.A cannonball is launched upward with a velocity of 73.5 m/s at an angle of 20 degrees above the
horizontal.

(a) How long is the cannonball in the air?

(b) How far away does it land?

() How high does it travel? Cut your time in half!

Answers

Answer 1

Answer:

time of flight=( 2U sinx ) ÷ g

Explanation:

a)

u=73.5m/s , x= 20° , g =10m/s^2 then t= {2×73.5 × sin 20°} ÷ 10 = 134.2 ÷ 10 = 13.42 sec b) range is the distance, range= (u^2 sin 2 x ) ÷g = ({73.5 }^2 × sin 2 × 20 )÷ 10 =4025.3÷10 = 402.53meters. I couldn't finish the question so sorry


Related Questions

If we know the size of an asteroid, we can determine its density by A) comparing its reflectivity to the amount of light it reflects. B) looking for brightness variations as it rotates. C) determining its mass from its gravitational pull on a spacecraft, satellite, or planet. D) radar mapping. E) spectroscopic imaging.

Answers

Option C) is correct in determining its mass from its gravitational pull on a spacecraft, satellite, or planet. Knowing the mass and size of an asteroid allows us to calculate its density.

Option A) is incorrect because reflectivity only tells us about the asteroid's surface properties, not its density. Option B) is incorrect because brightness variations during rotation do not give us enough information to determine density. Option D) and E) are methods of studying asteroids but are not directly related to determining density.

Knowing the size of an asteroid alone is not enough to determine its density, as different materials can have different densities at the same size. By measuring the gravitational pull of the asteroid on a spacecraft, satellite, or planet, we can determine its mass. Once we have the mass and the size, we can calculate the asteroid's density. Methods such as radar mapping and spectroscopic imaging can provide additional information about the asteroid's composition, but they are not directly used to determine its density.

To learn about gravitational pull please visit:

https://brainly.com/question/13467280

#SPJ11

C) calculating its mass based on the gravitational attraction it exerts on a satellite, planet, or spacecraft.

We can determine an asteroid's mass by observing the gravitational pull it has on a neighbouring body, like a planet, satellite, or spacecraft. We can determine the asteroid's density once we know its mass and size. The gravitational force of an object will be stronger the denser it is. As a result, an asteroid must be denser the more massive it is for a given size.

The density of an asteroid can be determined using this method, which is especially helpful for small or erratic-shaped asteroids that are challenging to see using other techniques like radar mapping or spectroscopic imaging. Additionally, it can offer crucial details on the asteroid's makeup and structure, which can aid researchers in understanding the asteroid's formation and evolution.

learn more about mass here:

https://brainly.com/question/18064917

#SPJ11

how fast must a nonrelativistic electron move so its de broglie wavelength is the same as the wavelength of a 3.4-ev photon?

Answers

Answer:

1990.47 m/s

Explanation:

Answer: the answer is in the screen shots

Explanation:

In Young's experiment, light from a red laser (wavelength 700 nm) is sent through two

slit. At the same time, monochromatic visible light with another wavelength passes through the same

apparatus. As a result, most of the pattern that appears on the screen is a mixture of two colors; however, the

center of the third bright fringe of the red light appears pure red. What are the possible wavelengths of the

second type of visible light?

Answers

In Young's experiment, the pattern that appears on the screen is a result of interference between two sets of waves that are diffracted through two slits.

The location of the bright fringes in the pattern depends on the wavelength of the light used. This means that the path difference between the waves that interfere to produce this fringe is an integer multiple of the red light's wavelength (700 nm).

ΔL = mλ_red = nλ_other

where ΔL is the path difference between the waves, m and n are integers, λ_red is the wavelength of the red light, and λ_other is the wavelength of the second type of visible light.

Solving for λ_other, we get:

λ_other = (m/n) λ_red.

To know more about Young's experiment, here

brainly.com/question/30452257

#SPJ4

A nurse is caring for a client who is in labor and has an epidural anesthesia block. The client's blood pressure is 80/40 mmHg and the fetal heart rate is 140/min. Which of the followign is the priority nursing action?
A. Elevate the client's legs.
B. Monitor vital signs every 5 min.
C. Notify the provider.
D. Place the client in a lateral position.

Answers

The priority nursing action in this scenario would be to notify the provider.

An epidural anesthesia block can cause a drop in blood pressure in the mother, which can in turn affect the fetal heart rate.

A blood pressure reading of 80/40 mmHg is considered low, and can indicate hypotension.

Hypotension can lead to decreased blood flow to the placenta and fetus, which can result in fetal distress.

Therefore, it is important for the provider to be notified of the low blood pressure reading and fetal heart rate, so that appropriate interventions can be implemented to address the situation.

