9(b-2) = -7 + 0
LINEAR EQUATION HELPP

Answers

Answer 1

The solution to the equation 9(b - 2) = -7 + 0 is b = 11/9.

What is the solution to the linear equation?

Given the equation in the question:

9( b - 2 ) = -7 + 0

To solve the equation, first apply distributive property to remove the poarenthesis:

9( b - 2 ) = -7 + 0

9×b + 9×-2 = -7 + 0

9b - 18 = -7 + 0

Next, we simplify the right side of the equation:

9b - 18 = -7

To isolate the variable 'b,' we need to get rid of the constant term (-18) on the left side. We can do this by adding 18 to both sides of the equation:

9b - 18 + 18 = -7 + 18

Simplifying further:

9b = -7 + 18

Add -7 and 18

9b = 11

Now, we want to solve for 'b,' so we divide both sides of the equation by 9:

9b/9 = 11/9

b = 11/9

Therefore, the value of b is 11/9.

Learn more about equations here: https://brainly.com/question/9236233

#SPJ1

Answer 2

The value of the linear equation is 1.2

What is a linear equation?

A linear equation is an algebraic equation for a straight line, where the highest power of the variable is always 1. The standard form of a linear equation in one variable is of the form Ax + B = 0, where x is a variable, A is a coefficient, and B is a constant

The given equation is 9(b-2) = -7 + 0

Opening the brackets we have

9b -18 = -7 + 0

Collecting like terms

9b = -7+18

9b = 11

Dividing both sides by 9 we have

b = 11/9

b = 1.2

Therefore the value of b is 1.2

Learn more about linear equations on https://brainly.com/question/12974594

#SPJ1


Related Questions

the sign for a new restaurant is an equilateral triangle with a height of 14 feet. what is the length of each side of the triangle, to the nearest tenth of a foot?

Answers

The length of each side of an equilateral triangle is equal to the square root of 3 times the length of its height. So, the length of each side of the sign is about 12.1 feet.

Here's the solution:

Let x be the length of each side of the triangle.

Since the triangle is equilateral, each angle is 60 degrees.

We can use the sine function to find the height of the triangle:

sin(60 degrees) = x/h

The sine of 60 degrees is sqrt(3)/2, so we have:

sqrt(3)/2 = x/h

h = x * sqrt(3)/2

We are given that h = 14 feet, so we can solve for x:

x = h * 2 / sqrt(3)

x = 14 feet * 2 / sqrt(3)

x = 12.1 feet (rounded to the nearest tenth)

find the area of the surface generated by revolving the curve about each given axis. x = 9t, y = 2t, 0 ≤ t ≤ 3 (a) x-axis (b) y-axis

Answers

The surface area generated by revolving the curve about the x-axis is 18π square units. and the surface area generated by revolving the curve about the y-axis is 81π square units.

To find the area of the surface generated by revolving the curve x = 9t, y = 2t, 0 ≤ t ≤ 3, we can use the formula for the surface area of a solid of revolution.

(a) Revolving the curve about the x-axis:

In this case, the curve forms a straight line parallel to the x-axis. To find the surface area, we integrate the circumference of each small circle along the length of the curve.

The circumference of a circle is given by C = 2πr, where r is the distance between the curve and the axis of revolution (in this case, the x-axis). Since y = 2t is the distance between the curve and the x-axis, we have r = 2t.

To find the surface area, we integrate the circumference along the curve:

Surface area = ∫[0, 3] 2π(2t) dt

= 4π ∫[0, 3] t dt

= 4π [t^2/2] [0, 3]

= 4π (9/2)

= 18π

So, the surface area generated by revolving the curve about the x-axis is 18π square units.

(b) Revolving the curve about the y-axis:

In this case, the curve forms a straight line parallel to the y-axis. The approach is similar to part (a), but now the distance between the curve and the axis of revolution is given by x = 9t.

Using the same process as before, we find:

Surface area = ∫[0, 3] 2π(9t) dt

= 18π ∫[0, 3] t dt

= 18π [t^2/2] [0, 3]

= 18π (9/2)

= 81π

Therefore, the surface area generated by revolving the curve about the y-axis is 81π square units.

Learn more about surface area here:

brainly.com/question/28382150

#SPJ11

or
A music student is cataloging some songs and noting the length of each. The 5 songs have lengths of:

Answers

The mean absolute deviation for the song length's is given as follows:

1.8 minutes.

What is the mean absolute deviation of a data-set?

The mean of a data-set is given by the sum of all observations in the data-set divided by the cardinality of the data-set, which represents the number of observations in the data-set.The deviations in a data-set are the absolute value of the difference between each observation and the mean.Hence the mean absolute deviation (MAD) is obtained as the mean of all the deviations.The MAD represents the average by which the values differ from the mean.

The mean for the lengths in this problem is given as follows:

M = (5 + 7 + 8 + 1 + 5)/5

M = 5.2.

Hence the deviations are:

0.2, 1.8, 2.8, 4.2, 0.2.

Meaning that the mean absolute deviation is given as follows:

MAD = (0.2 + 1.8 + 2.8 + 4.2 + 0.2)/5

MAD = 1.8 minutes.

Missing Information

The problem is given by the image presented at the end of the answer.

