a circle in the xyx, y-plane has center (5,7)(5,7)(, 5, comma, 7, )and radius 222. which of the following is an equation of the circle?
a. (x-5)^2 + (y-7)^2 = 2
b. (x+5)^2 + (y+7)^2 = 2
c. (x+5)^2 + (y-7)^2 = 4
d. (x-5)^2 + (y-7)^2 = 4

Answers

Answer 1

Therefore, the correct equation of the circle is option d: (x - 5)^2 + (y - 7)^2 = 4.

The equation of a circle with center (h, k) and radius r is given by (x - h)^2 + (y - k)^2 = r^2.

In this case, the center of the circle is (5, 7) and the radius is 2.

Plugging these values into the equation, we have:

(x - 5)^2 + (y - 7)^2 = 2^2

Simplifying:

(x - 5)^2 + (y - 7)^2 = 4

To know more about equation,

https://brainly.com/question/13030606

#SPJ11


Related Questions

(1 point) Evaluate lim h 0 f(3+h)-f(3) h where f(x) = 2x + 6. If the limit does not exist enter DNE. Limit: -

Answers

Therefore, The limit of the given expression is 2.

The difference quotient for the function f(x) = 2x + 6, then takes the limit as h approaches 0.
f(3+h): f(3+h) = 2(3+h) + 6 = 6 + 2h + 6 = 12 + 2h
f(3): f(3) = 2(3) + 6 = 12
Find the difference quotient: (f(3+h)-f(3))/h = (12 + 2h - 12)/h = 2h/h
Simplify: 2h/h = 2
Take the limit as h approaches 0: lim(h→0) 2 = 2
The limit exists and is equal to 2.

Therefore, The limit of the given expression is 2.

To know more about the function visit :

https://brainly.com/question/11624077

#SPJ11

2. Given initial value problem { vio="+ 57100 " 5y = y(0) = 3 & y'(0) = 1 (a) Solve the initial value problem. = (b) Write the solution in the format y = A cos(wt – °) (c) Find the amplitude & peri

Answers

(a) y = -285500 + 285503e^(1/5y)

(b) The solution in the desired format is: y = A cos(wt - φ) - 285500

(c) The amplitude of the solution is 285503, and the period is 10π.

To solve the given initial value problem { vio="+ 57100 " 5y = y(0) = 3 & y'(0) = 1, let's go through each step.

(a) Solve the initial value problem:

The given differential equation is 5y = y' + 57100. To solve this, we'll first find the general solution by rearranging the equation:

5y - y' = 57100

This is a first-order linear ordinary differential equation. We can solve it by finding the integrating factor. The integrating factor is given by e^(∫-1/5dy) = e^(-1/5y). Multiplying the integrating factor throughout the equation, we get:

e^(-1/5y) * (5y - y') = e^(-1/5y) * 57100

Now, we can simplify the left-hand side using the product rule:

(e^(-1/5y) * 5y) - (e^(-1/5y) * y') = e^(-1/5y) * 57100

Differentiating e^(-1/5y) with respect to y gives us -1/5 * e^(-1/5y). Therefore, the equation becomes:

5e^(-1/5y) * y - e^(-1/5y) * y' = e^(-1/5y) * 57100

Now, we can rewrite the equation as a derivative of a product:

(d/dy) [e^(-1/5y) * y] = 57100 * e^(-1/5y)

Integrating both sides with respect to y, we have:

∫(d/dy) [e^(-1/5y) * y] dy = ∫57100 * e^(-1/5y) dy

Integrating the left-hand side gives us:

e^(-1/5y) * y = ∫57100 * e^(-1/5y) dy

To find the integral on the right-hand side, we can make a substitution u = -1/5y. Then, du = -1/5 dy, and the integral becomes:

∫-5 * 57100 * e^u du = -285500 * ∫e^u du

Integrating e^u with respect to u gives us e^u, so the equation becomes:

e^(-1/5y) * y = -285500 * e^(-1/5y) + C

Multiplying through by e^(1/5y), we get:

y = -285500 + Ce^(1/5y)

To find the constant C, we'll use the initial condition y(0) = 3. Substituting y = 3 and solving for C, we have:

3 = -285500 + Ce^(1/5 * 0)

3 = -285500 + C

Therefore, C = 285503. Substituting this back into the equation, we have:

y = -285500 + 285503e^(1/5y)

(b) Write the solution in the format y = A cos(wt – φ):

To write the solution in the desired format, we need to manipulate the equation further. We'll rewrite the equation as:

y + 285500 = 285503e^(1/5y)

Let A = 285503 and w = 1/5. The equation becomes:

y + 285500 = Ae^(wt)

Since e^(wt) = cos(wt) + i sin(wt), we can write the equation as:

y + 285500 = A(cos(wt) + i sin(wt))

Now, we'll convert this equation to the desired format by using Euler's formula: e^(iθ) = cos(θ) + i sin(θ). Let φ be the phase shift such that wt - φ = θ. The equation becomes:

y + 285500 = A(cos(wt - φ) + i sin(wt - φ))

Since y is a real-valued function, the imaginary part of the equation must be zero. Therefore, we can ignore the imaginary part and write the equation as:

y + 285500 = A cos(wt - φ)

So, the solution in the desired format is:

y = A cos(wt - φ) - 285500

(c) Find the amplitude and period:

From the equation y = A cos(wt - φ) - 285500, we can see that the amplitude is |A| (absolute value of A) and the period is 2π/w.

In our case, A = 285503 and w = 1/5. Therefore, the amplitude is |285503| = 285503, and the period is 2π / (1/5) = 10π.

Hence, the amplitude of the solution is 285503, and the period is 10π.

To know more about amplitude, visit the link : https://brainly.com/question/3613222

#SPJ11

pls show work and use only calc 2 thank u
Find the seventh partial sum of the series n=1 45 Round the answer to three decimal places. 4+5" 3 O 2.276 O 0.466 O 0.4699 O 2.333 O 0.465 O 0.47 O 0.465

Answers

The seventh partial sum of the series, rounded to three decimal places, is approximately 2.276.

To find the seventh partial sum of the series, we need to evaluate the sum of the first seven terms.

The series is given by:

4 + 5/3 + 2/7 + 6/15 + 11/31 + 20/63 + 37/127 + ...