The provider may choose to adjust the dosage of the epidural anesthesia, administer IV fluids, or consider other measures to stabilize the mother's blood pressure and fetal well-being.

While monitoring vital signs and positioning the client can also be important interventions, they are not the priority in this scenario.

Elevating the client's legs may help to increase blood flow to the heart and improve blood pressure, and placing the client in a lateral position may also help to improve blood flow and prevent supine hypotensive syndrome.

These actions should be taken after the provider has been notified and appropriate interventions have been implemented.

To know more about  epidural anesthesia visit link :

https://brainly.com/question/14205576

#SPJ11

A student is going to the office. He starts out from the classroom and walks 20 m North then stops to
talk. Then he starts for the office again and walks 30 m North, but stops again to talk. Then he walks 10 m
North and finally makes it to the office.

Answers

I’m not sure what the question is but if you’re asking how far he walked to get to the office it would be 60 m North. 20+30+10=60

What does it mean when we say our sense of motion depends on our frame of reference? Include the phrases “fixed frame” and “moving frame” in your answer.

Answers

frame of reference that is not inertial. A non-inertial frame is now defined as a frame that accelerates relative to the underlying inertial reference frame. Newton's law won't be valid.

How does the framework function?

Performance could change depending on the lighting. The Frame automatically modifies the Plasma tvs brightness and contrasting settings after analyzing the lighting conditions in the room and the light level of your content.

What distinguishes a system from a frame?

the hard architecture (bones and condyle) that serves as an animal's body's framework. skeletal system, skeleton, and systema skeletale. system: a collection of organs or bodily parts that function or are anatomically related; "the body contains a system for organs for digestion."

To know more about frame visit:

https://brainly.com/question/9708057

#SPJ1

a particle with a cahrge of 1 c is moving at 45 angle with respect to the positive x axis in teh horizontal xy-plane. the velocity of the charge is 1 m/s. a magnetic field of 1 t is directed in the negative x direction. what is the magnetic force acting on the charge?

Answers

The magnetic force acting on the charged particle is -0.707 N in the k direction and 0.707 N in the j direction.

In this problem, the charge of the particle is given as 1 C, and the velocity of the particle is 1 m/s at an angle of 45 degrees to the positive x-axis. We can break down the velocity vector into its x and y components as follows:

vx = vcos(45) = 0.707 m/s

vy = vsin(45) = 0.707 m/s

The magnetic field is given as 1 T in the negative x direction.

Substituting these values into the formula for the magnetic force, we get:

F = q * (vxi + vyj + 0k) x (-Bi)

where I, j, and k are the unit vectors in the x, y, and z directions, respectively.

Expanding the cross product, we get:

F = q*(-vxB)k + qvyB*j

Substituting the values for q, vx, vy, and B, we get:

F = (1 C) (-0.707 m/s) (1 T) k + (1 C) (0.707 m/s) *(1 T) *j

Simplifying, we get:

F = -0.707 k + 0.707 j

To know more about Charge:

https://brainly.com/question/3412043

#SPJ4

A person weighs 540 N on Earth. What is the person's mass?

Answers

Weight = mass x gravity

where weight is measured in Newtons (N), mass is measured in kilograms (kg), and gravity is the acceleration due to gravity, which is approximately 9.81 m/s^2 on Earth.

So, we can rearrange the formula to solve for mass:

mass = weight / gravity

Plugging in the given values, we have:

mass = 540 N / 9.81 m/s^2 ≈ 55.0 kg

Therefore, the person's mass is approximately 55.0 kg.

5 of 225 of 22 Items
12:41







Question
The basic concept of how a simple motor works is explained by which statement?

Answers

Answer:

The basic concept of how a simple motor works is that you put electricity into it at one end and an axle (metal rod) rotates at the other end giving you the power to drive a machine of some kind. The simple motors you see explained in science books are based on a piece of wire bent into a rectangular loop, which is suspended between the poles of a magnet. In order for a motor to run on AC, it requires two winding magnets that don’t touch. They move the motor through a phenomenon known as induction.

I hope this helps! Let me know if I'm wrong!

Explanation:

the current is uniformly distributed in a wire with a diameter of 9.76 mm. find the magnetic field magnitude

Answers

To find the magnetic field of a wire with a diameter of 9.76 mm and a uniformly distributed current, you'll need to know the current (I) flowing through the wire, and the distance (r) from the center of the wire to the point where you want to measure the magnetic field. You can use Ampere's Law to determine the magnetic field (B).