More can be learned about mean absolute deviation at https://brainly.com/question/447169

#SPJ1

Stocks trade on the New York Stock Exchange from 9:30 AM to 4:00 PM. The price of a
certain stock was at or above its opening price all day during a particular trading day.
The number of dollars, d (x), the stock was above its opening price during the day can
be modeled by the function d (x)=1/12x^4-x^3 + 3x², where x represents the number of
hours since the open. Was the stock at its opening price at any time during the day
other than the open? If so, what time? Explain how you got your answer.

Answers

The equation d(x) = 0 has no solutions, indicating that the stock price did not equal its opening price at any point after the market opened.

To determine whether the stock was at its opening price at any time during the day other than the open, we need to find if there are any solutions for which the value of d(x) equals zero. In other words, we need to solve the equation d(x) = 0.

The given function is d(x) = (1/12)x^4 - x^3 + 3x^2. We can solve this equation by factoring, if possible, or by using numerical methods.

To start, let's factor out an x^2 from each term: d(x) = x^2((1/12)x^2 - x + 3).

Now we have a quadratic equation within the parentheses. We can attempt to factor it further or use the quadratic formula to find its roots. However, upon examining the quadratic, (1/12)x^2 - x + 3, we notice that its discriminant, b^2 - 4ac, is negative. This indicates that the quadratic does not have real roots. Therefore, the stock did not reach its opening price at any time during the day other than the open.

In simple terms, this means that according to the given model, the stock remained above its opening price for the entire trading day. The equation d(x) = 0 has no solutions, indicating that the stock price did not equal its opening price at any point after the market opened.

For more such questions on stock price , Visit:

https://brainly.com/question/29362234

#SPJ11

A study finds that 85% of teachers use the internet to teach. Aresearcher claims that the percentage has recently increased. Shecollects a random sample of 340 teachers and finds that 302 of theteachers used the Internet to teach.
A. What is the population proportion (p) and the sample proportion(^p) for this set of data?
*0.89, 0.85
*0.85, 0.89
*0.85, 0.85
*0.89, 1.12
B. What is the magnitude of the critical value for a one-tailedtest of proportion with significance 0.10?
*2.33
*1.75
*1.64
*1.28
C. What is the value of the test statistic to test if thepopulation proportion is 0.85 at significance 0.10.
*-1.75
*1.55
*2.06
*2.47
D. What decision would be made for a one-tailed test that thepopulation proportion is 0.85 at significance 0.10?
*Do not reject the null.
*Reject the null.
*Sometimes reject the null.

Answers

(A)  The sample proportion (p') is 0.89.

(B) The critical value for a one-tailed test of proportion with a significance level of 0.10 is 1.28.

(C) To test if the population proportion is 0.85 at a significance level of 0.10.

(D) we reject the null hypothesis that the population proportion is 0.85.

A. The population proportion (p) is 0.85, as stated in the study. The sample proportion (p') is 0.89, calculated by dividing the number of teachers who use the internet (302) by the total sample size (340).

B. The critical value for a one-tailed test of proportion with a significance level of 0.10 is 1.28. This value is obtained from the standard normal distribution table for a one-tailed test at a 90% confidence level.

C. To test if the population proportion is 0.85 at a significance level of 0.10, we need to calculate the test statistic. The test statistic value is 2.47, which is calculated by taking the difference between the sample proportion (p') and the hypothesized population proportion (p), and then dividing it by the standard error.

D. Based on the calculated test statistic and the significance level, the decision would be to reject the null hypothesis. Since the test statistic (2.47) is greater than the critical value (1.28), we have evidence to suggest that the proportion of teachers using the internet to teach has increased significantly. Therefore, we reject the null hypothesis that the population proportion is 0.85.

Learn more about Null Hypothesis:

brainly.com/question/28920252

#SPJ11

Suppose you place your eye just above the edge of the pool, looking along the direction of the meter stick. What angle do you observe between the two ends of ...

Answers

The angle you would observe between the two ends of the meter stick if the pool is Part A empty is 18.92 degrees.

To determine the angle you observe between the two ends of the horizontal meter stick when the pool is empty, you can use the concept of similar triangles. The meter stick is 1.0 meter long and is centered at the bottom of the pool, so each half is 0.5 meters. The pool is 3.0 meters deep and 3.0 meters wide.

To find the angle, you can use the tangent function:

tan(θ) = opposite / adjacent

In this case, the opposite side is the half-length of the meter stick (0.5 meters), and the adjacent side is the depth of the pool (3.0 meters). So,

tan(θ) = 0.5 / 3.0

Now, to find the angle, use the inverse tangent function (arctan):

θ = arctan(0.5 / 3.0)

θ ≈ 9.46 degrees

Since there are two equal angles formed by the meter stick (one on the left and one on the right), the total angle you observe between the two ends of the meter stick would be:

Total angle = 2 * 9.46 ≈ 18.92 degrees

So, when the pool is empty, you observe an angle of approximately 18.92 degrees between the two ends of the horizontal meter stick.

Note: The question is incomplete. The complete question probably is: A horizontal meter stick is centered at the bottom of a 3.0-m-deep, 3.0-m-wide pool. Suppose you place your eye just above the edge of the pool, looking along the direction of the meter stick. What angle do you observe between the two ends of the meter stick if the pool is Part A empty? Express your answer with the appropriate units.

Learn more about Tangent function:

https://brainly.com/question/27193169

#SPJ11

which of the following correctly defines what a 'recurrence relation' is?

Answers

A recurrence relation is a mathematical equation that defines a sequence of values, where each value is defined in terms of previous values in the sequence.

