a calf that weighed w0 pounds at birth gains weight at the rate dw/dt = 1250 – w, where w is weight (in pounds) and t is time (in years). solve the differential equation.

Answers

Answer 1

The general solution to the given differential equation is given by:

-ln|1250 - w| = t + C,   when 1250 - w > 0

-ln|w - 1250| = t + C,   when 1250 - w < 0

Here, C is the constant of integration.

To solve the given differential equation dw/dt = 1250 - w, separate the variables and integrate.

Let's rewrite the equation:

dw/dt = 1250 - w

To separate the variables, we can bring all the w terms to one side and the t terms to the other side:

dw / (1250 - w) = dt

Now, we can integrate both sides of the equation:

∫ (dw / (1250 - w)) = ∫ dt

To integrate the left side, use the substitution u = 1250 - w:

-1 ∫ (1 / u) du = t + C

Taking the integral and simplifying, we have:

-ln|u| = t + C

Now, substitute back u = 1250 - w:

-ln|1250 - w| = t + C

To get rid of the absolute value, rewrite the equation as two separate cases:

Case 1: 1250 - w > 0

In this case, we have 1250 - w = 1250 - w, and the equation becomes:

-ln(1250 - w) = t + C

Case 2: 1250 - w < 0

In this case, we have 1250 - w = -(1250 - w), and the equation becomes:

-ln(w - 1250) = t + C

Therefore, the general solution to the given differential equation is given by:

-ln|1250 - w| = t + C,   when 1250 - w > 0

-ln|w - 1250| = t + C,   when 1250 - w < 0

Here, C is the constant of integration.

Learn more about differential equation here:

https://brainly.com/question/25731911

#SPJ11


Related Questions

Find the lengths of the sides of the triangle with the given vertices. (Enter your answers as a comma-separated list.) (5, 6, 5), (9, 2, 3), (1, 10, 3) Determine whether the triangle is a right triangle, an isosceles triangle, or neither. (Select all that apply) right triangle isosceles triangle neither

Answers

The lengths of the sides of the triangle with the given vertices (5, 6, 5), (9, 2, 3), (1, 10, 3) are 6, 8, and 7, respectively.

Based on the side lengths, we can conclude that the triangle is neither a right triangle nor an isosceles triangle.

Calculate the distances between the given vertices using the distance formula. The distance formula is given by:

Distance = [tex]\sqrt{ ((x2 - x1)^2 + (y2 - y1)^2 + (z2 - z1)^2)}[/tex]

Calculate the distances between (5, 6, 5) and (9, 2, 3), between (9, 2, 3) and (1, 10, 3), and between (1, 10, 3) and (5, 6, 5).

Distance between (5, 6, 5) and (9, 2, 3) = [tex]\sqrt{ ((9 - 5)^2 + (2 - 6)^2 + (3 - 5)^2)} = \sqrt{(16 + 16 + 4)} = \sqrt{36 = 6}[/tex]

Distance between (9, 2, 3) and (1, 10, 3) = [tex]\sqrt{((1 - 9)^2 + (10 - 2)^2 + (3 - 3)^2)} = \sqrt{(64 + 64 + 0) } = \sqrt{128 = 8}[/tex]

Distance between (1, 10, 3) and (5, 6, 5) = [tex]\sqrt{((5 - 1)^2 + (6 - 10)^2 + (5 - 3)^2)} = \sqrt{(16 + 16 + 4)} =\sqrt{36 = 6}[/tex]

The lengths of the sides are 6, 8, and 6 units, respectively.

To determine whether the triangle is a right triangle, an isosceles triangle, or neither, we can examine the lengths of its sides and apply the corresponding properties.

Based on the side lengths, we can conclude that the triangle is neither a right triangle nor an isosceles triangle.

A right triangle has one angle measuring 90 degrees, and an isosceles triangle has two sides of equal length. Since none of the sides have the same length and the triangle does not have a 90-degree angle, it is neither a right triangle nor an isosceles triangle.

For more such questions on triangle, click on:

https://brainly.com/question/25215131

#SPJ8

Give the general solution for the following trigonometric equation. - 40 sin(y) 1 cos(y) T. a. wherek e Zor where ke 2 wherek ez or y where k EZ

Answers

The general solution for the trigonometric equation -40sin(y) + cos(y) = T, where T is a constant, is given by y = 2nπ + arctan(40/T), where n is an integer.

To find the general solution, we rearrange the equation -40sin(y) + cos(y) = T to cos(y) - 40sin(y) = T. This equation represents a linear combination of sine and cosine functions. We can rewrite it as a single trigonometric function using the identity sin(a + b) = sin(a)cos(b) + cos(a)sin(b).

Comparing this identity with the given equation, we have cos(y - arctan(40/T)) = T. Taking the arccosine of both sides, we get y - arctan(40/T) = 2nπ or y = 2nπ + arctan(40/T), where n is an integer. This equation represents the general solution for the given trigonometric equation.


To learn more about trigonometric equations click here: brainly.com/question/27848761

#SPJ11

Determine whether the function is a solution of the differential equation y(4) - 6y - 0. y = 11 In(x) Yes No Need Help? Read it Watch it

Answers

the function [tex]y = 11\ln(x)[/tex] is not a solution of the differential equation [tex]y^{(4)} - 6y = 0[/tex].

We need to determine whether the function [tex]y = 11\ln(x)[/tex] is a solution of the differential equation [tex]y^{(4)} - 6y = 0[/tex] by plugging it into the equation and checking if it satisfies the equation.

First, note that:

[tex]y' = \frac{11}{x} \\\\y'' = -\frac{11}{x^2} \\y''' = \frac{22}{x^3} \\y^{(4)} = -\frac{66}{x^4}\\[/tex]

Plugging these into the differential equation, we get:

[tex]-\frac{66}{x^4} - 6(11\ln(x)) = 0[/tex]

Simplifying, we get:

[tex]\frac{66}{x^4} - 66\ln(x) = 0[/tex]

Dividing by 66 and multiplying by [tex]x^4[/tex], we get:

[tex]x^4\ln(x) = 1[/tex]

But this equation is not satisfied by the function [tex]y = 11\ln(x)[/tex], since:

[tex]11\ln(x) \neq \frac{1}{\ln(x)}[/tex]

Therefore, the given function is not a solution.

To know more about function refer here:

https://brainly.com/question/21145944#

#SPJ11







The total cost of producing x food processors is C(x) = 2,000 + 50x – 0.5x^2 a Find the actual additional cost of producing the 21st food processor. b Use the marginal cost to approximate the cost of producing the 21st food processor.