1. Convert the diameter of the wire to meters: 9.76 mm = 0.00976 m.
2. Calculate the wire's radius: radius = diameter / 2 = 0.00976 m / 2 = 0.00488 m.
3. Determine the current (I) flowing through the wire. This information should be provided in the problem.
4. Determine the distance (r) from the center of the wire to the point where you want to measure the magnetic field.
5. Use Ampere's Law to calculate the magnetic field (B): B = (μ₀ * I) / (2 * π * r), where μ₀ is the permeability of free space (μ₀ = 4π x 10⁻⁷ Tm/A).
6. Plug in the values of I, μ₀, and r into the equation and solve for B.

Once you have followed these steps with the appropriate values for I and r, you will have found the magnetic field at the desired distance from the wire's center.

To know more about magnetic field:

https://brainly.com/question/23096032

#SPJ11

a student designed a pump cycle, in which 200 kj of heat removed from a reservoir at a temperature of 240 kelvin is rejected into another reservoir at a temperature of 400 k. the heat pump requires 100 kj of work. is the designated heat pump cycle reversible?

Answers

No, the heat pump cycle is not reversible.

The reversible process is an ideal process in which no energy is lost to the surroundings, and the system returns to its initial state when the process is reversed. In the given pump cycle, heat is transferred from a low-temperature reservoir to a high-temperature reservoir with the help of work input.

This process violates the second law of thermodynamics, which states that heat cannot flow spontaneously from a cold body to a hot body without any external work input. Therefore, the given pump cycle cannot be reversible.

Additionally, the efficiency of a reversible cycle is always greater than the efficiency of an irreversible cycle. In this case, the efficiency of the heat pump cycle can be calculated using the equation:

efficiency = (heat transferred - work input) / heat transferred

Substituting the given values, we get:

efficiency = (200 - 100) / 200 = 0.5 or 50%

This efficiency is less than the maximum theoretical efficiency that a reversible cycle could achieve. Therefore, the pump cycle is irreversible.

To learn more about heat pump cycle, here

https://brainly.com/question/12937347

#SPJ4

how wide is the central diffraction peak on a screen 2.50 m behind a 0.0328- mm -wide slit illuminated by 588- nm light?

Answers

The width of the central diffraction peak is 0.045 meters or 4.5 centimeters.

The width of the central diffraction peak on a screen 2.50 m behind a 0.0328-mm-wide slit illuminated by 588-nm light can be calculated using the formula:

w = (λL) ÷ a

where w denotes the width of the central diffraction peak, λ denotes the light's wavelength, L denotes the separation between the slit and the screen, and a denotes the slit's width.

When we enter the specified values into the formula, we obtain:

w = (588 nm x 2.50 m) ÷ 0.0328 mm

Converting the units to meters:

w = (588 x 10⁻⁹ m x 2.50 m) ÷ (0.0328 x 10⁻³ m)

Simplifying:

w = 0.045 m

To learn more about diffraction follow the link:

https://brainly.com/question/12290582

#SPJ4

this question has multiple answers. choose all that are correct. the hotter an object group of answer choices the brighter the object. the faster the object. the redder the object. the dimmer the object. the bluer the object. the slower the object.

Answers

The hotter an object is, the brighter and redder it appears, while cooler objects appear dimmer and bluer.

The question is asking about the relationship between an object's temperature and its brightness, color, and speed. The correct answers are that the hotter an object is, the brighter it appears and the redder it appears.

This is because hot objects emit more light, including more of the red end of the spectrum. The opposite is also true, meaning that cooler objects appear dimmer and bluer.

The speed of an object is not directly related to its temperature, so that answer is incorrect. However, it is important to note that the temperature of an object can affect its movement and velocity in certain situations.

To learn more about : objects

https://brainly.com/question/28308143

#SPJ11

A wire, of length L = 3. 8 mm, on a circuit board carries a current of I = 2. 54 μA in the j direction. A nearby circuit element generates a magnetic field in the vicinity of the wire of B = Bxi + Byj + Bzk, where Bx = 6. 9 G, By = 2. 6 G, and Bz = 1. 1 G. A) Calculate the i component of the magnetic force Fx, in newtons, exerted on the wire by the magnetic field due to the circuit element.

B) Calculate the k component of the magnetic force Fz, in newtons, exerted on the wire by the magnetic field due to the circuit element.

C) Calculate the magnitude of the magnetic force F, in newtons, exerted on the wire by the magnetic field due to the circuit element

Answers

The i component of the magnetic force on the wire is 1.06 × 10^-13 N. The k component of the magnetic force on the wire is 6.69 × 10^-14 N. The magnitude of the magnetic force on the wire is 1.26 × 10^-13 N.

To calculate the i component of the magnetic force, we use the formula:

F = I * L x B

where I is the current, L is the length of the wire, B is the magnetic field, and x represents the cross product.