The equation expresses the current value of the sequence as a function of one or more previous values. Recurrence relations are often used in computer science, engineering, and physics to model and analyze systems that evolve over time.

To know more about recurrence relation visit:

https://brainly.com/question/31382962

#SPJ11

A recurrence relation is a mathematical equation or formula that defines a sequence or series by relating each term to one or more previous terms in the sequence.

It expresses the relationship between the current term and one or more preceding terms. The recurrence relation provides a recursive definition for generating the terms of the sequence, allowing us to compute subsequent terms based on earlier ones. It is commonly used in various branches of mathematics, computer science, and physics to model and analyze sequential processes or phenomena.

what is relation?

In mathematics, a relation refers to a set of ordered pairs that establish a connection or association between elements from two sets. The ordered pairs consist of one element from the first set, called the domain, and one element from the second set, called the codomain or range.

To know more about relation visit:

brainly.com/question/31111483

#SPJ11

I need serious help with this. I missed a week of school and i don’t know what to do.

Answers

The following are the values for the variables in the equation:

(17). m = -8

(18). x = 8

(19). p = 2

(20). x = -10

How to solve for the values of the equations

(17). -13 = m - 15

add 15 to both sides of the equation

15 -13 = m - 15 + 15

-8 = m or m = {-8}

(18). 84 = 6(x + 6)

multiply through with 6 to open bracket

84 = 6x + 36

subtract 36 from both sides

84 - 36 = 6x + 36 - 36

48 = 6x

divide through by 6

6x/6 = 48/6

x = 8

(19). -15 = -5 - 5p

add 5 to both sides of the equation

5 - 15 = 5 - 5 - 5p

-10 = -5p

divide through by -5

-5p/-5 = -10/-5

p = 2

(20). 3 + x/5 = 1

simply the left hand side of the equation with the LCM 5 to have a single denominator

(15 + x)/5 = 1

15 + x = 5 × 1 {cross multiplication}

15 + x = 5

subtract 15 from both sides

15 - 15 + x = 5 - 15

x = -10

Therefore, the values for the variables in the equation are:

(17). m = -8

(18). x = 8

(19). p = 2

(20). x = -10

Read more about equation here:https://brainly.com/question/1682776

#SPJ1

which option describes the end behavior of the function f(x)=4x(x−7)(x 8)(4x 5)?
Select the correct answer below: O rising to the left, rising to the right falling to the left, falling to the right O rising to the left, falling to the right O falling to the left, rising to the right

Answers

The end behavior of the function f(x) = 4x(x−7)(x+8)(4x+5) is falling to the left and rising to the right.

:

To determine the end behavior of a function, we examine the behavior of the function as x approaches positive infinity and negative infinity.

As x approaches negative infinity, the terms involving x become dominant in the function f(x). Since the leading term is 4x, which has a positive coefficient, the function increases as x goes towards negative infinity. Therefore, the function is rising to the left.

On the other hand, as x approaches positive infinity, the terms involving x become less significant compared to the constant terms. In this case, the constant terms are -7, 8, and 5. Multiplying these constants together gives a negative value. Thus, as x approaches positive infinity, the function decreases or falls to the right.

Therefore, the end behavior of the function f(x) = 4x(x−7)(x+8)(4x+5) is falling to the left and rising to the right.

To learn more about positive infinity : brainly.com/question/30090284

#SPJ11

Find the indicated probability using the standard normal distribution. P(z>0.38) = ___ (Round to four decimal places as needed.)

Answers

The indicated probability using the standard normal distribution. P(z > 0.38) is approximately 0.3520.

To find the probability P(z > 0.38) using the standard normal distribution, we can use a standard normal distribution table or a calculator.

Using a standard normal distribution table or a calculator, we can find the cumulative probability up to z = 0.38, which is denoted as P(Z ≤ 0.38). Then, we can subtract this cumulative probability from 1 to find P(z > 0.38).

Let's calculate it using a standard normal distribution table:

P(Z ≤ 0.38) = 0.6480 (approximately, from the table)

P(z > 0.38) = 1 - P(Z ≤ 0.38) = 1 - 0.6480 = 0.3520 (rounded to four decimal places)

Therefore, P(z > 0.38) is approximately 0.3520.

To learn more about probability:

brainly.com/question/31828911

#SPJ11

what is the solution to the system of equations y=2x^2-4 and y=4

Answers

The solution to the system of equations is (x, y) = (2, 4) and (x, y) = (-2, 4).

To find the solution to the system of equations, we can set the two equations equal to each other: 2x^2 - 4 = 4

Adding 4 to both sides: 2x^2 = 8

Dividing both sides by 2: x^2 = 4

Taking the square root of both sides (considering both positive and negative square roots): x = ±2

Now, we substitute the value of x into either of the original equations to find the corresponding y-values. Let's use the second equation: y = 4

LEARN MORE ABOUT equations here: brainly.com/question/10724260

#SPJ11

suppose c is the path consisting of a straight line from (-1,0) to (1,0) followed by a straight line from (1,0) to (1,-1). the line integral along this path is

Answers

The total line integral along path c is: ∫(-1 to 1) f(t,0) dt - ∫(0 to -1) f(1,t) dt.