Answers

a. The actual additional cost of producing the 21st food processor is $1,430.

b. The marginal cost remains relatively constant within a small range of production quantities.

How to find the actual additional cost of producing the 21st food processor?

a. To find the actual additional cost of producing the 21st food processor, we substitute x = 21 into the cost function [tex]C(x) = 2,000 + 50x - 0.5x^2[/tex] and calculate the result.

The additional cost can be determined by subtracting the cost of producing 20 food processors from the cost of producing 21 food processors.

How to find the marginal cost be used to approximate the cost of producing the 21st food processor?

b. The marginal cost represents the rate of change of the cost function with respect to the quantity produced. By evaluating the derivative of the cost function, we can obtain the marginal cost function.

Using the marginal cost at x = 20 as an approximation, we can estimate the cost of producing the 21st food processor.

This approximation assumes that the marginal cost remains relatively constant within a small range of production quantities.

Learn more about actual additional cost

brainly.com/question/32540460

#SPJ11

Find the derivative of the given function. y = 6x2(1 - 5x) dy dx

Answers

Applying the product rule and the chain rule will allow us to determine the derivative of the given function, "y = 6x2(1 - 5x)".

Let's first give the two elements their formal names: (u = 6x2) and (v = 1 - 5x).

The derivative of (y) with respect to (x) is obtained by (y' = u'v + uv') using the product rule.

Both the derivatives of (u) and (v) with respect to (x) are (u' = 12x) and (v' = -5), respectively.

When these values are substituted, we get:

\(y' = (12x)(1 - 5x) + (6x^2)(-5)\)

Simplifying even more

\(y' = 12x - 60x^2 - 30x^2\)

combining comparable phrases

\(y' = 12x - 90x^2\)

As a result, y' = 12x - 90x2 is the derivative of the function (y = 6x2(1 - 5x)) with respect to (x).

learn more about product here :

https://brainly.com/question/31815585

#SPJ11

Let f(x) = x? - 8x + 11. Find the critical point c of f(x) and compute f(c). The critical point c is = The value of f(c) = Compute the value of f(x) at the endpoints of the interval (0,8). f(0) = f(8) = Determine the min and max of f(x) on (0,8). Minimum value = D Maximum value = Find the extreme values of f(x) on (0,1]. Minimum value = Maximum value = =

Answers

The critical point of the function f(x) = x² - 8x + 11 is x = 4, and f(4) = -5. The function values at the endpoints of the interval (0, 8) are f(0) = 11 and f(8) = -21. The minimum value of f(x) on the interval (0, 8) is -21, and the maximum value is 11. For the interval (0, 1], the minimum value of f(x) is 4 and the maximum value is 4.

To find the critical point of the function f(x), we need to find the derivative f'(x) and set it equal to zero.

Taking the derivative of f(x) = x² - 8x + 11 gives f'(x) = 2x - 8.

Setting this equal to zero, we get 2x - 8 = 0, which simplifies to x = 4.

Therefore, the critical point is x = 4.

To compute f(c), we substitute c = 4 into the function f(x) and calculate f(4) = 4² - 8(4) + 11 = -5.

Next, we evaluate the function at the endpoints of the interval (0, 8). f(0) = 0² - 8(0) + 11 = 11, and f(8) = 8² - 8(8) + 11 = -21.

The minimum and maximum values of f(x) on the interval (0, 8) can be found by comparing the function values at critical points and endpoints. The minimum value is -21, which occurs at x = 8, and the maximum value is 11, which occurs at x = 0.

For the interval (0, 1], the minimum value of f(x) is 4, which occurs at x = 1, and the maximum value is also 4, which is the same as the minimum value.

Learn more about critical point of a function:

https://brainly.com/question/32205040

#SPJ11

18. Let y = arctan(x2). Find f'(2). WIN b) IN IN e) None of the above

Answers

The correct answer is option A. 4/17. The derivative of the given equation can be found by using chain rule. The chain rule is a method for finding the derivative of composite functions, or functions that are made by combining one or more functions.

Given the equation: y = arc tan(x2).

It tells us how to find the derivative of the composite function f(g(x)).

Here, the value of f(x) is arc tan(x) and g(x) is x2,

hence f'(g(x))= 1/(1+([tex]g(x))^2[/tex]) and g'(x) = 2x.

Therefore by chain rule;`

(dy)/(dx) = 1/([tex]1+x^4[/tex]) ×2x

`Now, we have to find the value of f'(2).

`x = 2`So,`(dy)/(dx) = 1/(1+x^4) × 2x = 1/(1+2^4) ×2(2) = 4/17`

Therefore, the value of f'(2) is 4/17.

The correct answer is option A. 4/17

To know more about chain rule

https://brainly.com/question/30895266

#SPJ11

(1 point) Find the radius of convergence for the following power series: ch E (n!)2 0

Answers

The radius of convergence for the given power series is to be found. Therefore, the radius of convergence for the given power series is infinite.

It is given that the power series is:

$$ch\ [tex]E((n!)^2)x^2[/tex]

[tex]={sum_{n=0}^{\infty}}{(n!)^2x^2)^n}{(2n)}[/tex]}$$

For finding the radius of convergence, we use the ratio test:

\begin{aligned} \lim_{n \rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|&

=[tex]\lim_{n \rightarrow\infty}\frac{(((n+1)!)^2x^2)^{n+1}}{(2n+2)!}\frac{(2n)!}{((n!)^2x^2)^n}\\[/tex] &

=[tex]\lim_{n \rightarrow \infty}\frac{(n+1)^2x^2}{4n+2}\\ &=\frac{x^2}{4}[/tex]$$

Since the limit exists and is finite, the radius of convergence $R$ of the given series is given by:$

R=[tex]\frac{1}{\lim_{n \rightarrow \infty}\sqrt[n]{|a_n|}}\\[/tex]&

=[tex]\frac{1}{\lim_{n \rightarrow \infty}\sqrt[n]{\bigg|\frac{((n!)^2x^2)^n}{(2n)!}\bigg|}}\\[/tex] &

=[tex]\frac{1}{\lim_{n \rightarrow \infty}\frac{(n!)^2|x^2|}{(2n)^{\frac{n}{2}}}}\\[/tex]&

=[tex]\frac{1}{\lim_{n \rightarrow \infty}\frac{n^ne^{-n}\sqrt{2\pi n}|x^2|}{2^nn^{n+\frac{1}{2}}e^{-n}}}, \text

{ using Stirling's approximation}\\[/tex]&

=[tex]\frac{1}{\lim_{n \rightarrow \infty}\frac{\sqrt{2\pi n}\\|x^2|}{2^{n+\frac{1}{2}}}}\\[/tex]\\ &

=[tex]\frac{2}{|x|}\lim_{n \rightarrow \infty}\sqrt{n}\\[/tex]R&

=[tex]\boxed{\infty}, \text{ for } x \in \mathbb{R} \end{aligned}[/tex]$$

Therefore, the radius of convergence for the given power series is infinite.