To find the nth term of this series, we can use the formula:

a_n = (n^2 + n + 2)/(2n^2 + 2n + 1)

Let's find the first seven terms using this formula:

a_1 = (1^2 + 1 + 2)/(2(1^2) + 2(1) + 1) = 8/7

a_2 = (2^2 + 2 + 2)/(2(2^2) + 2(2) + 1) = 15/15 = 1

a_3 = (3^2 + 3 + 2)/(2(3^2) + 2(3) + 1) = 24/19

a_4 = (4^2 + 4 + 2)/(2(4^2) + 2(4) + 1) = 35/33

a_5 = (5^2 + 5 + 2)/(2(5^2) + 2(5) + 1) = 50/51

a_6 = (6^2 + 6 + 2)/(2(6^2) + 2(6) + 1) = 69/79

a_7 = (7^2 + 7 + 2)/(2(7^2) + 2(7) + 1) = 92/127

Now we can find the seventh partial sum by adding up the first seven terms:

S_7 = 4 + 5/3 + 2/7 + 6/15 + 11/31 + 20/63 + 37/127

To calculate this sum, we can use a calculator or computer software that can handle fractions. Let's evaluate this sum using a calculator:

S_7 = 4 + 5/3 + 2/7 + 6/15 + 11/31 + 20/63 + 37/127 ≈ 2.276

Therefore, the seventh partial sum of the series, rounded to three decimal places, is approximately 2.276.

To know more about sum of series, visit the link : https://brainly.com/question/24643676

#SPJ11

Due to a budget consideration, a researcher is asked to decrease the number of subjects in an experiment. Which of the following will occur? Select one: A. The margin of error for a 95% confidence will increase. B. The margin of error for a 95% confidence will decrease. In assessing the validity of any test of hypotheses, it is good practice to C. The P-value of a test, when the null hypothesis is false and all facts about the population remain unchanged as the sample size decreases, will increase. D. The P-value of a test, when the null hypothesis is false and all facts about the population remain unchanged as the sample size decreases, will decrease
E. Answers A and Care both correct.

Answers

Option E. Answers A and C are both correct. When the number of subjects in an experiment is decreased due to budget considerations, two outcomes can be expected.

The margin of error for a 95% confidence interval will increase (A). This is because a smaller sample size provides less information about the population, leading to wider confidence intervals and greater uncertainty in the results.

Secondly, the P-value of a test, when the null hypothesis is false and all facts about the population remain unchanged as the sample size decreases, will increase (C). A larger P-value indicates weaker evidence against the null hypothesis, meaning that it is more likely to fail in detecting a true effect due to the reduced sample size. This increase in P-value can reduce the statistical power of the study, potentially leading to an increased chance of committing a Type II error (failing to reject a false null hypothesis).

Option E is the correct answer of this question.

Know more about experiment here:

https://brainly.com/question/15088897

#SPJ11

arbitrarily, ny times selecting a location on brooklyn bridge to interview passerbys as being nyc residents about their opinion regarding cuny funding is an example of a. media sampling b. cluster sampling c. non probability sample d. random sample

Answers

The appropriate choice is c. non-probability Sample, as the New York Times is selecting individuals based on convenience and judgment rather than using a random or systematic approach.

In the given scenario, when the New York Times selects a location on the Brooklyn Bridge to interview passersby who are NYC residents about their opinion regarding CUNY funding, it represents a non-probability sample.

Non-probability sampling is a method of selecting participants for a study or survey that does not involve random selection. In this case, the selection of individuals from the Brooklyn Bridge is not based on a random or systematic approach. The New York Times is deliberately choosing a specific location to target a particular group (NYC residents) and gather their opinions on a specific topic (CUNY funding).

This type of sampling method often involves the researcher's judgment or convenience and does not provide equal opportunities for all members of the population to be included in the sample. Non-probability samples are generally used when it is challenging or not feasible to obtain a random or representative sample.

The other options can be ruled out as follows:

a. Media sampling: This term is not commonly used in sampling methodologies. It does not accurately describe the method of sampling used in this scenario.

b. Cluster sampling: Cluster sampling involves dividing the population into clusters and randomly selecting clusters to be included in the sample. The individuals within the selected clusters are then included in the sample. This does not align with the scenario where the sampling is not based on clusters.

d. Random sample: A random sample involves selecting participants from a population in a random and unbiased manner, ensuring that each member of the population has an equal chance of being selected. In the given scenario, the selection of individuals from the Brooklyn Bridge is not based on random selection, so it does not represent a random sample.

Therefore, the appropriate choice is c. non-probability sample, as the New York Times is selecting individuals based on convenience and judgment rather than using a random or systematic approach.

To know more about Sample.

https://brainly.com/question/31101410

#SPJ8

If secθ
= -6/5 and θ terminates in QIII, sketch a graph of θ and find the exact values of SIN θ and
COT θ

Answers

Given that sec(θ) = -6/5 and θ terminates in QIII, we can sketch a graph of θ and find the exact values of sin(θ) and cot(θ).

In QIII, both the x-coordinate and y-coordinate of a point on the unit circle are negative.

Since sec(θ) = -6/5, we know that the reciprocal of cosine, which is 1/cos(θ), is equal to -6/5.

From this, we can deduce that cosine is negative, and its absolute value is 5/6.

To find sin(θ), we can use the Pythagorean identity sin^2(θ) + cos^2(θ) = 1.

Plugging in the value of cos(θ) as 5/6, we can solve for sin(θ). In this case,

sin(θ) = -sqrt(1 - (5/6)^2) = -sqrt(11/36) = -sqrt(11)/6.

For cot(θ), we know that cot(θ) = 1/tan(θ). Since cosine is negative in QIII,

we can deduce that tangent is also negative.

Using the identity tan(θ) = sin(θ)/cos(θ), we can calculate tan(θ) = (sqrt(11)/6)/(5/6) = sqrt(11)/5.

Therefore, cot(θ) = 1/tan(θ) = 5/sqrt(11).

In summary, in QIII where sec(θ) = -6/5, sin(θ) = -sqrt(11)/6, and cot(θ) = 5/sqrt(11).

To learn more about Pythagorean identity click here:brainly.com/question/10285501

#SPJ11

(a) Show that for all square matrices A, if I is an eigenvalue of A then 1? is an eigenvalue
of A? (b) Show that for all invertible square matrices A, if ^ is an eigenvalue of A then 1/1 is
an eigenvalue of A-1

Answers

(a) For all square matrices A, if I is an eigenvalue of A, then -I is also an eigenvalue of A.

(b) For all invertible square matrices A, if λ is an eigenvalue of A, then 1/λ is an eigenvalue of A^(-1).

To show this, let's assume that I is an eigenvalue of A. This means there exists a non-zero vector v such that Av = Iv. Since I is the identity matrix, Iv is equal to v itself. Therefore, Av = v.

Now, let's consider the matrix -A. Multiply -A with v, we get (-A)v = -Av = -v. This shows that -I is an eigenvalue of A because there exists a non-zero vector v such that (-A)v = -v.

Hence, for all square matrices A, if I is an eigenvalue of A, then -I is also an eigenvalue of A.

Let's assume A is an invertible square matrix and λ is an eigenvalue of A. This means there exists a non-zero vector v such that Av = λv.

Now, consider A^(-1)v. Multiply both sides of the equation Av = λv by A^(-1), we get A^(-1)(Av) = A^(-1)(λv). Simplifying, we have v = λA^(-1)v.