To find the line integral along path c, we need to parametrize the two segments of the path and then integrate the given function along each segment separately.
For the first segment, from (-1,0) to (1,0), we can use the parametrization r(t) = (t, 0), where t ranges from -1 to 1. Thus, the line integral along this segment is:
∫(-1 to 1) f(r(t)) ||r'(t)|| dt
= ∫(-1 to 1) f(t,0) ||(1,0)|| dt
= ∫(-1 to 1) f(t,0) dt
For the second segment, from (1,0) to (1,-1), we can use the parametrization r(t) = (1, t), where t ranges from 0 to -1. Thus, the line integral along this segment is:
∫(0 to -1) f(r(t)) ||r'(t)|| dt
= ∫(0 to -1) f(1,t) ||(0,-1)|| dt
= -∫(0 to -1) f(1,t) dt
Therefore, the total line integral along path c is:
∫(-1 to 1) f(t,0) dt - ∫(0 to -1) f(1,t) dt

To know more about line integral visit:

https://brainly.com/question/30763905

#SPJ11

Write an exponential function in the form y=ab^xy=ab
x
that goes through points (0, 5)(0,5) and (4, 6480)(4,6480).

Answers

The exponential function that fits the given points is [tex]y = 5 \times 6^x.[/tex]

To write an exponential function in the form [tex]y = ab^x[/tex]that passes through the given points (0, 5) and (4, 6480), we can use the two points to create a system of equations and solve for the unknowns, a and b.

Let's start by substituting the coordinates of the first point, (0, 5), into the exponential equation:

[tex]5 = ab^0[/tex]

Since any number raised to the power of zero is 1, the equation simplifies to:

5 = a

Now, let's substitute the coordinates of the second point, (4, 6480), into the exponential equation:

[tex]6480 = 5b^4[/tex]

To find the value of b, we need to solve this equation.

Divide both sides of the equation by 5:

[tex]1296 = b^4[/tex]

Now, take the fourth root of both sides to isolate b:

b = ∛1296

Evaluating the cube root of 1296 gives us b = 6.

So, the exponential function that goes through the points (0, 5) and (4, 6480) is:

[tex]y = 5 \times 6^x[/tex]

For similar question on exponential function.

https://brainly.com/question/30127596

#SPJ11

Find the derivative of the function at Po in the direction of A. f(x,y,z) = -2 e^x cos(yz). Po(0,0,0). A= - 3i+2j+k (DA)(0,0,0) = ___ (Type an exact answer, using radicals as needed.)
"

Answers

The directional derivative is a measure of the rate of change of a function in a particular direction. It quantifies how a function changes along a specific vector direction in a given point.

Answer: [tex](DA)(0,0,0) = 6\sqrt (14)[/tex]

The given function is [tex]f(x, y, z) = -2 e^x cos(yz)[/tex].

We need to find the directional derivative of this function at Po in the direction of A,

where Po(0,0,0) and A= - 3i+2j+k.

To find the directional derivative we need the directional derivative formula, which is given by:

DA = ∇f.

P where DA is the directional derivative of f in the direction of A, ∇f is the gradient vector of f, and P is the point where the direction derivative is to be calculated.

Let's find the gradient vector of f using the partial derivatives.

[tex]\partial f/ \partial x = -2 e^x cos(yz)[/tex]

[tex]\partial f/\partial y = 2 e^x z sin(yz)[/tex]

[tex]\partial f/\partial z = 2 e^x y sin(yz)[/tex]

Therefore, the gradient vector of f is

∇f = <∂f/∂x, ∂f/∂y, ∂f/∂z> = <-2 e^x cos(yz),

2 e^x z sin(yz), 2 e^x y sin(yz)>

Now, we can find the directional derivative of f in the direction of A at P0 using the formula.

DA = ∇f.P = ∇f . A/|A|

where ∇f = <-2, 0, 0>, A = <-3, 2, 1>and

|A| = [tex]=\sqrt(3^2+2^2+1^2) \\= \sqrt(14)[/tex]

Now,∇f . A = (-2)(-3) + (0)(2) + (0)(1)

= 6DA = ∇f . A/|A|

=[tex]6 \sqrt(14)[/tex]

To Know more about directional derivative visit:

https://brainly.com/question/29451547

#SPJ11

Find all solutions of the equation in the interval [0, 21). sec²0- tan0 = 1 Write your answer in radians in terms of nl. If there is more than one solution, separate them with commas. = JT 00.... Х 5 ?

Answers

To find all solutions of the equation sec²θ - tanθ = 1 in the interval [0, 21), we can use trigonometric identities to simplify the equation and solve for θ.

Starting with the equation sec²θ - tanθ = 1, we can rewrite sec²θ as 1 + tan²θ using the Pythagorean identity for secant and tangent:

1 + tan²θ - tanθ = 1.

Combining like terms, we have:

tan²θ - tanθ = 0.

Factoring out tanθ, we get:

tanθ(tanθ - 1) = 0.

Setting each factor equal to zero, we have two cases:

Case 1: tanθ = 0.

In the interval [0, 21), the solutions for tanθ = 0 are θ = 0 and θ = π (since tanθ has a period of π).

Case 2: tanθ - 1 = 0.

Solving for θ, we have tanθ = 1, which has solutions θ = π/4 and θ = 5π/4 in the interval [0, 21).

Therefore, the solutions for the equation in the interval [0, 21) are θ = 0, π/4, 5π/4, and π.

Written in terms of n, the solutions can be expressed as:

θ = 0 + 2nπ, π/4 + 2nπ, 5π/4 + 2nπ, and π + 2nπ,

where n is an integer.