To know more about radius of convergence

https://brainly.com/question/17019250

#SPJ11

the table shown below lists the december rainfall in centimeters in kentfield for five years. what was the mean kentfield december rainfall, in centimeters, for these five years?

Answers

The mean Kentfield December rainfall is 12 cm.

How to calculate the mean for the set of data?

In Mathematics and Geometry, the mean for this set of data can be calculated by using the following formula:

Mean = [F(x)]/n

For the total amount of rainfalls based on the table for December, we have the following;

Total amount of rainfalls, F(x) = 15 + 9 + 10 + 15 + 11

Total amount of rainfalls, F(x) = 60

Now, we can calculate the mean Kentfield December rainfall as follows;

Mean = 60/5

Mean = 12 cm.

Read more on mean here: brainly.com/question/9550536

#SPJ1

Missing information:

The question is incomplete and the complete question is shown in the attached picture.

Evaluate S/F . F.ds, where F(x, y, z) = (3.02 - Vy2 + z2, sin(x - 2), e" – 22) and S is the surface which is the boundary of the region between the sphere 2 + y2 + x2 = 4 and the cone 2? + y2 = 72 a

Answers

To evaluate the surface integral ∮S F · dS, where F(x, y, z) = (3.02 - Vy^2 + z^2, sin(x - 2), e^(-2z)), and S is the surface that is the boundary of the region between the sphere x^2 + y^2 + z^2 = 4 and the cone z^2 = 2y^2, we need to parameterize the surface S and calculate the dot product F · Answer :  dS.= (3.02 - V(r^2sin^2ϕ) + z^2, sin(rcosϕ - 2), e^(-2z)) · (cosϕ, sinϕ, 0) dr dϕ

The given region between the sphere and cone can be expressed as S = S1 - S2, where S1 is the surface of the sphere and S2 is the surface of the cone.

Let's start by parameterizing the surfaces S1 and S2:

For S1, we can use spherical coordinates:

x = 2sinθcosϕ

y = 2sinθsinϕ

z = 2cosθ

For S2, we can use cylindrical coordinates:

x = rcosϕ

y = rsinϕ

z = z

Now, let's calculate the dot product F · dS for each surface:

For S1:

F · dS = F(x, y, z) · (dx, dy, dz)

      = (3.02 - V(y^2) + z^2, sin(x - 2), e^(-2z)) · (∂x/∂θ, ∂y/∂θ, ∂z/∂θ) dθ dϕ

      = (3.02 - V(4sin^2θsin^2ϕ) + 4cos^2θ, sin(2sinθcosϕ - 2), e^(-2(2cosθ))) · (2cosθcosϕ, 2cosθsinϕ, -2sinθ) dθ dϕ

For S2:

F · dS = F(x, y, z) · (dx, dy, dz)

      = (3.02 - V(y^2) + z^2, sin(x - 2), e^(-2z)) · (∂x/∂r, ∂y/∂r, ∂z/∂r) dr dϕ

      = (3.02 - V(r^2sin^2ϕ) + z^2, sin(rcosϕ - 2), e^(-2z)) · (cosϕ, sinϕ, 0) dr dϕ

Now, we can integrate the dot product F · dS over the surfaces S1 and S2 using the parameterizations we derived and the appropriate limits of integration. The limits of integration will depend on the region between the sphere and cone in the xy-plane.

Please provide the limits of integration or any additional information about the region between the sphere and cone in the xy-plane so that I can assist you further in evaluating the surface integral.

Learn more about  sphere  : brainly.com/question/22849345

#SPJ11

Sam has a 2/3 chance of scoring a point each time she throws from the free-throw
line in basketball. (You should assume that the probability of success for each throw is independent of
the result of other attempts.)
What is the expectation of the number of points that Sam will score from 3 throws?

Answers

The expectation of the number of points that Sam will score from 3 throws can be calculated by multiplying the number of throws (3) by the probability of scoring a point in each throw (2/3).

To find the expectation, we multiply the number of trials (in this case, the number of throws) by the probability of success in each trial. In this scenario, Sam has a 2/3 chance of scoring a point in each throw. Since there are 3 throws, we can calculate the expectation as follows:

Expectation = Number of throws * Probability of success

Expectation = 3 * (2/3)

Expectation = 2

Therefore, the expectation of the number of points that Sam will score from 3 throws is 2. This means that, on average, we can expect Sam to score 2 points out of 3 throws based on the given probability of success for each throw.

Learn more about expectation here:

https://brainly.com/question/29068283

#SPJ11

What is the largest value of a such that cos(x) is decreasing on the interval [0, a]? a =

Answers

The largest value of a such that cos(x) is decreasing on the interval [0, a],   a = π/2.

To determine the largest value of "a" such that cos(x) is decreasing on the interval [0, a], we need to find the point where the derivative of cos(x) changes from negative to non-negative.

The derivative of cos(x) is given by -sin(x). When cos(x) is decreasing, -sin(x) should be negative. Therefore, we need to find the largest value of "a" such that sin(x) > 0 for all x in the interval [0, a].

The sine function, sin(x), is positive in the interval [0, π/2]. Therefore, the largest value of "a" that satisfies sin(x) > 0 for all x in [0, a] is a = π/2.

Hence, the largest value of "a" such that cos(x) is decreasing on the interval [0, a] is a = π/2.

to know more about regard, please visit;

https://brainly.com/question/32247762

#SPJ11








For the function: y = e^3x + 4 A) Identify any transformations this function has (relative to the parent function). B) For each transformation: 1) identify if it has an effect on the derivative II) if

Answers

The function y = e^(3x) + 4 has two transformations relative to the parent function, which is the exponential function. The first transformation is a horizontal stretch by a factor of 1/3, and the second transformation is a vertical shift upward by 4 units. These transformations do not have an effect on the derivative of the function.

The parent function of the given equation is the exponential function y = e^x. By comparing it to the given function y = e^(3x) + 4, we can identify two transformations.