The cross product of L and B gives a vector perpendicular to both L and B, which is in the i direction. So we only need to find the magnitude of the cross product and multiply it by I to get Fx.

|L x B| = |L| |B| sinθ

where θ is the angle between L and B. Since L is in the j direction and B has i and k components, we have:

|L x B| = L * Bz = (3.8 × 10^-3 m) * (1.1 × 10^-4 T) = 4.18 × 10^-8 N

Then, Fx = I * |L x B| = (2.54 × 10^-6 A) * (4.18 × 10^-8 N) = 1.06 × 10^-13 N

To calculate the k component of the magnetic force, we use the same formula and take the k component of the cross product:

|L x B|k = |L| |B| sin(π/2) = |L| |B| = (3.8 × 10^-3 m) * (6.9 × 10^-5 T) = 2.63 × 10^-7 N

Then, Fz = I * |L x B|k = (2.54 × 10^-6 A) * (2.63 × 10^-7 N) = 6.69 × 10^-14 N

The magnitude of the magnetic force is given by,

F = sqrt(Fx^2 + Fz^2) = sqrt((1.06 × 10^-13 N)^2 + (6.69 × 10^-14 N)^2) = 1.26 × 10^-13 N

To know more about magnetic force, here

brainly.com/question/3160109

#SPJ4

how can sonar best be used to monitor the hydrosphere

Answers

Sonar can be a useful tool for monitoring the hydrosphere, which includes all of the water on and beneath the Earth's surface.

Sonar works by emitting sound waves that bounce off objects in the water, and then measuring the time it takes for the sound waves to return to the source. By analyzing the echoes, scientists can map the seafloor, measure the depth of the water, and even identify the size and location of marine organisms.

Sonar can also be used to monitor the movements of water masses, including ocean currents, tides, and storm surges. This information is important for understanding global climate patterns and predicting the effects of natural disasters

Learn more about global climate

https://brainly.com/question/27919422

#SPJ4

a rocket is launched vertically upward from earth's surface at a speed of 5.5 km/s k m / s . part a what is its maximum altitude?

Answers

The maximum altitude of the rocket is 1,542 km. The result is obtained by using the kinematical equation.

Kinematic Equation

There are 3 main kinematical equations. They are

vf = vi + gtvf² = vi² + 2ghh = vi t + ½gt²

Where vf is the final velocity, vi is the initial velocity, g is the acceleration due to gravity, and h is the displacement.

We have initial velocity 5.5 km/s. The question is to find the maximum altitude.

Let's convert the initial velocity from km/s to m/s.

5.5 km/s = 5,500 m/s

In this case, at the maximum altitude, the final velocity is zero, vf = 0. While the acceleration due to gravity is g = -9.81 m/s².

We can use the second equation to get the maximum altitude, h
vf² = vi² + 2gh

0 = 5,500² - 2(9.81)h

30,250,000 = 19.62 h

h = 1,541,794 meters

h ≈ 1,542 km


Therefore, the maximum altitude the rocket will reach is approximately 1,542 km.

Learn more about kinematical equation here:

brainly.com/question/31086903

#SPJ11

describing light interactions with curved mirrors match the descriptions to the feature

Answers

Sure, I can help you with that! Here are some descriptions of light interactions with curved mirrors and the matching features:

1. Reflection - When light waves hit a curved mirror, they bounce back, or reflect, off the surface of the mirror in a predictable way. The angle of incidence (the angle at which the light hits the mirror) is equal to the angle of reflection (the angle at which the light bounces off the mirror).

2. Focal point - The focal point of a curved mirror is the point at which parallel light waves converge or appear to converge after reflecting off the mirror's surface. The distance between the mirror's surface and the focal point is called the focal length.

3. Center of curvature - The center of curvature of a curved mirror is the point at the center of the sphere that the mirror would be if it were a complete sphere. It is located at a distance equal to the mirror's radius of curvature from the mirror's surface.

4. Concave mirror - A concave mirror is a curved mirror that curves inward, like the inside of a sphere. When light waves hit a concave mirror, they reflect and converge at a point in front of the mirror, forming a real image.

5. Convex mirror - A convex mirror is a curved mirror that curves outward, like the outside of a sphere. When light waves hit a convex mirror, they reflect and diverge, making objects appear smaller than they actually are. Convex mirrors are commonly used as side-view mirrors on cars.

I hope this helps! Let me know if you have any other questions.

Humerus
Sholder
Joint
2. What side of the chicken's body did this wing belong to? Why?

Answers

The upper limb is the side of the chicken's body did this wing belong to.

Where is the shoulder joint in a chicken?