Learn more about Pythagorean Identity here

brainly.com/question/24287773

#SPJ11

estimate the limit numerically or state that the limit does not exist: lim x → 0 sin ( 9 x ) x limx→0sin(9x)x

Answers

Based on the numerical estimation and visual observation, we can conclude that the limit of sin(9x)/x as x approaches 0 exists and is approximately 5.837.

To estimate the limit numerically, we can evaluate the expression limx→0 sin(9x)/x by plugging in values of x that approach 0.

As x approaches 0, the expression sin(9x)/x approaches an indeterminate form of 0/0. This indeterminate form indicates that further evaluation is required to determine the actual limit.

Let's calculate the values of the expression sin(9x)/x for some values of x approaching 0:

x = 0.1: sin(9(0.1))/(0.1) = 0.58779/0.1 = 5.8779

x = 0.01: sin(9(0.01))/(0.01) = 0.058368/0.01 = 5.8368

x = 0.001: sin(9(0.001))/(0.001) = 0.005837/0.001 = 5.837

As we can see, as x gets closer to 0, the value of sin(9x)/x approaches approximately 5.837. This suggests that the limit of the expression as x approaches 0 is approximately 5.837.

To further support this estimation, we can also use a graphing calculator or software to plot the function sin(9x)/x and observe its behavior as x approaches 0. The graph will show that the function approaches a value close to 5.837 as x approaches 0.

It is important to note that this numerical estimation does not provide a rigorous proof of the limit. To formally prove the limit, additional mathematical techniques such as L'Hôpital's rule or trigonometric identities would need to be employed.

Learn more about limit at: brainly.com/question/12207563

#SPJ11

(1 point) (a) find the coordinate vector of x=⎡⎣⎢−35−1⎤⎦⎥ with respect to the ordered basis e=⎧⎩⎨⎪⎪⎡⎣⎢178⎤⎦⎥,⎡⎣⎢01−5⎤⎦⎥,⎡⎣⎢001⎤⎦⎥⎫⎭⎬⎪⎪ of r3: [x]e=

Answers

The coordinate vector of x = [-3, 5, -1] with respect to the ordered basis e = {[1, 7, 8], [0, 1, -5], [0, 0, 1]} is [x]e = [5, -6, -1].

To find the coordinate vector of x with respect to the basis e, we need to express x as a linear combination of the basis vectors and determine the coefficients.

x = [-3, 5, -1]

e = {[1, 7, 8], [0, 1, -5], [0, 0, 1]}

We need to find the coefficients c1, c2, c3 such that:

x = c1 * [1, 7, 8] + c2 * [0, 1, -5] + c3 * [0, 0, 1]

This can be written as a system of equations:

-3 = c1 * 1 + c2 * 0 + c3 * 0

5 = c1 * 7 + c2 * 1 + c3 * 0

-1 = c1 * 8 + c2 * (-5) + c3 * 1

Simplifying the equations, we have:

c1 = -3

7c1 + c2 = 5

8c1 - 5c2 + c3 = -1

Substituting the value of c1 in the second equation:

7(-3) + c2 = 5

-21 + c2 = 5

c2 = 26

Substituting the values of c1 and c2 in the third equation:

8(-3) - 5(26) + c3 = -1

-24 - 130 + c3 = -1

c3 = 105

Therefore, the coefficients are:

c1 = -3

c2 = 26

c3 = 105

The coordinate vector of x with respect to the basis e is:

[x]e = [c1, c2, c3] = [-3, 26, 105]

For more questions like Vector click the link below:

https://brainly.com/question/29740341

#SPJ11

answer.
22. Look at the given triangles.
a. Write an expression in simplest form for the perimeter of each triangle.
b. Write another expression in simplest form that shows the difference bet

Answers

Answer:

  a.  Larger: 16x +5; Smaller: 4x +5

  b.  Difference: 12x

  c.  Larger: 53; Smaller: 17

Step-by-step explanation:

You want expressions for the perimeter of each triangle, the difference of those, and their value when x=3.

a. Perimeter

The perimeter is the sum of the side lengths. The expression is simplified by combining like terms.

  Larger: (4x +2) +(7x +7) +(5x -4) = (4+7+5)x +(2+7-4) = 16x +5

  Smaller: (x +3) +(2x -5) +(x +7) = (1+2+1)x +(3-5+7) = 4x +5

The perimeter of the larger triangle is 16x +5; the smaller, 4x +5.

b. Difference

The difference is found by subtracting the smaller from the larger. Like terms can be combined.

  (16x +5) -(4x +5) = (16 -4)x +(5 -5) = 12x

The difference in perimeters is 12x.

c. Value

When x = 3, the larger triangle perimeter is ...

  16·3 +5 = 48 +5 = 53 . . . . units

and the smaller triangle perimeter is ...

  4·3 +5 = 12 +5 = 17 . . . . units

The perimeters of the larger and smaller triangles are 53 units and 17 units, respectively, when x = 3.

__

Additional comment

There are no values of x that will make the larger triangle be a right triangle. The smaller triangle is a right triangle only for x = 10+√116.5 ≈ 20.794.

<95141404393>

Fiona’s engagement ring from Prince Harry is valued at more than $3 million.


Write a response to the following questions:

What are two possible values for the price of the ring? Explain

How can you use a number sentence to represent this amount?


Since the value of the ring is “more than” $3 million, the possible values have to be greater than $5 million. There are many possibilities but two examples could be $4 million or $3.5 million.