The first transformation is a horizontal stretch. The original exponential function has a base of e, which represents natural growth. In the given function, the base remains e, but the exponent is 3x instead of just x. This means that the x-values are multiplied by 3, resulting in a horizontal stretch by a factor of 1/3. This transformation affects the shape of the graph but does not have an effect on the derivative. The derivative of e^x is also e^x, and when we differentiate e^(3x), we still get e^(3x).

The second transformation is a vertical shift. The parent exponential function has a y-intercept at (0, 1). However, in the given function, we have y = e^(3x) + 4. The "+4" term shifts the entire graph vertically upward by 4 units. This transformation changes the position of the function but does not affect its rate of change. The derivative of e^x is e^x, and when we differentiate e^(3x) + 4, the derivative remains e^(3x).

In conclusion, the function y = e^(3x) + 4 has two transformations relative to the parent exponential function. The first transformation is a horizontal stretch by a factor of 1/3, and the second transformation is a vertical shift upward by 4 units. Neither of these transformations has an effect on the derivative of the function.

Learn more about transformations of a function:

https://brainly.com/question/32518011

#SPJ11

about the original function, not the derivative or second derivative. Blomme 3. Find the equation of the line tangent to the equation yrt the point x = 2. Notice that the equation is neither a power f

Answers

To find the equation of the tangent line to the curve at the point x = 2, we need to find the slope of the curve at that point and use the point-slope form of a line.

To find the slope of the curve at x = 2, we can take the derivative of the original function with respect to x. Once we have the derivative, we evaluate it at x = 2 to find the slope of the tangent line.

After finding the slope, we use the point-slope form of a line, which is y - y1 = m(x - x1), where (x1, y1) is the given point (x = 2) on the curve and m is the slope of the tangent line. Substitute the values of x1, y1, and m into the equation to obtain the equation of the tangent line.

It's important to note that the original function should be provided in order to accurately calculate the slope and determine the equation of the tangent line.

To learn more about Derivative

brainly.com/question/25752367

#SPJ11

a rectangular prism has a base with a length of 45 meters and a width of 11 meters. The height of the prism measures twice its width. What is true about the rectangular prism

Answers

Answer:

Step-by-step explanation:

The width is 990

d. 8x2 + 2x – 1 = 0 e. x2 + 2x + 2 = 0 f. 3x + 4x + 1 = 0 - 5. Determine the roots of the following: a. x2 + 7x + 35 = 0 b. 6x2 - x-1=0 c. X? - 16x + 64 = 0 6. Find the sum and product of the follow"

Answers

a. The equation x^2 + 7x + 35 = 0 has complex roots.

b. The equation 6x^2 - x - 1 = 0 has two real solutions.

c. The equation x^2 - 16x + 64 = 0 has a repeated root at x = 8.

To find the roots of a quadratic equation, we can use different methods based on the nature of the equation.

a. For the equation x^2 + 7x + 35 = 0, we can calculate the discriminant (b^2 - 4ac) to determine the nature of the roots. In this case, the discriminant is 7^2 - 4(1)(35) = -147, which is negative. Since the discriminant is negative, the equation has no real solutions and the roots are complex.

b. For the equation 6x^2 - x - 1 = 0, we can use the quadratic formula, x = (-b ± √(b^2 - 4ac)) / (2a), to find the roots. In this case, a = 6, b = -1, and c = -1. By substituting these values into the formula, we get x = (1 ± √(1 - 4(6)(-1))) / (2(6)). Simplifying the equation further provides the two real solutions.

c. For the equation x^2 - 16x + 64 = 0, we can factor the equation to simplify it. By factoring, we find that (x - 8)(x - 8) = 0, which can be further simplified to (x - 8)^2 = 0. This indicates that the equation has a repeated root at x = 8.

Learn more about quadratic equation here:

https://brainly.com/question/30098550

#SPJ11

Find all solutions to the following ODE:
y″+2y′+17y=60e(−4x)sin⁡(5x)
Begin by classifying the ODE,Then include all steps in finding
the solutions.How do you know that you have found all the
so

Answers

The given ordinary differential equation is a linear homogeneous second-order equation with constant coefficients. The characteristic equation is solved to find the roots, which determine the general solution. To find the particular solution, a guess is made based on the form of the forcing term. The solutions are then combined to form the complete solution. In this case, the complete solution consists of the general solution and the particular solution.

To classify the given ODE, we look at its highest-order derivative term. Since it is a second-order derivative, the ODE is a second-order equation.

The characteristic equation is obtained by substituting y = e^(rx) into the homogeneous form of the equation (setting the forcing term equal to zero). For the given ODE, the characteristic equation becomes:

r^2 + 2r + 17 = 0

Solving this quadratic equation gives us the roots r1 = -1 + 4i and r2 = -1 - 4i.

The general solution to the homogeneous equation is then given by:

y_h(x) = c1e^((-1+4i)x) + c2e^((-1-4i)x)

To find the particular solution, a guess is made based on the form of the forcing term. Since the forcing term is 60e^(-4x)sin(5x), a particular solution of the form y_p(x) = Ae^(-4x)sin(5x) + Be^(-4x)cos(5x) is assumed.

By substituting this guess into the original ODE and solving for A and B, we can find the particular solution.

To ensure that we have found all the solutions, we combine the general solution and the particular solution. The general solution is a linear combination of two linearly independent solutions, and the particular solution is added to this to obtain the complete solution.

Therefore, the complete solution to the given ODE consists of the general solution and the particular solution.

Learn more about equation  here;

https://brainly.com/question/29174899

#SPJ11




Find all the antiderivatives of the following function. Check your work by taking the derivative. f(x) = 15 ex The antiderivatives of f(x) = 15 ex are F(x) = = e

Answers

The antiderivatives of f(x) = 15 ex are F(x) = 15 ex + C, where C is an arbitrary constant. To check this, we can take the derivative of F(x) using the power rule and the chain rule of differentiation:
d/dx (15 ex + C) = 15 d/dx (ex) + d/dx (C) = 15 ex + 0 = 15 ex
which is equal to f(x). Therefore, we have found all the antiderivatives of f(x) = 15 ex and verified our work by taking the derivative

.For more question like Antiderivatives  visit the link below:

https://brainly.com/question/14011803

#SPJ11

Find the indefinite integral. (Remember to use absolute values where appropriate. Use C for the constant of integration.) 1 √X√4x² dx X₁ 4x² + 81

Answers

The indefinite integral of √(x)√(4x² + 81) is (1/12) (4x² + 81)^(3/2) / (x√(x)) + C, where C is the constant of integration.

To find the indefinite integral of √(x)√(4x² + 81), we can use the substitution method. Let's proceed with the following steps:

Step 1: Make a substitution:

Let u = 4x² + 81. Now, differentiate both sides of this equation with respect to x:

du/dx = 8x.