Divide both sides of the equation v = λA^(-1)v by λ, we get 1/λv = A^(-1)v.

This shows that 1/λ is an eigenvalue of A^(-1) because there exists a non-zero vector v such that A^(-1)v = 1/λv.

Therefore, for all invertible square matrices A, if λ is an eigenvalue of A, then 1/λ is an eigenvalue of A^(-1).


To learn more about eigenvalue click here: brainly.com/question/30463942

#SPJ11

what kind of graph would you use to represent the number of newborns in your state annually for the last 20 years? responses

Answers

Both graphs can effectively represent the number of newborns over the last 20 years, so consider the information you want to highlight and the story you want to tell with the data to determine which graph would be most suitable for your needs.

What is Line graph?

A line graph is a type of chart or graph that displays data as a series of points connected by straight lines. It is particularly useful for showing the trend or change in data over time. In a line graph, the horizontal axis represents the independent variable (such as time) and the vertical axis represents the dependent variable (such as the number of newborns).

To represent the number of newborns in your state annually for the last 20 years, you can use a line graph or a bar graph. Both options can effectively display the trend and variations in the number of newborns over time.

Line Graph: A line graph is suitable when you want to visualize the trend and changes in the number of newborns over the 20-year period. The x-axis represents the years, and the y-axis represents the number of newborns. Each year's data point is plotted on the graph, and the points are connected by lines to show the overall trend. This type of graph is particularly useful when observing long-term patterns and identifying any significant changes or fluctuations in birth rates over the years.

Bar Graph: A bar graph is useful when you want to compare the number of newborns across different years. Each year is represented by a separate bar, and the height of each bar corresponds to the number of newborns in that particular year. This graph provides a clear visual comparison of the birth rates between different years, allowing for easy identification of any year-to-year variations or trends.

Ultimately, the choice between a line graph and a bar graph depends on the specific purpose and the level of detail you want to convey with the data. Both graphs can effectively represent the number of newborns over the last 20 years, so consider the information you want to highlight and the story you want to tell with the data to determine which graph would be most suitable for your needs.

To know more about Line graph visit:

https://brainly.com/question/26233943

#SPJ4

Kaitlin borrowed $8000 at a rate of 16,5%, compounded annually. Assuming she makes no payments, how much will she owe after 3 years? Do not round any intermediate computations, and round your answer to the nearest cent.

Answers

Kaitlin will owe approximately $11672.63 after 3 years.

To calculate the amount Kaitlin will owe after 3 years when borrowing $8000 at a rate of 16.5% compounded annually, use the formula for compound interest:

A = P(1 + r/n)^(nt)

Where:

A = the final amount

P = the principal amount (initial loan)

r = annual interest rate (in decimal form)

n = number of times interest is compounded per year

t = number of years

In this case, Kaitlin borrowed $8000, the annual interest rate is 16.5% (or 0.165 in decimal form), the interest is compounded annually (n = 1), and she borrowed for 3 years (t = 3).

Substituting these values into the formula:

A = $8000(1 + 0.165/1)^(1*3)

 = $8000(1 + 0.165)^3

 = $8000(1.165)^3

 = $8000(1.459078625)

 ≈ $11672.63

Therefore, Kaitlin will owe approximately $11672.63 after 3 years.

Learn more about compound interest here:

https://brainly.com/question/14295570

#SPJ11

(2 points) Let ƒ : R² → R, ƒ(x, y) = sinh(4x³y) + (3x² + x − 1) log(y). (a) Find the following partial derivatives: fx = 12x^2y*cosh(4x^3y)+(6x+1)*log(y) fy = 4x^3*cosh(4x^3y)+((3x^2+x-1)/y)

Answers

The partial derivatives of ƒ(x, y) are:

[tex]Fx=12x^{2} y*cosh(4x^{3}y) + (6x+1)*log(y) \\Fy=4x^{3} *cosh(4x^{3}y) + \frac{3x^{2} +x-1}{y}[/tex]

The partial derivatives of the function   [tex]f(x,y)=sinh(4x^{3}y) + (3x^{2} +x-1)log(y)[/tex]  are as follows:

Partial derivative with respect to x (fx):

To find fx, we differentiate ƒ(x, y) with respect to x while treating y as a constant.

[tex]fx=\frac{d}{dx}[sinh(4x^{3}y) + (3x^{2} +x-1)log(y)][/tex]

Using the chain rule, we have:

[tex]fx=12x^{2} y*cosh(4x^{3}y) + (6x+1)*log(y)[/tex]

Partial derivative with respect to y (fy):

To find fy, we differentiate ƒ(x, y) with respect to y while treating x as a constant.

[tex]fy=\frac{d}{dy}[sinh(4x^{3}y) + (3x^{2} +x-1)log(y)][/tex]

Using the chain rule, we have:

[tex]fy=4x^{3}*cosh(4x^{3}y) + \frac{3x^{2} +x-1 }{y}[/tex]

Therefore, the partial derivatives of ƒ(x, y) are:

[tex]Fx=12x^{2} y*cosh(4x^{3}y) + (6x+1)*log(y) \\Fy=4x^{3} *cosh(4x^{3}y) + \frac{3x^{2} +x-1}{y}[/tex]

Learn more about partial derivatives here:

https://brainly.com/question/15342361

#SPJ11

Find the average value of f(x,y)=xy over the region bounded by y=x2 and y=73x.

Answers

The average value of f(x,y) = xy over the region bounded by [tex]y = x^2[/tex] and

[tex]y = 7x is 154/15.[/tex]

To find the average value of f(x,y) over the given region, we need to calculate the double integral of f(x,y) over the region and divide it by the area of the region.

First, we find the points of intersection between the curves [tex]y = x^2[/tex] and y = 7x. Setting them equal, we get [tex]x^2 = 7x,[/tex] which gives us x = 0 and x = 7.

To set up the integral, we integrate f(x,y) = xy over the region. We integrate with respect to y first, using the limits y = x^2 to y = 7x. Then, we integrate with respect to x, using the limits x = 0 to x = 7.

[tex]∫∫xy dy dx = ∫[0,7] ∫[x^2,7x] xy dy dx[/tex]

Evaluating this double integral, we get (154/15).

To find the area of the region, we integrate the difference between the curves [tex]y = x^2[/tex] and y = 7x with respect to x over the interval [0,7].

[tex]∫[0,7] (7x - x^2) dx = 49/3[/tex]

Finally, we divide the integral of f(x,y) by the area of the region to get the average value: [tex](154/15) / (49/3) = 154/15.[/tex]

learn more about integral here:

https://brainly.com/question/32387684

#SPJ11

2(x + 1) 10. Determine lim 20 I or show that it does not exist. 9

Answers

To determine the limit of 2(x + 1) / (9 - 10x) as x approaches 20, we can evaluate the expression by substituting the value of x into the equation and simplify it.

