g of A are reacted with excess Compound B, and 6.5g of Compound C are successfully isolated at the end of the reaction.
A. What was the theoretical vield of C?
B. How much B was consumed by the reaction?
Answer:
A. Theoretical yield of C is 9.03 g
B. Mass of B consumed is 5.53 g
Explanation:
A. Determination of the theoretical yield of C.
Actual yield of C = 6.5 g
Percentage yield of C = 72.%
Theoretical yield of C =?
Percentage yield = Actual yield /Theoretical yield × 100
72% = 6.5 / Theoretical yield
72 / 100 = 6.5 / Theoretical yield
Cross multiply
72 × Theoretical yield = 100 × 6.5
72 × Theoretical yield = 650
Divide both side by 72
Theoretical yield = 650 / 72
Theoretical yield = 9.03 g
Therefore, the theoretical yield of C is 9.03 g
B. Determination of the mass of B consumed.
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
A + B —> C
Mass of A = 3.5 g
Mass of C = 9.03 g
Mass of B =?
A + B = C
3.5 + B = 9.03
Collect like terms
B = 9.03 – 3.5
B = 5.53 g
Thus, the mass of B consumed in the reaction is 5.53 g
26. A Grignard's reagent may be made by
reacting magnesium with which of the
following compound ?
(A)
Methyl amine
(B) Diethyl ether
(C
)
Ethyl iodide
(D)
Ethyl alcohol
You want to determine the concentration of a phosphoric acid (H3PO4) solution using a standardized 0.0995 M NaOH solution. 10.00 mL of the H3PO4 solution needed to be titrated with 22.85 mL of the standardized 0.0995M NaOH solution to reach the equivalence point. What is the concentration of the H3PO4 solution
Answer:
Explanation:
H₃PO₄ + 3NaOH = Na₃PO₄ + 3 H₂O.
1 mole 3 mole
22.85 mL of the standardized 0.0995M NaOH solution will contain
.0995 x .02285 moles of NaOH
= 22.7357 x 10⁻⁴ moles of NaOH
3 moles of NaOH reacts with 1 mole of H₃PO₄
22.7357 x 10⁻⁴ moles of NaOH reacts with 1 x 22.7357 x 10⁻⁴ / 3 mole of H₃PO₄
= 7.5785 x 10⁻⁴ moles of H₃PO₄
7.5785 x 10⁻⁴ moles of H₃PO₄ is contained in 10 mL or 10⁻² L
molarity of H₃PO₄ solution = 7.5785 x 10⁻⁴ / 10⁻²
= 7.58 x 10⁻² M
= .0758 M .
Why is it easier to switch to solar and wind energy as compared to other alternative energy sources? Select all that apply.
A. They are more cost-effective.
B. They require large, easily obtainable parcels of land.
C. They can be produced easily in areas with geothermal activity.
D. The land can be used for other purposes while supplying energy.
Answer:C. They can be produced easily in areas with geothermal activity.
D. The land can be used for other purposes while supplying energy.
Explanation:
Both c and d are correct
It is easier to switch to solar and wind energy as compared to other alternative energy sources because they can be produced easily in areas with geothermal activity and can be used for other purposes while supplying energy.
What is solar energy?Solar energy is any type of energy generated by the sun. Solar energy can be harnessed directly or indirectly for human use.
Generating energy that produces no greenhouse gas emissions from fossil fuels and reduces some types of air pollution.
Diversifying energy supply and reducing dependence on imported fuels. Creating economic development and jobs in manufacturing, installation, and more.
Hence, options C and D are correct.
Learn more about the solar energy here:
https://brainly.com/question/23611169
#SPJ2
The number of calories listed on a food label always refers to the number in the entire package
The data below shows the change in concentration of dinitrogen pentoxide over time, at 330 K, according to the following process.