Step 2: Solve for dx:

Rearrange the equation to solve for dx:

dx = du / (8x).

Step 3: Rewrite the integral:

Substitute the value of dx and the expression for u into the integral:

∫(1/√(x)√(4x² + 81)) dx = ∫(1/√(x)√u) (du / (8x)).

Step 4: Simplify the expression:

Combine the terms and simplify the integral:

(1/8)∫(1/√(x)√u) (1/x) du.

Step 5: Separate the variables:

Split the fraction into two separate fractions:

(1/8)∫(1/√(x)√u) (1/x) du = (1/8)∫(1/√(x)x√u) du.

Step 6: Integrate:

Now, we can integrate with respect to u:

(1/8)∫(1/√(x)x√u) du = (1/8)∫(1/√(x)) (√u/x) du.

Step 7: Simplify further:

Move the constant (1/8) outside the integral and rewrite the expression:

(1/8)∫(1/√(x)) (√u/x) du = (1/8√(x)) ∫(√u/x) du.

Step 8: Integrate the remaining expression:

Integrate (√u/x) with respect to u:

(1/8√(x)) ∫(√u/x) du = (1/8√(x)) ∫(1/x)(√u) du.

Step 9: Simplify and solve the integral:

Move the constant (1/8√(x)) outside the integral and integrate:

(1/8√(x)) ∫(1/x)(√u) du = (1/8√(x)) ∫(√u)/x du = (1/8√(x)) (1/x) ∫√u du.

Step 10: Integrate the remaining expression:

Integrate √u with respect to u:

(1/8√(x)) (1/x) ∫√u du = (1/8√(x)) (1/x) * (2/3) u^(3/2) + C.

Step 11: Substitute back the original expression for u:

Substitute u = 4x² + 81:

(1/8√(x)) (1/x) * (2/3) (4x² + 81)^(3/2) + C.

Step 12: Simplify further if needed:

Simplify the expression if desired:

(1/12) (4x² + 81)^(3/2) / (x√(x)) + C.

Therefore, the indefinite integral of √(x)√(4x² + 81) is (1/12) (4x² + 81)^(3/2) / (x√(x)) + C.

To know more about indefinite integrals, visit the link : https://brainly.com/question/30094386

#SPJ11

Represent the function f(x) = 2.0.3 as a power series: cn (x - 1)n=0 Find the following coefficients: CO= 1^(3/10) C1 = 3/10*1^(-7/10) C2 = C3 = Find the interval of convergence

Answers

The first three coefficients are calculated as CO = 1^(3/10), C1 = (3/10) * 1^(-7/10), and C2 = C3 = 0. The interval of convergence for the power series representation of f(x) = 2.0.3 is (-∞, +∞), meaning it converges for all real values of x.

The power series representation of a function involves expressing the function as an infinite sum of terms, where each term is a multiple of x raised to a power. In this case, the function f(x) = 2.0.3 is a constant function with the value of 2.0.3 for all x. To represent it as a power series, we need to find the coefficients cn.

The coefficients cn can be calculated by substituting the corresponding values of n into the formula cn = f^(n)(a) / n!, where f^(n)(a) represents the nth derivative of f(x) evaluated at a, and n! denotes the factorial of n. In this case, since f(x) is a constant function, all its derivatives are zero except for the zeroth derivative, which is simply the function itself.

Calculating the coefficients:

CO: Plugging in n = 0, we get CO = f^(0)(1) / 0! = f(1) = 2.0.3 = 1.

C1: Substituting n = 1, we have C1 = f^(1)(1) / 1! = 0.

C2 and C3: As the function f(x) is a constant, all higher-order derivatives are zero, so C2 = C3 = 0.

The interval of convergence of a power series represents the range of x values for which the series converges. In this case, since all coefficients after C1 are zero, the power series reduces to a constant term, and it converges for all x.

Therefore, the interval of convergence for the power series representation of f(x) = 2.0.3 is (-∞, +∞), meaning it converges for all real values of x.

Learn more about interval of convergence here:

https://brainly.com/question/31972874

#SPJ11

4 QUESTION 11 Give an appropriate answer. Let lim f(x) = 1024. Find lim x-10 x-10 1024 10 4 5 QUEATI 5√(x)

Answers

The answer to the problem is 0, since both the numerator and the denominator of the expression approach 0 as x approaches 10.

The given limit problem can be solved using the algebraic manipulation of limits. First, let's consider the limit of the function f(x) = 1024 as x approaches 10. From the definition of limit, we can say that as x gets closer and closer to 10, f(x) gets closer and closer to 1024. Therefore, lim f(x) = 1024 as x approaches 10. Next, let's evaluate the limit of the expression (x-10)/(1024-10) as x approaches 10. This can be simplified by factoring out (x-10) from both the numerator and the denominator, which gives (x-10)/(1014). As x approaches 10, this expression also approaches (10-10)/(1014) = 0/1014 = 0. Therefore, lim (x-10)/(1024-10) = 0 as x approaches 10.
Finally, we can use the product rule of limits to find the limit of the expression 5√(x) * (x-10)/(1024-10) as x approaches 10. This rule states that if lim g(x) = L and lim h(x) = M, then lim g(x) * h(x) = L * M. Applying this rule, we get lim 5√(x) * (x-10)/(1024-10) = lim 5√(x) * lim (x-10)/(1024-10) = 5√(10) * 0 = 0.Therefore,The answer to the problem is 0, since both the numerator and the denominator of the expression approach 0 as x approaches 10.

Learn more about expression here:

https://brainly.com/question/15994491

#SPJ11

Find the average rate of change of the function over the given interval. (Round your answer to three decimal places.) f(x) = sin(x), Compare this average rate of change with the instantaneous rates of change at the endpoints of the interval. (Round your answers to three decimal places.) left endpoint right endpoint

Answers

The instantaneous rate of change at the left endpoint is f'(a) = cos(a), and at the right endpoint is f'(b) = cos(b).

What is function?

In mathematics, a function is a unique arrangement of the inputs (also referred to as the domain) and their outputs (sometimes referred to as the codomain), where each input has exactly one output and the output can be linked to its input.

To find the average rate of change of the function f(x) = sin(x) over a given interval, we need to determine the difference in the function values at the endpoints of the interval divided by the difference in their corresponding x-values.