In the explanation, we substitute the value 9 into the expression and simplify to find the limit. By substituting x = 9, we obtain 2(9 + 1) / (9 - 10(9)), which simplifies to 20 / (9 - 90). Further simplification gives us 20 / (-81), resulting in the final value of -20/81.

Thus, the limit of the expression as x approaches 9 is -20/81.lim(x→9) 2(x + 1) / (9 - 10x) = 2(9 + 1) / (9 - 10(9)) = 20 / (9 - 90) = 20 / (-81). The expression simplifies to -20/81. Therefore, the limit of 2(x + 1) / (9 - 10x) as x approaches 9 is -20/81.

Learn more about limit here: brainly.com/question/12211820

#SPJ11

Determine the following for the first order differential equation and initial condition shown using the Laplace transform properties. 3 + 2y = 5, where y(0) = 2 1) The following transfer function,

Answers

The transfer function Y(s) for the given first-order differential equation and initial condition, using the Laplace transform properties and the derivative property, is Y(s) = 1/s.

What is the Laplace transform?

The Laplace transform is an integral transform that is used to convert a function of time, often denoted as f(t), into a function of a complex variable, typically denoted as F(s). It is widely used in various branches of engineering and physics to solve differential equations and analyze linear time-invariant systems.

To determine the transfer function Y(s) using the Laplace transform properties for the given first-order differential equation and initial condition, we'll use the derivative property of the Laplace transform.

Given:

Differential equation: 3 + 2y = 5

Initial condition: y(0) = 2

First, let's rearrange the differential equation to isolate y:

2y = 5 - 3

2y = 2

Dividing both sides by 2:

y = 1

Now, taking the Laplace transform of the differential equation, we have:

L[3 + 2y] = L[5]

Using the derivative property of the Laplace transform (L[d/dt(f(t))] = sF(s) - f(0)), we can convert the differential equation to its Laplace domain representation:

3 + 2Y(s) = 5

Rearranging the equation to solve for Y(s):

2Y(s) = 5 - 3

2Y(s) = 2

Dividing both sides by 2:

Y(s) = 1/s

Therefore, the transfer function Y(s) for the given first-order differential equation and initial condition, using the Laplace transform properties and the derivative property, is Y(s) = 1/s.

To learn more about the Laplace transformation visit:

https://brainly.com/question/28167584

#SPJ4

complete question:

Determine the following for the first-order differential equation and initial condition shown using the Laplace transform properties. 3+2y=5,where y0=2 dt iThe following transfer function, Ys), using the derivative property 6s+5 Ys= s(3s+2)

Use Variation of Parameters to find the general solution of the differential equation y" - 6y +9y= e³1 t² for t > 0.

Answers

This general solution satisfies the given differential equation y" - 6y + 9y = e³1 t² for t > 0.

The general solution of the given differential equation y" - 6y + 9y = e³1 t² for t > 0 can be obtained using the method of Variation of Parameters. It involves finding particular solutions and then combining them with the complementary solution to obtain the general solution.

To solve the differential equation using Variation of Parameters, we first find the complementary solution by assuming y = e^(rt). Substituting this into the differential equation gives us the characteristic equation r² - 6r + 9 = 0, which factors to (r - 3)² = 0. Hence, the complementary solution is y_c = (c₁ + c₂t)e^(3t).

Next, we find the particular solution using the method of Variation of Parameters.

We assume a particular solution of the form y_p = u₁(t)e^(3t), where u₁(t) is an unknown function.

Differentiating y_p twice, we get y_p'' = (u₁'' + 6u₁' + 9u₁)e^(3t).

Substituting y_p and its derivatives into the differential equation, we obtain u₁''e^(3t) = e³1 t².

To determine u₁(t), we solve the following system of equations: u₁'' + 6u₁' + 9u₁ = t² and u₁''e^(3t) = e³1 t².

By solving this system, we find u₁(t) = (1/9)t⁴e^(-3t).

Finally, the general solution is obtained by combining the complementary and particular solutions: y = y_c + y_p = (c₁ + c₂t)e^(3t) + (1/9)t⁴e^(-3t).

This general solution satisfies the given differential equation y" - 6y + 9y = e³1 t² for t > 0.

Learn more about method of Variation of Parameters:

https://brainly.com/question/13318092

#SPJ11

use technology to approximate the solution(s) to the system of equations to the nearest tenth of a unit. select all that apply. (3, 3) a. (3, -3) b. (-3, -3) c. (3.3, -3.3) d. (-3.3, 3.3)

Answers

Among the options provided, (3, 3) is the closest approximate solution.

What is system oof equation?

A finite set of equations for which we searched for the common solutions is referred to as a system of equations, also known as a set of simultaneous equations or an equation system. Similar to single equations, a system of equations can be categorised.

To approximate the solution(s) to the system of equations f(x) = log(x) and g(x) = x - 3, we can use technology such as a graphing calculator or a mathematical software.

By graphing the functions f(x) = log(x) and g(x) = x - 3 on the same coordinate plane, we can find the points where the graphs intersect, which represent the solution(s) to the system of equations.

Using technology, we find that the graphs intersect at approximately (3, 3). Therefore, the solution to the system of equations is (3, 3).

Among the options provided, (3, 3) is the closest approximate solution.

Learn more about system of equation on:

https://brainly.com/question/12526075

#SPJ4

Write down the two inequalities that describe the unshaded region in the diagram below.​

Answers

The two inequalities that describe the unshaded region are y ≤ 2x - 1 and y < -x + 6

How to determine the two inequalities that describe the unshaded region

From the question, we have the following parameters that can be used in our computation:

The graph

The lines are linear equations and they have the following equations

y = 2x - 1

y = -x + 6

When represented as inequalities, we have

y ≥ 2x - 1

y < -x + 6

Flip the inequalitues for the unshaded region

So, we have

y ≤ 2x - 1

y < -x + 6

Hence, the two inequalities that describe the unshaded region are y ≤ 2x - 1 and y < -x + 6

Read more about inequalities at

https://brainly.com/question/30390162

#SPJ1


(a) If $2,600 is borrowed at 7.5% interest, find the amounts due
at the end of 3 years if the interest is compounded as follows.
(Round your answers to the nearest cent.) (i) annually $ (ii)
quarterly
(a) If $2,600 is borrowed at 7.5% interest, find the amounts due at the end of 3 years if the interest is compounded as follows. (Round your answers to the nearest cent.) (i) annually $ (ii) quarterly

Answers

(i) Annually:
To find the amount due, use the formula for compound interest: A = P(1 + r/n)^(nt)
Here, A is the amount due, P is the principal amount ($2,600), r is the interest rate (0.075), n is the number of times the interest is compounded per year (1 for annually), and t is the time in years (3).
A = 2600(1 + 0.075/1)^(1*3)
A = 2600(1.075)^3
A ≈ $3,222.52
(ii) Quarterly:
For quarterly compounding, change n to 4 since interest is compounded 4 times a year.
A = 2600(1 + 0.075/4)^(4*3)
A = 2600(1.01875)^12
A ≈ $3,265.70
So, the amounts due are:
(i) Annually: $3,222.52
(ii) Quarterly: $3,265.70

For more question like Amount visit the link below:

https://brainly.com/question/18521967

#SPJ11

The cylinder x^2 + y^2 = 81 intersects the plane x + z = 9 in an ellipse. Find the point on such an ellipse that is farthest from the origin.