Write a response to the following questions:

How can you determine if you use “equal to” in your inequality comparison?

Can an equation, with an equal sign, have more than one solution? Explain.


At the end of this assignment you should have answers to the four questions as stated above as they correlate with the statements given:


What are two possible values for the price of the ring? Explain

How can you use a number sentence to represent this amount?

How can you determine if you use “equal to” in your inequality comparison?

Can an equation, with an equal sign, have more than one solution? Explain.

Create a document to capture your responses. Make sure to explain each question with at least 3 complete sentences. Upload to Dropbox when complete.

Answers

Yes, The equation has two valid solutions.The value of Fiona’s engagement ring from Prince Harry may be more than $3 million,

but this information does not directly relate to the concept of equations with more than one solution.

an equation with an equal sign can have more than one solution. This happens when there are different values that can satisfy the equation, making them all valid solutions.

These types of equations are known as conditional equations. When solving a conditional equation, it is important to take into account any restrictions that may apply to the domain of the variable.

This helps to avoid extraneous solutions that may not work for the equation.For example, consider the equation x² - 9 = 0. This equation can be solved by taking the square root of both sides of the equation, which gives x = ±3.

This means that there are two solutions to the equation, x = 3 and x = -3. Both values can be substituted back into the equation and will satisfy it.

To learn more about : equation

https://brainly.com/question/17145398

#SPJ8

tan (-4pi/3)
how do you find the reference angle in order to find the exact value
show step by step

Answers

Sccording to the question we have Therefore, π/3 radians is the reference angle.π/3 radians = 60°

To find the exact value of tan (-4π/3), we need to determine the reference angle. The reference angle is the positive acute angle between the terminal side of the angle and the x-axis in standard position. Here are the steps to find the reference angle: Step 1: Determine the angle's quadrant by looking at the sign of the angle in radians. In this case, -4π/3 is in the third quadrant. Step 2: Determine the corresponding reference angle in the first quadrant by subtracting the angle from π radians.π radians is the angle measure of a straight line, which is 180°. Therefore, π/3 radians is the reference angle.π/3 radians = 60°Step 3: Find the tangent of the angle by remembering the following formula : tan θ = sin θ/cos θStep 4: Determine the signs of sin and cos in the third quadrant by remembering the All Students Take Calculus mnemonic. In the third quadrant, sin is negative and cos is negative. Step 5: Use the reference angle and the signs of sin and cos to determine the sign of the tangent in the third quadrant. In the third quadrant, tan is positive. So, tan (-4π/3) = - tan (4π/3) = - tan (π/3) = -√3

To know more about Angle visit :

https://brainly.com/question/31818999

#SPJ11

PLEASEEEEEE HELPPPPPP MATHHHH

Answers

1.The shape formed from intersection are hemisphere, cone and triangular prism

2. The only figure that is not a polyhedron is the second figure.

What is a polyhedron?

Any three-dimensional geometric solid known as a polyhedron is composed of flat polygonal faces, angular edges, and pointy vertices. It is an interesting object with a variety of straightforward to intricate forms. Polyhedrons can be found in crystals and various biological forms in the natural world.

Polyhedrons have two-dimensional polygonal faces, which give them their characteristic shape. These faces are connected by edges, which are line segments where two faces converge. At every intersection of edges, we identify vertices. The number and arrangement of faces, edges, and vertices determine the kind of polyhedron.

1. In the question given, the shape formed by intersection of the plane are hemisphere, cone and a triangular prism.

2. The only figure that is not a polyhedron is the second figure.

In the second figure, the figures formed from intersection of the plane are hemisphere, cone and triangular prism respectively.

Learn more on polyhedrons here;

https://brainly.com/question/27782111

#SPJ1

a is an nn matrix. determine whether the statement below is true or false. justify the answer. a number c is an eigenvalue of a if and only if the equation (a-ci)x=0 has a nontrivial solution.

Answers

The statement is true: A number

[tex]�[/tex]

c is an eigenvalue of an

[tex]�×�n×n matrix �A if and only if the equation (�−��)�=0(A−cI)x=0[/tex]has a nontrivial solution.

To justify this answer, let's consider the reasoning:

Definition of Eigenvalue:

An eigenvalue of a matrix

[tex]�A is a number �c such that there exists a non-zero vector �x�=��Ax=cx.[/tex]

Rewriting the Eigenvalue Equation:

The equation

[tex]��=��[/tex]

Ax=cx can be rearranged as

[tex](�−��)�=0[/tex]

(A−cI)x=0, where

I is the

[tex]��[/tex]

n×n identity matrix.

Nontrivial Solution:

For the equation

[tex](�−��)�=0[/tex]

(A−cI)x=0 to have a nontrivial solution, there must exist a non-zero vector

x such that

[tex](�−��)�=0(A−cI)x=0.Non-Zero Vector �x:If (�−��)�=0[/tex]

(A−cI)x=0 has a nontrivial solution, it means that there exists a non-zero vector

x that is in the null space (kernel) of

[tex](�−��)(A−cI), i.e., �≠0x=0 and (�−��)�=0(A−cI)x=0.[/tex]

Null Space and Eigenvalues:

The null space of

[tex](�−��)[/tex]

(A−cI) contains all vectors

[tex]�x such that (�−��)�=0(A−cI)x=0.[/tex] Therefore, if there exists a non-zero vector

x in the null space, it implies that

c is an eigenvalue of

A.