Humerus, shoulder, and joint are related to the anatomy of the upper limb. The humerus is the long bone in the upper arm, the shoulder is the joint that connects the arm to the body, and the joint refers to the articulation between bones.

In a chicken, the shoulder joint is located at the junction of the humerus (upper arm bone) and the scapula (shoulder blade). It is a ball-and-socket joint that allows for a wide range of motion in the chicken's wing. The shoulder joint is important for a chicken's ability to fly, flap its wings, and perform other movements that require mobility and stability in the upper limb.

Read more on upper limb here:https://brainly.com/question/6963710

#SPJ1

an object with mass m is released from rest at distance r0 from earth's center and falls on the earth's surface. what is the velocity of the object when it hits the earth's surface?

Answers

The velocity of the object when it hits the Earth's surface depends only on the height from which it was dropped and the acceleration due to gravity.

The velocity of an object when it hits the Earth's surface can be calculated using the principle of conservation of energy. When the object is released from rest at a distance r0 from the Earth's center, it has an initial gravitational potential energy of mgh0, where g is the acceleration due to gravity and h0 is the height of the object above the Earth's surface.

As the object falls towards the Earth's surface, its potential energy is converted into kinetic energy. When it hits the Earth's surface, all of its potential energy has been converted into kinetic energy. Therefore, we can write:

[tex]mgh0 = (1/2)mv^2[/tex]

where v is the velocity of the object when it hits the Earth's surface.

Solving for v, we get:

v = sqrt(2gh0)

Learn more about The velocity

https://brainly.com/question/17127206

#SPJ4

polaris and the star at the other end of the little dipper, kochab, are both apparent magnitude 2. in a photo of the night sky, they would appear similar to how they appear here in a planetarium simulation: larger than other stars. this is because

Answers

Polaris and Kochab's apparent magnitude of 2 and their proximity to the celestial pole make them appear larger in a photo or planetarium simulation compared to other stars.

A comparatively brilliant star as compared to other stars in the night sky, Kochab and Polaris both have an apparent magnitude of 2, making them both bright stars. In addition, they are both close to the celestial pole, which gives them a motionless appearance in the sky while giving the impression that other stars are rotating around them.

They stand out in the night sky because of their fixed location and brightness, and because of their brightness and proximity to the celestial equator, they look bigger than other stars in pictures or planetarium simulations.

Learn more about planetariums:

https://brainly.com/question/23119731

#SPJ4

consider the picture above of mars's orbit around the sun. which spot shows where mars will be when we see it in retrograde motion on earth?

Answers

When retrograde motion occurs and how it is related to Mars's orbit around the Sun:

Retrograde motion occurs when a planet appears to move backward in the sky from Earth's perspective. In the case of Mars, this happens when Earth overtakes Mars in their respective orbits around the Sun.

To understand when Mars will be in retrograde motion, consider these steps:

1. Picture both Mars and Earth orbiting the Sun, with Mars having a larger, slower orbit due to its greater distance from the Sun.
2. As Earth moves faster in its orbit, it eventually catches up to and passes Mars.
3. During this time, the relative positions of Earth, Mars, and the Sun create the illusion of Mars moving backward in the sky, as seen from Earth.

So, when trying to identify the spot where Mars will be in retrograde motion, look for the point in its orbit where Earth is passing Mars, creating the optical illusion of Mars moving backward in the sky.

To know more about Retrograde motion:

https://brainly.com/question/31026528

#SPJ11

how does the resistance of r1 and r2 in parallel compare to the resistance of r1 and r2 in series?

Answers

The resistance of R1 and R2 in parallel is lower than their resistance in series.

When two resistors, R1 and R2, are in parallel, the equivalent resistance is calculated as

R = (R1 * R2) / (R1 + R2).

The resulting resistance is always lower than either of the individual resistors. In contrast, when R1 and R2 are in series, the equivalent resistance is calculated as R = R1 + R2. The resulting resistance is always higher than either of the individual resistors.

1. Resistance in Series: In a series circuit, the total resistance R(total) is the sum of the individual resistances (R1 and R2). Mathematically, it is given by:
R (total)= R1 + R2
2. Resistance in Parallel: In a parallel circuit, the total resistance R(total) is found using the reciprocal formula. Mathematically, it is given by:
1/R(total) = 1/R1 + 1/R2
Now, let's compare the two cases:
In a series circuit, the total resistance is simply the sum of the individual resistances, whereas in a parallel circuit, the total resistance is determined by the reciprocal formula. Generally, the total resistance in a parallel circuit is lower than that in a series circuit, due to the reciprocal relationship. This means that when R1 and R2 are connected in parallel, their combined resistance will be less than when they are connected in series.