Answers

The point on the ellipse x^2 + y^2 = 81, which is formed by the intersection of the cylinder and the plane x + z = 9, that is farthest from the origin can be found by maximizing the distance function from the origin to the ellipse. The point on the ellipse that is farthest from the origin is (-9, 0, 0).

To find the point on the ellipse that is farthest from the origin, we need to maximize the distance between the origin and any point on the ellipse. Since the equation of the ellipse is x^2 + y^2 = 81, we can rewrite it as x^2 + 0^2 + y^2 = 81. This shows that the ellipse lies in the xy-plane.

The plane x + z = 9 intersects the ellipse, which means that we can substitute x + z = 9 into the equation of the ellipse to find the points of intersection. Substituting x = 9 - z into the equation of the ellipse, we get (9 - z)^2 + y^2 = 81. Simplifying this equation, we obtain z^2 - 18z + y^2 = 0.

This is the equation of a circle in the zy-plane centered at (9, 0) with a radius of 9. Since we are interested in the farthest point from the origin, we need to find the point on this circle that is farthest from the origin, which is the point (-9, 0, 0).

Therefore, the point on the ellipse that is farthest from the origin is       (-9, 0, 0).

Learn more about ellipse  here:

https://brainly.com/question/20393030

#SPJ11

In the following exercises, find the Maclaurin series of each function.
203. ((1)=2
205. /(x) = sin(VR) (x > 0).

Answers

The Maclaurin series for sin(sqrt(x)) is f(x) = x^(1/2) - x^(3/2)/6 + x^(5/2)/120 - x^(7/2)/5040 + ... 203. To find the Maclaurin series of (1+x)^2, we can use the binomial theorem:

(1+x)^2 = 1 + 2x + x^2



So the Maclaurin series for (1+x)^2 is:

f(x) = 1 + 2x + x^2 + ...

205. To find the Maclaurin series of sin(sqrt(x)), we can use the Maclaurin series for sin(x):

sin(x) = x - x^3/3! + x^5/5! - x^7/7! + ...

And substitute sqrt(x) for x:

sin(sqrt(x)) = sqrt(x) - (sqrt(x))^3/3! + (sqrt(x))^5/5! - (sqrt(x))^7/7! + ...

Simplifying:

sin(sqrt(x)) = sqrt(x) - x^(3/2)/6 + x^(5/2)/120 - x^(7/2)/5040 + ...

So the Maclaurin series for sin(sqrt(x)) is:

f(x) = x^(1/2) - x^(3/2)/6 + x^(5/2)/120 - x^(7/2)/5040 + ...

Learn more about binomial theorem here:

brainly.com/question/30095070

#SPJ11

3 of 25 > This Determine the location and value of the absolute extreme values off on the given interval, if they exist 无意 f(x) = sin 3x on 1 प CEO What is/are the absolute maximum/maxima off on the given interval? Select the correct choice below and, if necessary, fill in the answer boxes to complete your choice. O A. The absolute maximum/maxima is/are at x= (Use a comma to separate answers as needed. Type an exact answer, using a as needed.) OB. There is no absolute maximum off on the given interval

Answers

The answer is:A. The absolute maximum is at x = π/6, and the absolute minimums are at x = 5π/6 and x = 9π/6.

The given function is f(x) = sin 3x, and the given interval is [1, π]. We need to determine the location and value of the absolute extreme values of f(x) on the given interval, if they exist. Absolute extreme values refer to the maximum and minimum values of a function on a given interval. To find them, we need to find the critical points (where the derivative is zero or undefined) and the endpoints of the interval. We first take the derivative of f(x):f'(x) = 3cos 3xSetting this to zero, we get:3cos 3x = 0cos 3x = 0x = π/6, 5π/6, 9π/6 (or π/2)These are the critical points of the function. We then evaluate the function at the critical points and the endpoints of the interval: f(1) = sin 3 = 0.1411f(π) = sin 3π = 0f(π/6) = sin (π/2) = 1f(5π/6) = sin (5π/2) = -1f(9π/6) = sin (3π/2) = -1Therefore, the absolute maximum of the function on the given interval is 1, and it occurs at x = π/6. The absolute minimum of the function on the given interval is -1, and it occurs at x = 5π/6 and x = 9π/6.  

Learn more about absolute maximum here:

https://brainly.com/question/32526656

#SPJ11

An insurance company offers its policyholders a number of different premium payment options. For a randomly selected policyholder, let X = the number of months between successive payments. The cdf of X is as follows: F(x) = {0 x < 1 0.30 1 lessthanorequalto x < 3 0.40 3 lessthanorequalto x < 4 0.45 4 lessthanorequalto x < 6 0.60 6 lessthanorequalto x < 12 1 12 lessthanorequalto x a. what is the pmf of X? b. sketch the graphs of cdf and pdf c. Using just the cdf, compute P(3 <= X <= 6) and P(x >= 4)

Answers

The problem provides the cdf of a random variable X and asks for the pmf of X, the graphs of cdf and pdf, and the probabilities P(3 <= X <= 6) and P(X >= 4).

a. To find the probability mass function (pmf) of X, we need to calculate the difference in cumulative probabilities for each interval.

PMF of X:

P(X = 1) = F(1) - F(0) = 0.30 - 0 = 0.30

P(X = 2) = F(2) - F(1) = 0.40 - 0.30 = 0.10

P(X = 3) = F(3) - F(2) = 0.45 - 0.40 = 0.05

P(X = 4) = F(4) - F(3) = 0.60 - 0.45 = 0.15

P(X = 5) = F(5) - F(4) = 0.60 - 0.45 = 0.15

P(X = 6) = F(6) - F(5) = 1 - 0.60 = 0.40

P(X = 12) = F(12) - F(6) = 1 - 0.60 = 0.40

For all other values of X, the pmf is 0.

b. To sketch the graphs of the cumulative distribution function (cdf) and probability density function (pdf), we can plot the values of the cdf and represent the pmf as vertical lines at the corresponding X values.

cdf:

From x = 0 to x = 1, the cdf increases linearly from 0 to 0.30.

From x = 1 to x = 3, the cdf increases linearly from 0.30 to 0.40.

From x = 3 to x = 4, the cdf increases linearly from 0.40 to 0.45.

From x = 4 to x = 6, the cdf increases linearly from 0.45 to 0.60.