2N2O5(g) = 4NO2(g) + O2
[N2O5] Time (s)
0.100 0.00
0.066 200.00
0.044 400.00
a) Find the rate of disappearance of N2O5 from t=0 s to t=200s
b) Find the rate of appearance of NO2 from t=0 s to t =200s
Answer: a) [tex]1.7\times 10^{-4}[/tex]
b) [tex]3.4\times 10^{-4}[/tex]
Explanation:
The reaction is :
[tex]2N_2O_5(g)\rightarrow 4NO_2(g)+O_2(g)[/tex]
Rate = Rate of disappearance of [tex]N_2O_5[/tex] = Rate of appearance of [tex]NO_2[/tex]
Rate = [tex]-\frac{d[N_2O_5]}{2dt}[/tex] = [tex]\frac{d[NO_2]}{4dt}[/tex]
Rate of disappearance of [tex]N_2O_5[/tex] = [tex]\frac{\text {change in concentration}}{time}[/tex] = [tex]\frac{0.100-0.066}{200-0}=1.7\times 10^{-4}[/tex]
a) Rate of disappearance of [tex]N_2O_5[/tex] = [tex]-\frac{d[N_2O_5]}{2dt}[/tex]
Rate of appearance of [tex]NO_2[/tex] = [tex]\frac{d[NO_2]}{4dt}[/tex]
b) Rate of appearance of [tex]NO_2[/tex] = [tex]\frac{d[NO_2]}{dt}=2\times 1.7\times 10^{-4}}=3.4\times 10^{-4}[/tex]
A) Find the rate of disappearance of [tex]N_2O_5[/tex] from t = 0 s to t = 200s
[tex]Rate = \frac{1}{2}(\frac{-\delta N_2O_5}{\delta t})\\\\Rate = -\frac{1}{2}(\frac{0.066 - 0.100}{200 - 0})\\\\Rate = 8.5*10^{-5}[/tex]
B) Find the rate of appearance of [tex]NO_2[/tex] from t = 0 s to t = 200s
According to rate law,
[tex]\frac{1}{2}(\frac{-\delta N_2O_5}{\delta t}) = \frac{1}{4}(\frac{\delta NO_2}{\delta t})\\\\8.5*10^{-5} = \frac{1}{4}(\frac{\delta NO_2}{\delta t})\\\\\frac{\delta NO_2}{\delta t} = 4 * 8.5*10^{-5}\\\\Rate = 3.4*10^{-4}[/tex]
For more information on rate of disappearance
https://brainly.com/question/20708865?referrer=searchResults
Based on the number of valence electrons indicated by its location in the periodic table ,which elements behavior would you predict to be closest to that of potassium (k)
Answer:
Na sodium or Rb rubidium
Explanation:
Because Na is present in first group all members of group 1 have 1 electron in valence shell and show similar properties.
Which of the below elements are part of a group? Feel free to use the periodic table.
A. H, He, O, C
B. Be, Mg, Ca, Sr
C. Li, Be, C, O
D. H, Li, Na, Mg
Answer:
B. Be, Mg, Ca, Sr
Explanation:
Be, Mg, Ca, Sr are parts of the alkaline Earth metal family/group. So they are the second most reactive elements following behind alkali metals. Furthermore, Be, Mg, Ca, Sr all have 2 valence electrons that lose them to form cations. They have low melting points, low boiling points, can conduct electricity, have high malleability and ductility.
Hope it helped!
Which of the statements about liquids and gases are true?
Both liquids and gases have a definite volume.
O The particles in liquids and gases can move past one another
freely
Both liquids and gases have a definite shape.
Neither liquids nor gases have a definite shape.
Which of the statements about liquids and gases are true?
Answer:The particles in liquids and gases can move past one another freely.
#CARRYONLEARNING #STUDYWELLWhich of the statements about liquids and gases are true?
Choosing:Both liquids and gases have a definite volume.
The particles in liquids and gases can move past one another freely
Both liquids and gases have a definite shape.
Neither liquids nor gases have a definite shape.
Answer:The particles in liquids and gases can move past one another freely.
#READINGHELPSWITHLEARNING #CARRYONLEARNING #STUDYWELLUse your periodic table to determine which of the following is a non metal
A.Nitrogen
B. Lithium
C. Sodium
D. Gold
How many electrons must nitrogen gain to become like it’s closest noble gas, Neon?
Answer:
3
Explanation:
How can your knowledge of acids and bases
help you approach this problem to keep your soil
viable?
HELP NOW
Answer:
How can we make use of acids or bases to remove heavy metals from soils? We can remove heavy metals from soil by adding acid and catching the solution that drains through. Acids can react with metals turning metalic compounds which can be dissolved by water and washed away. Improve crop yields?