For more such questions on resistance , Visit:

https://brainly.com/question/28135236

#SPJ11

a certain rifle bullet has a mass of 8.37 g. calculate the de broglie wavelength of the bullet traveling at 1793 miles per hour.

Answers

The de Broglie wavelength of the bullet traveling at 1793 miles per hour is approximately 9.90 x 10^-37 meters.

To calculate the de Broglie wavelength of the rifle bullet, we can use the formula:

λ = h / p

where λ is the de Broglie wavelength, h is the Planck constant (6.626 x 10^-34 J*s), and p is the momentum of the bullet. To find the momentum of the bullet, we can use the formula:

p = m * v

where m is the mass of the bullet (8.37 g = 0.00837 kg) and v is the velocity of the bullet in meters per second. First, we need to convert the velocity of the bullet from miles per hour to meters per second:

1793 miles/hour * 1609.34 meters/mile / 3600 seconds/hour = 800.1 meters/second

Now we can calculate the momentum of the bullet:

p = 0.00837 kg * 800.1 m/s = 6.703 k g m / s

Finally, we can use the momentum to calculate the de Broglie wavelength:

λ = 6.626 x 10^-34 J*s / 6.703 kg m/s = 9.90 x 10^-37 meters

Therefore, the de Broglie wavelength is approximately 9.90 x 10^-37 meters.

For more such questions on De Broglie wavelength.

https://brainly.com/question/11552854#

#SPJ11

the value for ψ in root tissue was found to be -0.15 mpa. if you take the root tissue and place it in a 0.1 m solution of sucrose (ψ = -0.23 mpa), the net water flow would

Answers

The  evaluated net water flow is 0.08 MPa under the context  that 0.15 mpa is selected as the root tissue and placed it in a 0.1 m solution of sucrose ψ = -0.23 mpa.

Then water potential of root tissue = -0.15 MPa, now  that of a 0.1 M solution of sucrose = -0.23 MPa. Then water potential gradient is

Δψ = ψ1 - ψ2

here

Δψ = water potential gradient,

ψ1 = water potential of root tissue

ψ2 = water potential of a 0.1 M solution of sucrose

Staging the values in the formula

Δψ = (-0.15) - (-0.23)

Δψ = 0.08 MPa

Hence, the level of  sucrose solution has a lower in comparison to  water potential present in the root tissue, therefore water will flow from the sucrose solution into the root tissue.

To learn more about water potential

https://brainly.com/question/6475956

#SPJ4

it takes light approximately 8 minutes to reach the earth from the surface of the sun. the distance between jupiter and the sun is five astronomical units (5 au). how long does it take light to travel that distance?

Answers

It takes light approximately 39.5 minutes to travel the distance from the Sun to Jupiter.

Since it takes light approximately 8 minutes to reach the Earth from the surface of the sun, we know that the distance between the sun and the Earth is 1 astronomical unit (1 au).

Therefore, to find out how long it takes light to travel 5 au (the distance between Jupiter and the sun), we can use the following formula:

time = distance ÷ speed of light

The speed of light is approximately 299,792,458 meters per second.

So,

time = 5 au x 149,597,870,700 meters/au ÷ 299,792,458 meters/second
time = 39.5 minutes

Therefore, it takes approximately 39.5 minutes for light to travel from the surface of the sun to Jupiter.

Know more about astronomical unit here:

https://brainly.com/question/15211176

#SPJ11

two pulleys--one mounted in the ceiling, another anchored to a mass m suspended above the ground below--have a rope looped over them three complete times, so that there are six strands of rope running between the two pulleys. one end of the rope is tied to the center of the top pulley, the other is being held by a man standing next to the mass. the man pulls down with a tension t on that strand of rope causing the mass to rise at a constant speed. what is the net force pulling up on the bottom pulley?

Answers

The net force pulling up on the bottom pulley is equal to one-sixth of the weight of the mass.

In this scenario, we can use the concept of tension in the rope to determine the net force pulling up on the bottom pulley.

The tension in the rope is the same throughout, so the tension in the strand being pulled by the man is equal to the tension in the six strands running between the two pulleys.

The force of tension pulling up on the bottom pulley is equal to six times the tension in the rope, since there are six strands of rope running between the pulleys.

The force of gravity pulling down on the mass is equal to its weight, which is given by:

F_gravity = m *

where m is the mass of the object and g is the acceleration due to gravity.

Since the mass is suspended at a constant speed, the net force on the mass must be zero, which means that the force of tension pulling up on the bottom pulley must be equal to the force of gravity pulling down on the mass:

6 * T = m *

where T is the tension in the rope.