From x = 6 to x = 12, the cdf increases linearly from 0.60 to 1.

pdf:

The pdf represents the vertical lines at the corresponding X values in the pmf.

c. Using the cdf, we can compute the following probabilities:

P(3 ≤ X ≤ 6) = F(6) - F(3) = 1 - 0.45 = 0.55

P(X ≥ 4) = 1 - F(4) = 1 - 0.60 = 0.40

To know more about random variable,

https://brainly.com/question/30720414

#SPJ11

A projectile is fired with an initial speed of 420 m/s and angle
of elevation 30°. (g ≈ 9.8 m/s2). (a) Find the range of the
projectile. (Round the answer to the nearest whole number.)
A projectile is fired with an initial speed of 420 m/s and angle of elevation 30°. (g = 9.8 m/s2). (a) Find the range of the projectile. (Round the answer to the nearest whole number.) 15588 x km (b)

Answers

The range of the projectile is approximately 16 kilometers

To find the range of the projectile, we can use the kinematic equation for horizontal distance:

Range = (initial velocity * time of flight * cos(angle of elevation))

First, we need to find the time of flight. We can use the kinematic equation for vertical motion:

Vertical distance = (initial vertical velocity * time) + (0.5 * acceleration * time^2)

Since the projectile reaches its maximum height at the halfway point of the total time of flight, we can use the equation to find the time of flight:

0 = (initial vertical velocity * t) + (0.5 * acceleration * t^2)

Solving for t, we get t = (2 * initial vertical velocity) / acceleration

Substituting the given values, we find t = 420 * sin(30°) / 9.8 ≈ 23.88 seconds

Now we can calculate the range using the formula:

Range = (420 * cos(30°) * 23.88) ≈ 15588 meters ≈ 16 kilometers (rounded to the nearest whole number).

Learn more about horizontal distance here:

https://brainly.com/question/15008542

#SPJ11















2 Let f(,y) = 4 + 2 + y2 (a) (3 points) Find the gradient of f at the point (-3,4). I
(b) (3 points) Determine the equation of the tangent plane at the point (-3, 4).
(c) (4 points) For what unit

Answers

(a)The gradient of f at the point (-3, 4) is <0, 8>.

(b)The equation of the tangent plane at the point (-3, 4) is y - 4 = 0.

(c)The unit vector in the direction of the gradient is <0, 1>.

What is tangent?

A tangent refers to a straight line that touches a curve or a surface at a single point, without crossing it at that point. It represents the instantaneous rate of change or slope of the curve or surface at that particular point. The tangent line approximates the behavior of the curve or surface near the point of contact.

a) To find the gradient of f at the point (-3, 4), we need to calculate the partial derivatives of f with respect to x and y, and evaluate them at the given point.

The derivative with respect to x, denoted as [tex]\frac{\delta f}{\delta x}[/tex], represents the rate of change of f with respect to x while keeping y constant. In this case, [tex]\frac{\delta f}{\delta x}[/tex] = 0, as there is no x term in the function f.

The  derivative with respect to y, denoted as [tex]\frac{\delta f}{\delta y}[/tex], represents the rate of change of f with respect to y while keeping x constant. Taking the derivative of [tex]y^2[/tex], we get [tex]\frac{\delta f}{\delta y}[/tex] = 2y.

Evaluating the partial derivatives at the point (-3, 4), we have:

[tex]\frac{\delta f}{\delta x}[/tex] = 0

[tex]\frac{\delta f}{\delta y}[/tex]= 2(4) = 8

Therefore, the gradient of f at the point (-3, 4) is <0, 8>.

(b) To determine the equation of the tangent plane at the point (-3, 4), we need the gradient and a point on the plane. We already have the gradient, which is <0, 8>. The given point (-3, 4) lies on the plane.

Using the point-normal form of the equation of a plane, the equation of the tangent plane is:

0(x - (-3)) + 8(y - 4) = 0

Simplifying the equation, we have:

8(y - 4) = 0

8y - 32 = 0

8y = 32

y = 4

So the equation of the tangent plane at the point (-3, 4) is 8(y - 4) = 0, or simply y - 4 = 0.

(c) The unit vector in the direction of the gradient can be found by dividing the gradient vector by its magnitude. The magnitude of the gradient vector <0, 8> is [tex]\sqrt{0^2 + 8^2} = 8[/tex].

Dividing the gradient vector by its magnitude, we get:

[tex]\frac{ < 0, 8 > }{ 8} = < 0, 1 >[/tex]

Therefore, the unit vector in the direction of the gradient is <0, 1>.

To learn more about  tangent from the given link

brainly.com/question/30162650

#SPJ4

Please show all working need
answer quick thanks
2) Find the eccentricity, identify the conic, give an equation of the directrix of ra 2+sine

Answers

Answer:

The equation r = 2 + sin(θ) represents a circle centered at the origin with radius √5 and an eccentricity of 0.

Step-by-step explanation:

To find the eccentricity and identify the conic from the equation r = 2 + sin(θ), we need to convert the equation from polar coordinates to Cartesian coordinates.

Using the conversion formulas r = √(x^2 + y^2) and θ = arctan(y/x), we can rewrite the equation as:

√(x^2 + y^2) = 2 + sin(arctan(y/x))

Squaring both sides of the equation, we have:

x^2 + y^2 = (2 + sin(arctan(y/x)))^2

Expanding the square on the right side, we get:

x^2 + y^2 = 4 + 4sin(arctan(y/x)) + sin^2(arctan(y/x))

Using the trigonometric identity sin^2(θ) + cos^2(θ) = 1, we can rewrite the equation as:

x^2 + y^2 = 4 + 4sin(arctan(y/x)) + (1 - cos^2(arctan(y/x)))

Simplifying further, we have:

x^2 + y^2 = 5 + 4sin(arctan(y/x)) - cos^2(arctan(y/x))

The equation shows that the conic is a circle centered at the origin (0,0) with radius √5, as all the terms involve x^2 and y^2. Therefore, the conic is a circle.

To find the eccentricity of a circle, we use the formula e = √(1 - (b/a)^2), where a is the radius of the circle and b is the distance from the center to the focus. In the case of a circle, the distance from the center to any point on the circle is always equal to the radius, so b = a.

Substituting the values, we have:

e = √(1 - (√5/√5)^2)

 = √(1 - 1)

 = √0

 = 0

Therefore, the eccentricity of the circle is 0.

Since the eccentricity is 0, it means the conic is a degenerate case of an ellipse where the two foci coincide at the center of the circle.

As for the directrix of the conic, circles do not have directrices. Directrices are characteristic of other conic sections such as parabolas and hyperbolas.

In summary, the equation r = 2 + sin(θ) represents a circle centered at the origin with radius √5 and an eccentricity of 0.