Let's denote the left endpoint as "a" and the right endpoint as "b". The average rate of change (AROC) is given by:

AROC = (f(b) - f(a)) / (b - a)

Since the function is f(x) = sin(x), the AROC becomes:

AROC = (sin(b) - sin(a)) / (b - a)

To compare the average rate of change with the instantaneous rates of change at the endpoints, we need to calculate the derivative of the function and evaluate it at the endpoints.

The derivative of f(x) = sin(x) is f'(x) = cos(x).

Therefore, the instantaneous rate of change at the left endpoint is f'(a) = cos(a), and at the right endpoint is f'(b) = cos(b).

Learn more about function on:

https://brainly.com/question/11624077

#SPJ4

Integrate using Trigonometric Substitution. Write out every step using proper notation throughout your solution. You must draw and label the corresponding right triangle. Simplify your answer completely. Answers must be exact. Do not use decimals. 23 dx -9

Answers

The complete solution to the integral ∫(x³)/√(x² + 9) dx using trigonometric substitution is:

∫(x³)/√(x² + 9) dx = 27 tanθ - 27 ln |sec θ| + C

First, substitute x = 3tanθ.

let the derivative of x = 3tanθ with respect to θ:

dx/dθ = 3sec²θ

Solving for dx, we get:

dx = 3sec²θ dθ

Now let's substitute x and dx in terms of θ:

x = 3 tanθ

dx = 3 sec²θ dθ

Next, we need to express (x³)/√(x² + 9) in terms of θ:

(x³)/√(x² + 9)  

= (3 tan θ)³/√((3 tan θ)² + 9)

= 27 tan³ θ/√(9tan²θ + 9)

= 27 tan³ θ/√9(tan²θ + 1)

Now we can rewrite the integral using the new variables:

∫(x³)/√(x² + 9)  dx

= ∫27 tan³ θ/√9(tan²θ + 1)) 3sec²θ dθ

= 81 ∫ tan³3 θ sec θ /√(9 sec² θ) dθ

= 81 ∫ tan³ θ sec θ/ 3 sec θ dθ

= 27 ∫ tan³θ dθ

Using the identity tan²θ = sec²θ - 1, we can rewrite the integral as:

27∫tan³θ dθ = 27∫(tan²θ)(tanθ) dθ

= 27∫(sec²θ - 1)(tanθ) dθ

= 27∫(sec²θ)(tanθ) - 27∫(tanθ) dθ

The first integral can be solved by using the substitution u = tanθ, which gives du = sec²θ dθ:

27∫du - 27∫(tanθ) dθ

The first integral becomes a simple integration:

27u - 27∫(tanθ) dθ

Now, we can evaluate the second integral:

27u - 27 ln |sec θ| + C

Finally, substituting again u = tanθ:

27tanθ - 27 ln |sec θ| + C

Therefore, the complete solution to the integral ∫(x³)/√(x² + 9) dx using trigonometric substitution is:

∫(x³)/√(x² + 9) dx = 27 tanθ - 27 ln |sec θ| + C

where θ is determined by the substitution x = 3tanθ.

Learn more about trigonometric substitution here:

https://brainly.com/question/29136165

#SPJ4

please help with these two for a thumbs up!
Atmospheric Pressure the temperature is constant, then the atmospheric pressure (in pounds per square inch) varies with the atitude above sea level in accordance with the low PEP Where Do Is the atmos

Answers

The atmospheric pressure at an altitude of 12000 ft is approximately 8.333 psi.

What is atmoshpheric pressure?

Atmospheric pressure refers to the force per unit area exerted by the Earth's atmosphere on any object or surface within it. It is the weight of the air above a specific location, resulting from the gravitational pull on the air molecules. Atmospheric pressure decreases as altitude increases, since there is less air above at higher elevations.

Atmospheric pressure is typically measured using units such as pounds per square inch (psi), millimeters of mercury (mmHg), or pascals (Pa). Standard atmospheric pressure at sea level is defined as 1 atmosphere (atm), which is equivalent to approximately 14.7 psi, 760 mmHg, or 101,325 Pa.

In the problem Given:

P₀ = 15 psi (at sea level)

P(4000 ft) = 12.5 psi

We need to find P(12000 ft).

Using the equation [tex]P = P_0e^{(-kh)[/tex], we can rearrange it to solve for k:

k = -ln(P/P₀)/h

Substituting the given values:

k = -ln(12.5/15)/4000 ft

Now we can use the value of k to find P(12000 ft):

[tex]P(12000 ft) = P_0e^{(-k * 12000 ft)[/tex]

Substituting the calculated value of k and P₀ = 15 psi:

[tex]P(12000 ft) ≈ 15 * e^{(-(-ln(12.5/15)/4000 * 12000) ft[/tex]

Calculating this expression yields P(12000 ft) ≈ 8.333 psi (rounded to three decimal places).

Learn more about atmospheric pressure here:

https://brainly.com/question/28310375

#SPJ4

The complete question is:

If the temperature is constant, the atmospheric pressure P (in pounds per square inch) varies with the altitude above sea level h according to the equation:

[tex]P = P_0e^{(-kh)[/tex]

Given that the atmospheric pressure is 15 lb/in² at sea level and 12.5 lb/in² at an altitude of 4000 ft, we need to determine the atmospheric pressure at an altitude of 12000 ft.

Use the change of variables formula and an appropriate transformation to evaluate ∫∫RxydA
where R is the square with vertices (0, 0), (1, 1), (2, 0), and (1, -1).

Answers

To evaluate the double integral ∫∫RxydA over the square region R, we can use a change of variables and an appropriate transformation. By using a transformation that maps the square region R to a simpler domain, such as the unit square, we can simplify the integration process.

The given region R is a square with vertices (0, 0), (1, 1), (2, 0), and (1, -1). To simplify the integration, we can use a change of variables and transform the square region R into the unit square [0, 1] × [0, 1] by using the transformation u = x - y and v = x + y.

The inverse transformation is given by x = (u + v)/2 and y = (v - u)/2. The Jacobian determinant of this transformation is |J| = 1/2.

Now, we can express the original integral in terms of the new variables u and v:

∫∫R xy dA = ∫∫R (x^2 - y^2) (x)(y) dA.

Substituting the transformed variables, we have:

∫∫R xy dA = ∫∫S (u + v)^2 (v - u)^2 (1/2) dudv,

where S is the unit square [0, 1] × [0, 1].

The integral over the unit square S simplifies to:

∫∫S (u + v)^2 (v - u)^2 (1/2) dudv = (1/2) ∫∫S (u^2 + 2uv + v^2)(v^2 - 2uv + u^2) dudv.

Expanding the expression, we get:

∫∫S (u^4 - 4u^2v^2 + v^4) dudv.