Explanation:
When performing a multiplication or division calculation, significant figures in the calculated result are dictated by the _____ of the measured numbers.
The calculated result should have ______ the measured number in the calculation with the fewest _______.
Answer:
fewest; the same significant figures with; measured numbers.
Explanation:
Without mincing words let us dive straight into the solution to the above question. In order to be able to use the significant figures properly one must know the rules attached to it uses. This is so, because they contributes to the precision of measurements.
When performing multiplication or division calculation, the number of significant figures in the answer[result] will be determined by the one with the smallest number of significant figure in the problem. Therefore, if we have 6.56 which is three[3] significant figures and 1.2 which is two[2] significant figures, then the number of significant figures will be two[2].
6.56 × 1.2= 7.872 = 7.9[ to 2 significant figures].
please help me please help me
My question my question
H2O as an oxidant only
Further explanationGiven
Reaction
2 Na + 2 H2O → 2 NaOH + H2
Required
The function of water in the equation
Solution
Water : oxidizing agent
Na : reducing agent
Na⁰ → Na⁺ (oxidation)
H⁺- → H⁰ (reduction)
Acids and bases according to Bronsted-Lowry
Acid = donor (donor) proton (H⁺ ion)
Base = proton (receiver) acceptor (H⁺ ion)
If water is acting as an acid it should only give 1 H +, so that becomes:
H₂O (l) ⇔ OH⁻ (aq) not H₂
Questlon 23 of 30
What is the term for a large group of people with similar characteristics such
as educational background and income level?
A. An interest group
B. A social class
C. A social culture
O D. A political party
SUBMIT
fluorine is more reactive than chlorine.
Answer:
yes because of fluorine has higher electronegativity
How many electrons does a single hydrogen gain or lose in the following reaction?
H2 + O2 - H20
Answer:
One electron per single hydrogen atom.
Explanation:
Hello!
In this case, given the reaction:
[tex]H_2+O_2\rightarrow H_2O[/tex]
Whereas we can identify the following half-reaction for hydrogen:
[tex]H_2^0\rightarrow H_2^+[/tex]
Whereas we see that each single hydrogen atom gains one electron in order to go from 0 to +1, which is also related to an oxidation half-reaction.
Best regards!
How many moles are in the following:
7.36 x 1024 of free Oxygen atoms
Answer: 12.2 moles
Explanation:
7.36x10^24/6.02214076x10^23 = 12.2 moles of free oxygen atoms
. Predict the possible products for the following reaction and include
molecular, complete ionic, and net ionic equations.
NA2SO4 (aq) +γ (BrO3)2 (aq) --->
Answer:
Introduction
As a diligent student of chemistry, you will likely encounter tons of reactions that occur in aqueous solution (perhaps you are already drowning in them!). When ions are involved in a reaction, the equation for the reaction can be written with various levels of detail. Depending on which part of the reaction you are interested in, you might write a molecular, complete ionic, or net ionic equation.
Definitions of molecular, complete ionic, and net ionic equations
A molecular equation is sometimes simply called a balanced equation. In a molecular equation, any ionic compounds or acids are represented as neutral compounds using their chemical formulas. The state of each substance is indicated in parentheses after the formula. [Huh?]
Let's consider the reaction that occurs between \text{AgNO}_3AgNO
3
start text, A, g, N, O, end text, start subscript, 3, end subscript and \text{NaCl}NaClstart text, N, a, C, l, end text. When aqueous solutions of \text{AgNO}_3AgNO
3
start text, A, g, N, O, end text, start subscript, 3, end subscript and \text{NaCl}NaClstart text, N, a, C, l, end text are mixed, solid \text{AgCl}AgClstart text, A, g, C, l, end text and aqueous \text{NaNO}_3NaNO
3
start text, N, a, N, O, end text, start subscript, 3, end subscript are formed. Using this information, we can write a balanced molecular equation for the reaction:
\text{AgNO}_3(aq) + \text{NaCl}(aq) \rightarrow \text{AgCl}(s) + \text{NaNO}_3(aq)AgNO
3
(aq)+NaCl(aq)→AgCl(s)+NaNO
3
(aq)start text, A, g, N, O, end text, start subscript, 3, end subscript, left parenthesis, a, q, right parenthesis, plus, start text, N, a, C, l, end text, left parenthesis, a, q, right parenthesis, right arrow, start text, A, g, C, l, end text, left parenthesis, s, right parenthesis, plus, start text, N, a, N, O, end text, start subscript, 3, end subscript, left parenthesis, a, q, right parenthesis
[What kind of reaction is this?]