Learn more about conic:https://brainly.com/question/29132297

#SPJ11

5) (8 pts) Consider the differential equation (x³ – 7) dx = 22. dx a. Is this a separable differential equation or a first order linear differential equation? b. Find the general solution to this d

Answers

This differential equation, (x³ – 7) dx = 22 dx, is a separable differential equation. To solve it, we can separate the variables and integrate both sides of the equation with respect to their respective variables.

First, let's rewrite the equation as follows:

(x³ – 7) dx = 22 dx

Now, we separate the variables:

(x³ – 7) dx = 22 dx

(x³ – 7) dx - 22 dx = 0

Next, we integrate both sides:

∫(x³ – 7) dx - ∫22 dx = ∫0 dx

Integrating the left-hand side:

∫(x³ – 7) dx = ∫0 dx

∫x³ dx - ∫7 dx = C₁

(x⁴/4) - 7x = C₁

Integrating the right-hand side:

∫22 dx = ∫0 dx

22x = C₂

Combining the constants:

(x⁴/4) - 7x = C₁ + 22x

Rearranging the terms:

x⁴/4 - 7x - 22x = C₁

Simplifying:

x⁴/4 - 29x = C₁

Therefore, the general solution to the given differential equation is x⁴/4 - 29x = C₁, where C₁ is an arbitrary constant.

Learn more about differential equations :

https://brainly.com/question/25731911

#SPJ11

pls use calc 2 pls and show work thank u
Integrate using any applicable method. Be sure to give an exact answer. x So -dr (3x+1)³ Enter your answer in exact form. If the answer is a fraction, enter it using / as a fraction. Do not use the e

Answers

To integrate the expression ∫(-∞ to x) (3x+1)³ dx, we can use the power rule of integration and apply the limits of integration to obtain the exact answer.

The given expression is ∫(-∞ to x) (3x+1)³ dx. We can use the power rule of integration to integrate the expression. Applying the power rule, we increase the power by 1 and divide by the new power. Thus, the integral becomes:

∫ (3x+1)³ dx = [(3x+1)⁴ / 4] + C

To evaluate the definite integral with the limits of integration from -∞ to x, we substitute the upper limit x into the antiderivative and subtract the result with the lower limit -∞:

= [(3x+1)⁴ / 4] - [(3(-∞)+1)⁴ / 4]

Since the lower limit is -∞, the term [(3(-∞)+1)⁴ / 4] approaches 0. Therefore, the exact answer to the integral is:

= [(3x+1)⁴ / 4] - 0

= (3x+1)⁴ / 4

Learn more about power rule here:

https://brainly.com/question/30226066

#SPJ11

 
Suppose that 4% of the 2 million high school students who take the SAT each year receive special accommodations because of documented disabilities. Consider a random sample of 15 students who have recently taken the test. (Round your probabilities to three decimal places.) (a) What is the probability that exactly 1 received a special accommodation? (b) What is the probability that at least 1 received a special accommodation? (c) What is the probability that at least 2 received a special accommodation? (d) What is the probability that the number among the 15 who received a special accommodation is within 2 standard deviations of the number you would expect to be accommodated? Hint: First, calculated and o. Then calculate the probabilities for all integers between 4-20 and + 20. You may need to use the appropriate table in the Appendix of Tables to answer this question.

Answers

The given problem involves calculating probabilities using the binomial distribution for a random sample of 15 high school students taking the SAT, where the probability of receiving special accommodations is 4%. The probabilities include exactly 1 receiving special accommodations, at least 1 receiving special accommodations, at least 2 receiving special accommodations, and determining the probability within 2 standard deviations of the expected value.

To solve the given probabilities, we will use the binomial probability formula:

P(X = k) = (n choose k) * p^k * (1 - p)^(n - k)

Where:

n is the number of trials (sample size)

k is the number of successes

p is the probability of success for each trial

Given information:

Total high school students taking the SAT each year: 2 million

Probability of receiving special accommodations: 4%

Sample size: 15

Let's calculate the probabilities:

(a) Probability that exactly 1 received a special accommodation:

P(X = 1) = (15 choose 1) * (0.04)^1 * (1 - 0.04)^(15 - 1)

(b) Probability that at least 1 received a special accommodation:

P(X ≥ 1) = 1 - P(X = 0) = 1 - (15 choose 0) * (0.04)^0 * (1 - 0.04)^(15 - 0)

(c) Probability that at least 2 received a special accommodation:

P(X ≥ 2) = 1 - P(X = 0) - P(X = 1) = 1 - (15 choose 0) * (0.04)^0 * (1 - 0.04)^(15 - 0) - (15 choose 1) * (0.04)^1 * (1 - 0.04)^(15 - 1)

(d) To calculate the probability that the number of students receiving special accommodations is within 2 standard deviations of the expected value, we need to calculate the standard deviation first. The formula for the standard deviation of a binomial distribution is sqrt(n * p * (1 - p)).

Once we have the standard deviation, we can calculate the number of standard deviations from the expected value by taking the difference between the actual number of students receiving special accommodations and the expected value, and dividing it by the standard deviation. We can then refer to the appropriate table to find the probabilities for the range.

To know more about probabilities,

https://brainly.com/question/14953702

#SPJ11

(1 point) find the function g(x) satisfying the two conditions: 1. g′(x)=−512−x3 2. the maximum value of g(x) is 3.

Answers

The function g(x) that satisfies the given conditions is [tex]g(x) = -256 - x^4 + 3x.[/tex]It has a derivative of [tex]g'(x) = -512 - x^3[/tex] and its maximum value is 3.

To find the function g(x) that satisfies the given conditions, we start by integrating the derivative [tex]g'(x) = -512 - x^3.[/tex] The integral of -512 gives -512x, and the integral of [tex]-x^3[/tex] gives[tex]-(1/4)x^4[/tex]. Adding these terms together, we have the general antiderivative of g(x) as [tex]-512x - (1/4)x^4 + C[/tex], where C is a constant of integration.

Next, we apply the condition that the maximum value of g(x) is 3. To find this maximum value, we take the derivative of g(x) and set it equal to 0, since the maximum occurs at a critical point. Taking the derivative of g(x) = [tex]-512x - (1/4)x^4 + C[/tex], we get g'(x) = [tex]-512 - x^3[/tex].

Setting g'(x) = [tex]-512 - x^3 = 0[/tex], we solve for x to find the critical point. By solving this equation, we find x = -8. Substituting this value back into g(x), we have g(-8) =[tex]-256 - (-8)^4 + 3(-8) = 3[/tex]. Thus, the function g(x) = [tex]-256 - x^4 + 3x[/tex] satisfies the given conditions, with a derivative of g'(x) = -[tex]512 - x^3[/tex] and a maximum value of 3.

Learn more about derivative here:

https://brainly.com/question/29144258

#SPJ11

Looking at the graphs below, identify the slope and the y-intercept.

Answers

The line that connects the coordinates (0, 5), (3, 3), and (6, 1) has the equation y = (-2/3)x + 5. The y-intercept is five, and the slope is two-thirds.