Conversely, if

c is an eigenvalue of

A, then there exists a non-zero vector

x that satisfies

([tex]�−��)�=0(A−cI)x=0. This implies that (�−��)[/tex](A−cI) is singular, and hence,

[tex](�−��)�=0(A−cI)x=0 has a nontrivial solution.[/tex]

Based on these justifications, we can conclude that the statement is true: a number

[tex]�c is an eigenvalue of an �×�n×n matrix �A[/tex] if and only if the equation

[tex](�−��)�=0[/tex]

(A−cI)x=0 has a nontrivial solution.

Learn more about eigenvalue here:

https://brainly.com/question/14415841

#SPJ11

Exercise 39.19. Xand Y have a constant joint density on the triangle where 0

Answers

The marginal density function of Y is f_Y(y) = 2 - 2y for 0 < y < 1.

To find the marginal densities of X and Y, we integrate the joint density function over the appropriate ranges. Let's calculate them step by step.

The joint density function is constant on the triangle where 0 < x < 1 and 0 < y < x. To determine the constant value, we need to find the total area of the triangle.

The area of a triangle with base b and height h is given by the formula:

Area = (1/2) * base * height

In this case, the base is 1, and the height is also 1. Therefore, the area of the triangle is:

Area = (1/2) * 1 * 1 = 1/2

Since the joint density is constant on the triangle, the constant value is:

Constant = 1/Area = 1 / (1/2) = 2

Now we can find the marginal density functions.

The marginal density function of X, f_X(x), is obtained by integrating the joint density function over the range of y:

f_X(x) = ∫(0 to x) 2 dy

f_X(x) = [2y] (0 to x)

f_X(x) = 2x - 2(0)

f_X(x) = 2x

So, the marginal density function of X is f_X(x) = 2x for 0 < x < 1.

The marginal density function of Y, f_Y(y), is obtained by integrating the joint density function over the range of x:

f_Y(y) = ∫(y to 1) 2 dx

f_Y(y) = [2x] (y to 1)

f_Y(y) = 2(1) - 2y

f_Y(y) = 2 - 2y

So, the marginal density function of Y is f_Y(y) = 2 - 2y for 0 < y < 1.

Note that the marginal densities are valid only within their respective ranges, as specified by the triangle.

Learn more about marginal  here:

https://brainly.com/question/29970421

#SPJ11

The coordinates of Point P are


.


The coordinates of Point T are


.


Point


is located at (1


2


, −21


2


).

Answers

The minimum distance between Point P and Point T is √(97)

The coordinates of point P are (-2, 6).

The coordinates of point T are (6, -2).

Point S is located at (1/2, -21/2).

To find the coordinates of Point P and Point T, use the distance formula.

The distance formula for two points, A(x1, y1) and B(x2, y2) is given as:

Distance, AB = √[ (x2 - x1)² + (y2 - y1)² ]

Now, substituting the coordinates of Point P and Point T into the distance formula gives

:Distance, PT = √[ (xT - xP)² + (yT - yP)² ]... Equation (1)

Let d be the distance PT. Using the coordinates of Point S, we can express the distance PT as the sum of two smaller distances, PS and ST.

Distance, PT = PS + ST... Equation (2)

Substituting the coordinates of Point P and Point S into Equation (2),

we get: Distance, PS = √[ (1/2 - (-2))² + (-21/2 - 6)² ] = √(97)Distance,

ST = √[ (6 - 1/2)² + (-2 - (-21/2))² ] = √(97)

Therefore, d = PS + ST = 2 √(97).

By Pythagoras theorem, if x is the distance from Point P to Point S along the x-axis, then:

Distance, PS = |x - 1/2|And, if y is the distance from Point P to Point S along the y-axis, then:

Distance, PS = |y - (-21/2)|

Thus, the distance PT can be expressed in terms of x and y as follows: d = |x - 1/2| + |y + 21/2|... Equation (3)

Now, we need to find the minimum value of d. We can do this by first minimizing the first term |x - 1/2| and then minimizing the second term |y + 21/2|.

To minimize the first term |x - 1/2|, x should be as close as possible to 1/2.

Therefore, let x = 1/2.

Then, substituting x = 1/2 into Equation (1)

gives:|y - (-21/2)| = 2 √(97)Solving for y,

we get: y = -21/2 ± 2 √(97)

Substituting y = -21/2 + 2 √(97) into Equation (3),

we get: d = √(97)

To know more about distance visit:

https://brainly.com/question/13034462

#SPJ11

Which equation is an equation of a circle with a radius of 2 and its center is at (4,
-2)?
(x-4)² + (y + 2)² = 4
(x-4)^2 + (y + 2)² = 2
(x+4)² + (y-2)² = 4

Answers

Answer:

(x - 4)² + (y + 2)² = 4

Step-by-step explanation:

Equation of circle:

          r = 2 ;

Center (h, k) = (4 , -2)

[tex]\boxed{ (x - h)^2 + (y - k)^2 = r^2}[/tex]

  (x - 4)² + (y -[-2])² = 2²

  (x - 4)² + (y + 2)² = 4

The equation of a circle with a radius of 2 and its center at (4, -2) is:

(x - 4)² + (y + 2)² = 4

Therefore, the correct equation is:

(x - 4)² + (y + 2)² = 4

Express the limit as a definite integral on the given interval.
lim
n

[infinity]
n

i
=
1
[
5
(
x

i
)
3

4
x

i
]
Δ
x
,
[
2
,
7
]

Answers

The given limit can be expressed as a definite integral on the interval [2, 7]. To do so, we can rewrite the sum as a Riemann sum. In this case, we have:

lim(n→∞) ∑(i=1 to n) [5(xi)^3 - 4xi]Δx,

where Δx represents the width of each subinterval. By definition, the definite integral represents the limit of a Riemann sum as the number of subintervals approaches infinity. Therefore, we can express the given limit as the definite integral as follows:

lim(n→∞) ∑(i=1 to n) [5(xi)^3 - 4xi]Δx = ∫(2 to 7) [5x^3 - 4x] dx.