If we could zoom in on the contents of the reaction beaker, though, we wouldn't find actual molecules of \text{AgNO}_3AgNO
3
start text, A, g, N, O, end text, start subscript, 3, end subscript, \text{NaCl}NaClstart text, N, a, C, l, end text, or \text{NaNO}_3NaNO
3
start text, N, a, N, O, end text, start subscript, 3, end subscript. Since \text{AgNO}_3AgNO
3
start text, A, g, N, O, end text, start subscript, 3, end subscript, \text{NaCl}NaClstart text, N, a, C, l, end text, and \text{NaNO}_3NaNO
3
start text, N, a, N, O, end text, start subscript, 3, end subscript are soluble ionic compounds, they dissociate into their constituent ions in water. For example, \text{NaCl}NaClstart text, N, a, C, l, end text dissociates into one ion of \text{Na}^+Na
+
start text, N, a, end text, start superscript, plus, end superscript for every ion of \text{Cl}^-Cl
−
start text, C, l, end text, start superscript, minus, end superscript; these ions are stabilized by ion-dipole interactions with the surrounding water molecules. [I don't get it!]
Image of crystalline sodium chloride next to image of chloride and sodium ions dissociated in water. Each chloride ion is interacting with multiple water molecules through the positive dipole of the water, and each sodium ion is interacting with water molecules through the negative dipole of the water.
Image of crystalline sodium chloride next to image of chloride and sodium ions dissociated in water. Each chloride ion is interacting with multiple water molecules through the positive dipole of the water, and each sodium ion is interacting with water molecules through the negative dipole of the water.
Sodium chloride dissociates into sodium and chloride ions in water, and these ions become solvated by the highly polar water molecules. Image credit: "Salts: Figure 1" by OpenStax Anatomy and Physiology, CC-BY-NC-SA 4.0.
From the molecular formula, we can rewrite the soluble ionic compounds as dissociated ions to get the complete ionic equation:
\text{Ag}^+(aq) + \blueD{{\text{NO}_3}^-(aq)} + \maroonD{\text{Na}^+(aq)} + \text{Cl}^-(aq) \rightarrow \text{AgCl}(s) + \maroonD{\text{Na}^+(aq)} + \blueD{{\text{NO}_3}^- (aq)}Ag
+
(aq)+NO
3
−
(aq)+Na
+
(aq)+Cl
−
(aq)→AgCl(s)+Na
+
(aq)+NO
3
−
−
(aq)
+
Na
+
(aq)
+Cl
−
(aq)→AgCl(s)+
Na
+
(aq)
+
NO
3
−
(aq)
How do the percent compositions for C3H6 and C4H7 compare?
A. They are the same
B. C4H8 has a higher percentage of carbon than C3H6.
C. C4H8 has a higher percentage of hydrogen than C3H6.
D. none of the above
A. They are the same
Further explanationGiven
C3H6 and C4H8
Required
The percent compositions
Solution
C₃H₆(MW = 42 g/mol)%C = 3.12/42 x 100% = 85.71%
%H = 6.1/42 x 1005 = 14.29%
C₄H₈(MW=56 g/mol)
%C = 4.12/56 x 100% = 85.71%
%H = 8.1/56 x 100%=14.29%
So they are the same, because mol ratio of C and H in both compounds is the same, 1: 2
PLEASE HELP PLEASE LLEASE HELP, WILL MARK BRAINLIEST!!!
Which of the following elements will NOT reach an octet when in a bond?
Answer:
Hydrogen
Explanation:
Classify each of the observed changes according to whether or not they are likely to represent evidence that a chemical reaction is occurring when performing an experiment.