Solving for the net force pulling up on the bottom pulley, we get:

6 * T = m * g

T = m * g / 6

Therefore, the net force pulling up on the bottom pulley is equal to one-sixth of the weight of the mass.

Learn more about The net force

https://brainly.com/question/13410291

#SPJ4

what happens to each bulb if the switch is closed? match the words in the left column to the appropriate blanks in the sentences on the right. resethelp once the switch is closed, the current flows blankbecau

Answers

When the switch is closed, the circuit is completed, and the current starts flowing. The behavior of each bulb depends on the arrangement of the bulbs and the switch in the circuit.

If the bulbs are arranged in a series circuit, the current flows through both bulbs in the same direction. In this case, the voltage across each bulb is proportional to its resistance. Therefore, if the bulbs have the same resistance, they will have the same voltage across them. If one bulb has a higher resistance than the other, it will have a higher voltage across it. The current flowing through both bulbs will be the same, but the voltage across them will differ.

If the bulbs are arranged in a parallel circuit, the current splits into different branches and each branch contains a bulb. In this case, the voltage across each bulb is the same, and the current flowing through each bulb is proportional to its resistance. Therefore, if one bulb has a higher resistance than the other, it will have a lower current flowing through it. If one bulb has a lower resistance than the other, it will have a higher current flowing through it. The voltage across both bulbs stays the same, and no other bulb becomes short-circuited.

In conclusion, the behavior of each bulb depends on the arrangement of the circuit. If the bulbs are arranged in a series circuit, the voltage across them differs, and the current flowing through them is the same. If the bulbs are arranged in a parallel circuit, the voltage across them is the same, and the current flowing through them differs.

To learn more about circuit

https://brainly.com/question/27206933

#SPJ4

Complete question:

What happens to each bulb if the switch is closed? Match the words in the left column to the appropriate blanks in the sentences on the right. Res through both bulbs Once the switch is closed, the current flows because only through bulb A only through bulb B the voltage across it becomes zero the voltages across them stay the same another bulb becomes short-circuited no branch of a circuit is opened.

starting from rest, a disk rotates about its central axis with constant angular acceleration. in 5.0 s, it rotates 50 rad. what is the instantaneous angular velocity of the disk at the end of the 20.0 s?

Answers

The instantaneous angular velocity is 20.0 s is 400 rad/s.

What is the final instantaneous angular velocity of a disk rotating about its central axis with constant angular acceleration?

Since the angular acceleration is constant, we can use the formula:

[tex]θ = 1/2 * α * t^2 + ω0 * t[/tex]

where

[tex]θ = angle rotated = 50 rad[/tex]

[tex]α = angular acceleration[/tex]

[tex]t = time = 5.0 s[/tex]

[tex]ω0 = initial angular velocity = 0 (starting from rest)[/tex]

Solving for α, we get:

[tex]α = 2 * (θ - ω0 * t) / t^2 = 2 * 50 rad / 5.0 s^2 = 20 rad/s^2[/tex]

Now, using the formula:

[tex]ω = α * t + ω0[/tex]

where

ω = instantaneous angular velocity at the end of 20.0 s (what we need to find)

[tex]α = angular acceleration = 20 rad/s^2[/tex]

[tex]t = time = 20.0 s[/tex]

[tex]ω0 = initial angular velocity = 0 (starting from rest)[/tex]

we get:

[tex]ω = 20 rad/s^2 * 20.0 s + 0 = 400 rad/s[/tex]

Therefore, the instantaneous angular velocity of the disk at the end of 20.0 s is 400 rad/s.

Learn more about angular acceleration

brainly.com/question/29428475

#SPJ11

a hair drier uses 8 a at 114 v. it is used with a transformer in england, where the line voltage is 237 v. what should be the ratio of the turns of the transformer (primary to secondary)?

Answers

To determine the ratio of turns of the transformer, we can use the principle of conservation of power, which states that power in equals power out in an ideal transformer.

The power input to the hair dryer is:

P = VI = (8 A)(114 V) = 912 W

The power output of the transformer should be the same as the input power, so we can use this equation to find the current in the secondary circuit:

P = VI = (I_s)(237 V)

where I_s is the current in the secondary circuit. Solving for I_s, we get:

I_s = P/V_s = (912 W)/(237 V) = 3.85 A

Now we can use the turns ratio equation to find the ratio of the turns in the transformer:

N_p/N_s = V_p/V_s = (114 V)/(237 V)

where N_p and N_s are the number of turns in the primary and secondary coils, respectively. Solving for N_p/N_s, we get:

N_p/N_s = 0.481

Therefore, the ratio of turns in the transformer should be approximately 0.481.