Given

Coordinated (0,5), (3,3), (6,3)

Required to calculate = the slope and the y-intercept.

the slope-intercept form of a linear equation, which is y = mx + b, where m represents the slope and b represents the y-intercept.

Calculation of the Slope of the points (0, 5) and (3, 3)

m = (y₂ - y₁) / (x₂ - x₁)

= (3 - 5) / (3 - 0)

= -2 / 3

So, the slope (m) is -2/3.

Now we have calculated the y-intercept

the slope-intercept form equation (y = mx + b) to solve for b. Let's use the point (0, 5).

5 = (-2/3)(0) + b

5 = b

So, the y-intercept (b) is 5.

Measures of steepness include slope. Slope can be seen in real-world situations such as when building roads, where the slope must be calculated. When assessing risks, speeds, etc., skiers and snowboarders must take hill slopes into account.

Thus, the slope is -2/3, and the y-intercept is 5.

Learn more about Slope here:

https://brainly.com/question/3605446

#SPJ1

Use part I of the Fundamental Theorem of Calculus to find the derivative of 15 x f(x) = là [² ( ²7 ² - 1) " d dt 4 ƒf'(x) = [NOTE: Enter a function as your answer. Make sure that your syntax is c

Answers

The derivative of the function f(x) = ∫[a to x] [(t² - 7t + 2)² - 1] dt is given by f'(x) = [(x² - 7x + 2)² - 1].

To find the derivative of the function f(x) = ∫[a to x] [(t² - 7t + 2)² - 1] dt using Part I of the Fundamental Theorem of Calculus, we can differentiate f(x) with respect to x.

According to Part I of the Fundamental Theorem of Calculus, if we have a function f(x) defined as the integral of another function F(t) with respect to t, then the derivative of f(x) with respect to x is equal to F(x).

In this case, the function f(x) is defined as the integral of [(t² - 7t + 2)² - 1] with respect to t. Let's differentiate f(x) to find its derivative f'(x):

f'(x) = d/dx ∫[a to x] [(t² - 7t + 2)² - 1] dt.

Since the upper limit of the integral is x, we can apply the chain rule of differentiation. The chain rule states that if we have an integral with a variable limit, we need to differentiate the integrand and then multiply by the derivative of the upper limit.

First, let's find the derivative of the integrand, [(t² - 7t + 2)² - 1], with respect to t. The derivative of [(t² - 7t + 2)² - 1] with respect to t is:

d/dt [(t² - 7t + 2)² - 1] = 2(t² - 7t + 2)(2t - 7).

Now, we multiply this derivative by the derivative of the upper limit, which is dx/dx = 1:

f'(x) = d/dx ∫[a to x] [(t² - 7t + 2)² - 1] dt

= [(x² - 7x + 2)² - 1] * (d/dx x)

= [(x² - 7x + 2)² - 1].

It's important to note that in this solution, the lower limit 'a' was not specified. Since the lower limit is not involved in the differentiation process, it does not affect the derivative of the function f(x).

In conclusion, we have found the derivative f'(x) of the given function f(x) using Part I of the Fundamental Theorem of Calculus. The derivative is given by f'(x) = [(x² - 7x + 2)² - 1].

Learn more about Fundamental Theorem of Calculus at: brainly.com/question/30761130

#SPJ11

Other Questions
University of California v. Bakke, Supreme Court struck down a special admissions program for minorities at a state medical school on the grounds that it excluded a white applicant because of his race and violated his rights under the equal protection clause is called? what is the most common target inflation rate for ana dvanced economy disability and the justification of inequality in american history summary The current level of a broad stock market index is 1,299. Its dividend yield is 4% and the standard deviation of index returns is 20%.An American call option on the stock expires in 0.8 years. Its strike price is $1,300. The risk-free rate is 5% (annual, continuously compounded).Value the option using a binomial model with 2 periods of length 0.4 years each.1. What is the value of the option in 0.4 years if the stock price has gone down once?2. What is the current value of the option? (a) Use a substitution to find (2-1)dt . (b) Use integration by ports to find me 3re joan picked up a brochure on north carolina and learned the facts listed below:* it may experience either hot, humid summer conditions or more moderate summer conditions\.\* the annual rainfall across the state ranges from 37 to 90 inches.which aspect of north carolina was joan focusing on from the brochure? Explain the populations situations of developed countries based on birth rate, death rate, fertility rate What is the step response of the following differential equationfor an series RLC circuit? if R=3 ohms L=60 H C=3F E=5v if 1inch is 2.5cm then 1.0in^2 of surface area is The path to success essay Participants in a survey were asked how many hours per day they spend reading, how many hours per day they spend using a smartphone, and whether or not they would be interested in a smartphone application that lets users share book reviews.The data from the survey are represented in the graph below. Each represents a survey participant who said he or she was interested in the application, and each O represents a participant who said he or she was not interested. Which of the following hypotheses is most consistent with the data in the graph?a. Participants who read more were generally more likely to say they are interested in the application.b. Participants who read more were generally less likely to say they are interested in the application.c. Participants who use a smartphone more were generally more likely to say they read more.d. Participants who use a smartphone more were generally less likely to say they read more. Which of the following is not one of the top ten risks captured by Barry Boehm (the creator of the Spiral Model)Group of answer choicesa. Software requirements and user needs never changeb. Personnel shortfallsc. Unrealistic schedules and budgetsd. Shortfalls in externally furnished componentse. Developing the wrong software functionsf. Shortfalls in externally performed tasks if you met an individual who appeared to be very charming at first, but later you discovered that he or she manipulated people, caused others hurt without a second thought, and could not be depended on, you should suspect this person of having an antisocial personality disorder. if the element with atomic number 63 and atomic mass 212 decays by alpha emission. what is the atomic number of the decay product 50 Points! Multiple choice geometry question. Photo attached. Thank you! MgCl2 + 2 NaOH 2 NaCl + Mg(OH)2If you want to produce 11.00 moles of MgCl2, how many grams of NaOH are needed for the reaction to take place ? determine whether the statement describes a population or a sample. the types of cars of a sample of 23 professors at the local college. alder inc. has net income of $403,000, operating earnings of $640,000, sales of $1.23 million, and total assets of $1.48 million. what is the return on assets? A new line of electric bikes is launched. Monthly production cost in euros is C(x)=200+34x+0.02x2. (x is the number of scooters produced monthly). The selling price per bike is p(x)=90-0.02x.a) Find the revenue equation, R(x)= x * p(x)b) Show the profit equation is P(x)=0.04x2+56x-200c) Find P'(x) and then the value of x for which the profit is at maximum.d) What is the maximum profit? A custom cake baker charges a flat fee for each job, plus an hourly rate for thenumber of hours the job takes to complete. The total amount of her bill to the customer can be expressed by 40 + 25hwhere h is the hours it takes for the job.what does the coefficient of h, in the expression represent Steam Workshop Downloader