May be evidence of a chemical reaction Not evidence of a chemical reaction
a solution color becoming less intense
due to dilution
bubbles (sas formation) changes in color
precipitation
explosion or fire
Answer Bank
a solid liquifying change in temperature solution colors mixing
Answer:
a solution color becoming less intense due to dilution- is not an evidence of a chemical reaction
bubbles (gas formation) - evidence of a chemical reaction
explosion or fire - evidence of a chemical reaction
changes in color- evidence of a chemical reaction
precipitation- evidence of a chemical reaction
changes in temperature - evidence of a chemical reaction
a solid liquifying - is not an evidence of a chemical reaction
solution colors mixing - is not an evidence of a chemical reaction
Explanation:
A chemical change is not easily reversible and yields new substances. It is often accompanied by a loss or gain of heat.
In the answer section, i have shown some evidences that lead us to conclude that a chemical reaction has taken place. The occurrence of a chemical change often goes with the formation of new substances as earlier stated and any of these signs may accompany the process.
For instance, when a metal is dropped in dilute acid solution, bubble of hydrogen gas indicates that a chemical reaction has taken place.
Thermal energy is the energy an object has due to the _____ of the particles
Answer: Vibråtory movement.
Explanation: when particles bounce against each other the friction creates thermal energy. Think about what happens when you rub your hands together and they get warmer, that the friction between your hands making thermal energy.
A solution was diluted 1/40, and the final concentration was 20%. What was the original concentration?
The original concentration : 800%
Further explanationGiven
Diluted 1/40
Final concentration 20%
Required
The original concentration
Solution
Dilution is the process of adding solvent to get a more dilute solution.
The moles(n) before and after dilution are the same.
Can be formulated :
n₁ = n₂
M₁.V₁ = M₂.V₂
diluted 1/40(dilution factor)⇒ V₁/V₂=1/40⇒V₂/V₁=40
M₂ = 0.2(20%)
Input the value for M₁ :
M₁=M₂ x (V₂/V₁)
M₁ = 0.2 x 40
M₂ = 8(800%)
=
I need help on these questions!
Answer:
See explanation
Explanation:
Given that;
E = hc/λ
h = 6.63 * 10^-34 Js
c = 3 * 10^8 ms-1
λ = ?
E = 3.978 * 10^-19 J
λ = hc/E
λ = 6.63 * 10^-34 * 3 * 10^8 /3.978 * 10^-19
λ = 19.89 * 10^-26/3.978 * 10^-19
λ = 5 * 10^-7 m The colour is green
2. E = hc/λ
E= 6.63 * 10^-34 * 3 * 10^8 /1000 * 10^-9
E = 1.989 * 10^-19 J
But
E = hf
f = E/h
f = 1.989 * 10^-19/6.63 * 10^-34
f = 3 * 10^14 Hz The radiation is infrared
3. E = hc/λ
λ= hc/E
λ= 6.63 * 10^-34 * 3 * 10^8 /2.0 * 10^-14
λ= 995 * 10^-14 m This is gamma radiation
4. E = hc/λ
E=6.63 * 10^-34 * 3 * 10^8 /620 * 10^-9
E = 3.2 * 10^-19 J
5. E = hf
E= 6.63 * 10^-34 * 2 * 10^17
E = 1326 * 10^-19 J
E = hc/λ
λ= hc/E
λ= 6.63 * 10^-34 * 3 * 10^8 /1326 * 10^-19 = 15 * 10^-9
This is ultraviolet radiation
which toxic gas is released in incomplete combustion?
Answer:
Incomplete combustion produces carbon monoxide (CO), a toxic gas.
Explanation:
Combustion is the rapid chemical reaction of oxygen in the air or direct oxygen, which is defined as oxidizer, with the different elements that make up the fuel (mainly carbon (C) and hydrogen (H)). These chemical reactions release energy producing local increases in temperature, which causes a flow of heat to the outside.
In other words, on the one hand you have the fuel, which is the substance that oxidizes and that you can find in a solid, liquid or gaseous state and which is made up mostly of carbon and hydrogen.
The oxidizer, for its part, is the substance that oxidizes the fuel, and it is generally the oxygen found in the air.
Certain amounts of oxidizer and fuel must come into contact for combustion to occur.
Incomplete combustion occurs when part of the fuel does not fully react. Incomplete combustion produces carbon monoxide (CO), a toxic gas.