To know more about conservation of power :

https://brainly.com/question/9013890

#SPJ11

how does the charge depend on time for a discharging capacitor in terms of capacitance c , resistance r , and initial charge q0 ?

Answers

The charge on a discharging capacitor decreases exponentially with time, and the rate of the decrease is determined by the resistance and capacitance values in the circuit.

The charge on a discharging capacitor decreases exponentially with time according to the following equation:

[tex]Q(t) = Q0 * e^{-t / (R * C})[/tex]

where Q(t) is the charge on the capacitor at time t, Q0 is the initial charge on the capacitor, R is the resistance in the circuit, C is the capacitance of the capacitor, and e is the mathematical constant known as Euler's number.

The time constant for the discharging process is given by the product of resistance and capacitance,

τ = R * C.

The time constant represents the time it takes for the charge on the capacitor to decrease to approximately 36.8% of its initial value

(i.e.,[tex]Q(τ) = Q0 * e^{-1} ≈ 0.368 * Q0[/tex]).

Therefore, the charge on a discharging capacitor decreases exponentially with time, and the rate of the decrease is determined by the resistance and capacitance values in the circuit.

For more such questions on metabolism , Visit:

https://brainly.com/question/25923373

#SPJ11

Other Questions
A student collected the data below on the time and distance traveled by a beetle.Flight of a BeetleOB. 1 m/sO C. 1.25 m/sDistance in meters (m)OD. 4 m/s5.04.01.0 2.0 3.0 4.0 5.0Time in seconds (s)What was the beetle's average flight speed during the time represented in the graph?O A. .75 m/s3.02.01.0 The calcium and magnesium in a urine sample were precipitated as oxalates. A mixed precipitate of calcium oxalate (CaC2O4) and magnesium oxalate (MgC2O4) resulted and was analysed by gravimetry. The formed precipitate mixture was heated to form calcium carbonate (CaCO3) and magnesium oxide (MgO) with a total mass of 0.0433 g. The solid precipitate mixture was ignited to form CaO and MgO, the resulting solid after ignition weighed 0.0285 g. What was the mass of calcium in the original sample? All answers should be reported with the correct significant figures how would you define the actual score and theoretical score on an exam, and how would you calcutre the percent success solve for r if $425.83=400(1+r)^5 ? (show explanation please) What is the most common resource in America The expression 12x +8 is equivalent to the expression a(bc+c), where b and c are constants and have no common factors. A student wrote the answer as 2 (6x+4). Which statement best explains whether the students answer is correct or incorrect please help and explain and show your work on how you got the answer. I WILL MARK YOU BRAINLIEST The supply and demand for a product are related to price by the following equations, where y is the price, in dollars, and x is the number of units, in thousands. Find the equilibrium point for this product.y=300+40xy=9300-50xhelpp.. The distance between two cities on a map is 17 centimeters. The scale on the map relates 5 centimeters on the map as 30 miles on the road. What is the actual distance, in miles, between the two cities? 2. Describe at least three design decisions you could make to create a clear, effective presentation. (1-3 sentences. 3.0 points) PLEASE HELP. 15 POINTS!!! does this suggest that your reaction worked? use three key signals to justify your answer 1-methoxy-2-chloro-4-nitrobenzene Cash flows that have been adjusted with the certainty equivalent method should be discounted by theA. opportunity cost of capital.B. risk-adjusted discount rate.C. pure play beta.D. marginal cost of capital.E. risk-free interest rate. URGENT!! Will give brainliest :) What is the equation for the line of best fit for the following data? Round the slope and -intercept of the line to three decimal places.A. y=-0.580+ 10.671B. y=-10.671 x+ 0.580C. y= 10.671 x-0.580D. y= 0.580x - 10.671 How can you make a better, more informed decision when choosing what to do or buy? Do chores Know the opportunity cost Make a random choice Save money Assume:A = 1101 0011 1111 0110B = 0110 1101 1101 1110Write the series of operations necessary to pack A into B (and store the result in C), where the 8 lowest order bits of B are stored in the 8 highest order bits of C, and the 8 highest order bits of A are stored in the 8 lowest order bits of C. A local doctors office logged the number of patients seen in one day by the doctor for ten days. Find the mean, median, range, and midrange of the number of patients seen in ten days.27, 31, 27, 35, 35, 25, 28, 35, 33, 24Calculate the mean, median, range, and midrange of the number of patients seen in ten days. what the this composer, famous for a book of mystical visions, was also an opera singer. The sensory receptors that transduce sound waves into electrical signals to be transmitted to the brain are are called _____ a) hair cells b) hearing cells. Analogies find the analogy that best matches the bold words9. GENERATE: DESTROYa) create : makeb) solar: powerc) fuel: gasd) surrender : fight