Integrating term by term, we have:

(1/5) (u^5 - (4/3)u^3v^2 + (1/5)v^5) evaluated over the limits of the unit square [0, 1] × [0, 1].

Evaluating this expression, we find the result of the double integral over the square region R.

Learn more about Jacobian determinant here:

https://brainly.com/question/32227915

#SPJ11

LINEARIZATION AND LAPLACE TRANSFORMS Question 1: Linearize the following differential equations dy +zy = dr a. d? dq = y2 + 2+ + = dt? dt b. dy dt ay +By? + y In y A, B, y: constants C. Q: constant dy

Answers

To linearize the given differential equations, we need to find the linear approximation of the nonlinear terms. In the first equation, the linearization involves finding the first derivative of y with respect to t, while in the second equation, we use logarithmic differentiation to linearize the nonlinear term. In both cases, the linearized equations help approximate the behavior of the original nonlinear equations.

a) To linearize the equation dy/dt + zy = r, we can write the linearized equation as d(y - y0)/dt + z(y - y0) = r - r0, where y0 and r0 are the values of y and r at a specific point. This linearization approximates the behavior of the original equation around the point (y0, r0). The linearization involves finding the first derivative of y with respect to t.

b) To linearize the equation dy/dt + ay + By^2 + yln(y) = Q, we can use logarithmic differentiation. Taking the natural logarithm of both sides of the equation, we get ln(dy/dt) + ln(y) + ln(a) + ln(B) + yln(y) = ln(Q). Then, we differentiate both sides with respect to t, resulting in 1/(y^2) * (dy/dt) + (1/y) * (dy/dt) + (1/y) * y + 0 + yln(y) * (dy/dt) = 0. This linearization allows us to approximate the behavior of the original nonlinear equation by neglecting higher-order terms.

In both cases, the linearized equations provide a simpler representation of the original equations, making it easier to analyze their behavior and approximate solutions.

Learn more about   logarithmic here: https://brainly.com/question/30226560

#SPJ11

A 529 Plan is a college-savings plan that allows relatives to invest money to pay for a child's future college tuition; the account grows tax-free. Lily wants to set up a 529 account for her new granddaughter and wants the account to grow to $42,000 over 17 years. She believes the account will earn 4% compounded quarterly. To the nearest dollar, how much will Lily need to invest in the account now? A(t) = P(1+.)"

Answers

Lily will need to invest $15,513.20 in the account now to have $42,000 in 17 years. Given, Lily wants the account to grow to $42,000 over 17 years. The account will earn 4% compounded quarterly.

Here is the solution to your given problem:

We need to find out how much Lily will need to invest in the account now.

Using the formula for compound interest:

A(t) = [tex]P(1 + r/n)^{nt}[/tex]

where, A(t) is the amount after time t, P is the principal (initial) amount invested, r is the annual interest rate, n is the number of times the interest is compounded per year, and t is the number of years.

In this case, the interest rate is 4%, compounded quarterly. So, r = 4/100 = 0.04 and n = 4 (quarterly).

We know, Lily wants the account to grow to $42,000 over 17 years.

So, A(17) = $42,000 and t = 17.

We are to find P.P = A(t) / (1 + r/n)^nt

Putting all the values in the formula, we get:

P = $42,000 / [tex](1 + 0.04/4)^{(4*17)}P[/tex] = $15,513.20

Therefore, Answer: $15,513.

To learn more about compound interest, refer:-

https://brainly.com/question/22621039

#SPJ11

Please help me with a, b, and c. Thank you.
f(x) - f(a) a. Use the definition mtan = lim x-a x-a b. Determine an equation of the tangent line at P. c. Plot the graph of f and the tangent line at P. f(x)=x²-9, P(-5,16) to find the slope of the tangent

Answers

The slope of the tangent line to the graph of f(x) = x² - 9 at the point P(-5, 16) is 2a - 10, which simplifies to -20.

To determine the slope of the tangent line at point P, we can use the definition of the derivative.

The derivative of a function f(x) at a point a, denoted as f'(a) or dy/dx|a, represents the slope of the tangent line to the graph of f(x) at that point. In this case, we need to find f'(-5).

Using the power rule of differentiation, the derivative of f(x) = x² - 9 is given by f'(x) = 2x. Substituting x = -5 into this derivative expression, we have [tex]f'(-5) = 2(-5) = -10[/tex].

Therefore, the slope of the tangent line to the graph of f(x) = x² - 9 at the point P(-5, 16) is -10.

To determine the equation of the tangent line at point P, we can use the point-slope form of a linear equation.

The equation of a line with slope m passing through the point (x₁, y₁) is given by [tex]y - y_1 = m(x - x_1)[/tex]. Substituting the values x₁ = -5, y₁ = 16, and m = -10, we have:

[tex]y - 16 = -10(x + 5)[/tex]

Simplifying this equation, we get:

[tex]y - 16 = -10x - 50[/tex]

Finally, rearranging the equation to slope-intercept form, we have:

[tex]y = -10x - 34[/tex]

This is the equation of the tangent line to the graph of f(x) = x² - 9 at the point P(-5, 16).

To plot the graph of f(x) and the tangent line at point P, you can plot the function f(x) = x² - 9 and the line y = -10x - 34 on a coordinate plane.

Learn more about tangent line here:

https://brainly.com/question/32393818

#SPJ11

In this problem, we'll discover why we always see quadratic functions for equations of motion. Near the surface of the earth, the acceleration due to gravity is almost constant - about 32 ft/sec^2. Velocity is an antiderivative of acceleartion. Determine the "general antiderivative" of the acceleartion function a(t) = −32. v(t) = [The variable is t, not x, and don't forget +C!] Now consider a chem student who shows up to chem lab without proper footwear. The chem prof, in a fit of rage, throws the student (or just their shoes) out of the lab window. Let's assume the prof threw the shoes straight up with a velocity of 20 ft/sec, meaning v(0) = 20. Find the exact formula for the velocity v(t) of the shoes at second t after they were thrown. [Hint: what do you need +C to be?] v(t) = For the velocity function you just found, write its general antiderivative here. s(t) = = The window where the shoes were thrown from is about 30 feet above the ground. Find the equation s(t) that describes the position (height) of the shoes. s(t) =

Answers

The general antiderivative of the acceleration function a(t) = -32 is given by integrating with respect to time:

v(t) = ∫(-32) dt = -32t + C

Given that v(0) = 20, we can substitute t = 0 and v(t) = 20 into the velocity equation and solve for C:

20 = -32(0) + C

C = 20

Thus, the exact formula for the velocity v(t) of the shoes at time t after they were thrown is:

v(t) = -32t + 20

To find the general antiderivative of v(t), we integrate the velocity function with respect to time:

s(t) = ∫(-32t + 20) dt = -16t² + 20t + C

Since the shoes were thrown from a window 30 feet above the ground, we set s(0) = 30 and solve for C:

30 = -16(0)² + 20(0) + C

C = 30

Therefore, the equation s(t) that describes the position (height) of the shoes is:

s(t) = -16t² + 20t + 30

To learn more about antiderivative visit:

brainly.com/question/31045111

#SPJ11

Find the arclength of the curve
()=〈10sin,−1,10cos〉r(t)=〈10sin⁡t,−1t,10cos⁡t〉,
−4≤≤4−4≤t≤4

Answers

To find the arc length of the curve given by r(t) = <10sin(t), -t, 10cos(t)> where -4 ≤ t ≤ 4, we can use the arc length formula:

Arc length = ∫ ||r'(t)|| dt

First, let's find the derivative of r(t):

[tex]r'(t) = < 10cos(t), -1, -10sin(t) >[/tex]

Next, let's find the magnitude of the derivative:

[tex]||r'(t)|| = sqrt((10cos(t))^2 + (-1)^2 + (-10sin(t))^2)= sqrt(100cos^2(t) + 1 + 100sin^2(t))= sqrt(101)[/tex]

Now, we can calculate the arc length:

[tex]Arc length = ∫ ||r'(t)|| dt= ∫ sqrt(101) dt= sqrt(101) * t + C[/tex]Evaluating the integral over the given interval -4 ≤ t ≤ 4, we have:

[tex]Arc length = [sqrt(101) * t] from -4 to 4= sqrt(101) * (4 - (-4))= 8sqrt(101)[/tex]

Therefore, the arc length of the curve is 8sqrt(101).

To learn more about  arc length click on the link below:

brainly.com/question/32535374

#SPJ11

Other Questions
Can someone explain how to answer these 3 math problems:1. If 6 fair coins are flipped, what is the probability that at least one of the coins will land with tails facing up?2. A person is rolling a fair, six-sided die until they roll a 5. What is the probability that it takes them at least twoattempts to roll their first 5?3. During heavy rain, a basements three pumps (pump A, pump B, and pump C) must all function correctly, or thebasement will flood. If the pumps probabilities of working are 33%, 60% and 86% respectively, what is the probabilitythat the basement will flood? (Assume the pumps work independently) The most comprehensive measure of money management costs is the which includes the management fee: a. portfolio turnover rate b. expense ratio c. ratio of net investment income to average net assets d. price/earnings (P/E) ratio e.rate of return Find all solutions in Radian: 2 cos = 1" enter your answer in the provided box. how many non-equivalent protons are present in ch3chch2? Homer is at the top edge of a perfectly vertical cliff overlooking a river at the bottom of a canyon. The river is 6 meters wide and his eyes are 47 meters above the river surface. If the angle of depression from his eyeline to the far side of the river is 41 degrees, how far in meters is the bottom of the cliff from the near side of the river ? Round to the nearest meter. _______is composed of patterns of behavior that make each individual unique and explains the ways the individual relates to the world and adapts to environmental demands. The average national utility price is $270.48. Over a 6-month period, what is the average utility price in Orlando? Howdoes this compare with the national average? the composite function theorem allows for the demonstration of which of the following statements? all trigonometric functions are continuous over their entire domains. trigonometric functions are only continuous at integers. trigonometric functions are only continuous at irrational numbers. trigonometric functions are only continuous at rational numbers. question 4: a monetarist economist believes that a. if the economy was left alone, it would rarely operate at full employment b. the economy is self-regulating and always at full employment c. the economy is self-regulating and will normally, though not always, operate at full employment if monetary policy is not erratic d. the economy is self-regulating and will normally, though not always, operate at full employment if fiscal policy is not erratic Use Implicit Differentiation to find y'. then evaluate at the point (-1.2): (6 pts) 1- = x + 5y 100 Points! Geometry question. Photo attached. Please show as much work as possible. Thank you! Find symmetric equations and parametric equations of the linethat passes through the points P(0, 1/2, 1) and (2, 1, 3). [4] 1-a. compute the companywide break-even point in dollar sales. 1-b. compute the break-even point for the chicago office and for the minneapolis office. 1-c. is the companywide break-even point greater than, less than, or equal to the sum of the chicago and minneapolis break-even points? A survey of 345 men showed that the mean time spent on daily grocery shopping is 15 mins. From previous record we knew that = 3 mins. Find the 98% confidence interval for population mean. ou are given the following function. f(x) = 1/10 x 1/4 (a) find the derivative of the function using the definition of derivative. A typical jet airliner has a cruise airspeed of 900 km/h900 km/h , which is its speed relative to the air through which it is flying.If the wind at the airliners cruise altitude is blowing at 100 km/h from west to east, what is the speed of the airliner relative to the ground if the airplane is flying from (a) west to east, and (b) east to west?(a) 1000 km/h1000 km/h ; (b) 800 km/h800 km/h(a) 800 km/h800 km/h ; (b) 800 km/h800 km/h(a) 800 km/h800 km/h ; (b) 1000 km/h1000 km/h(a) 900 km/h900 km/h ; (b) 900 km/h900 km/h(a) 1000 km/h1000 km/h ; (b) 1000 km/h Prove or disprove that the following are equivalence relations. If you find one(or both that is an equivalence relation, write the equivalence class of any one element of your choice.(a) For a, b, c. d Z with b, d # 0: (a, b)R(c.d) # ad = be.(b) For X,Y R: R= {(r.y) : + y= 31. PLEASE HELPApplication 3. Determine the constants a, b, c, d so that the curve defined by y = ar br? + at the point (-2,) and a point of inflection at the intercept of 1 (APP: 4) Sketch the graph of a function w rinu was awake late one night in his apartment. he was trying to cram in as much biology material as he could because he had a midterm exam the next morning. however, he was getting so sleepy that he found it difficult to learn much of anything. his roommate woke up to get some water to drink and saw rinu trying to study. he told rinu that because he is so tired, his brain will not be able to physiologically change to accommodate the incoming information. he strongly suggested that rinu get some sleep instead. to which process was rinu's roommate referring? group of answer choices metacognition consolidation automaticity retrieval Sketch the area represented by g(x). g(x) = -L (5+ sin(t)) ot O 20 YFind g'(x) In two of the following ways. (a) by using part one of the fundamental theorem of calculus g'(x)= (b) by evaluating