In this form, the limit of the sum is represented as the definite integral of the function 5x^3 - 4x over the interval [2, 7]. The integral calculates the accumulated area under the curve of the function within the specified interval.

Learn more about function here: brainly.com/question/32234956

#SPJ11

What mathematical term describes both 5. 3 and 8. 2 in the expression 5. 3x-8. 2y+11. 1?

Answers

Answer:

coefficients

Step-by-step explanation:

5.3 and 8.2 are coefficients since they are in front of an x and a y.

x and y are called variables.

any number on its own, ie without an x or y, is called a constant

10 Point Question 1 Jane figures that her monthly car insurance payment of $190 is equal to 30% of the amount of her monthly auto loan payment What is her total combined monthly expense for auto loan payment and insurance (rounded to the nearest dollar) Enter only the number without $sign S Blank 1 Blank 1 Add your answer 1

Answers

To find Jane's total combined monthly expense for auto loan payment and insurance, we need to calculate the auto loan payment and then add it to the insurance payment.

We know that the insurance payment is equal to 30% of the auto loan payment. Let's represent the auto loan payment as "x."

The equation can be written as:

0.30x = 190

To solve for x, we divide both sides of the equation by 0.30:

x = 190 / 0.30

x ≈ 633.33

Now that we have the value of x, we can calculate the total combined monthly expense:

Total combined monthly expense = Auto loan payment + Insurance payment

Total combined monthly expense = x + 190

Total combined monthly expense ≈ 633.33 + 190

Total combined monthly expense ≈ 823.33

Therefore, Jane's total combined monthly expense for auto loan payment and insurance is approximately $823.

To know more about loan , refer here :

brainly.com/question/27763905#

#SPJ11

sin(tan^-1(5/4)-tan^-1(6/7))

Answers

The result simplifies to [tex]-23/\sqrt3445.[/tex]

How to solve

To calculate [tex]sin(tan^-1(5/4)-tan^-1(6/7))[/tex], we use the difference of angles formula for sine, which is sin(a-b) = sin(a)cos(b) - cos(a)sin(b).

For a = tan^-1(5/4) and b = [tex]tan^-1(6/7)[/tex], we apply the identities [tex]sin(tan^-1(x))[/tex]= [tex]x/\sqrt(1+x^2)[/tex]and [tex]cos(tan^-1(x)) = 1/\sqrt(1+x^2)[/tex], which gives:

[tex]sin(a) = 5/\sqrt41, \\cos(a) = 4/\sqrt41, \\sin(b) = 6/\sqrt85, \\cos(b) = 7/\sqrt85.[/tex]

Substituting these values into the formula, the result simplifies to [tex]-23/\sqrt3445.[/tex]

The sine formula can be used to express the sine of the difference between two angles (such as angle A and angle B).

The calculation of the sine of the difference between angles A and B can be achieved through the equivalent expression of the product of the sine of angle A and the cosine of angle B, subtracting from it the product of the cosine of angle A and the sine of angle B.

Read more about sine of difference here:

https://brainly.com/question/28386323

#SPJ1

a rectangular garden measures 15 m long and 13.70 m wide. what is the length of a diagonal from one corner of the garden to the opposite corner?

Answers

The length of a diagonal from one corner of the garden to the opposite corner is equal to the square root of the sum of the squares of the lengths of the sides of the garden. So, the length of the diagonal is about 20.2 meters.

Here's the solution:

Let d be the length of the diagonal.

We know that the length of the garden is 15 m and the width of the garden is 13.70 m.

We can use the Pythagorean theorem to find the length of the diagonal:

d^2 = 15^2 + 13.70^2

d = sqrt(15^2 + 13.70^2)

d = sqrt(225 + 187.69)

d = sqrt(412.69)

d = 20.2 m (rounded to the nearest tenth)

Other Questions
if the formula of an oxide of element x is xo, what is the formula of the nitride of x? select one: a. xn b. xn2 c. x2n d. x3n2 in which format does oracle 12c display a date value? _____ is developed from critical incidents relating to job performance. an array int[] intarray can be initialized during its definition by what would happen if you eliminated the tunica albuginea? how many d electrons are in the valence shell of the rh3 cation? how many unpaired electron spins? As muscles adapt to an enlarging skeleton, children often experience Question options: 1)a decrease in flexibility.2)nighttime "growing pains."3)a decreasing desire for physical exercise.4)faster growth in the upper portions of the body. Use the concept of opportunity cost to explain the following inyour own wordsA) Fewer students enroll in classes that meet before 10:00A.M. just find a way to print result, you do not need loop for this problem. but it is okay if you use a loop. ****** * * * * ****** assessing a society by its own cultural standards is known as Q14QUESTION 14 1 POINT A line goes through the points (6, 2) and (-10,-3). Find its slope. Enter your answer as a simplified improper fraction, if necessary. Do not include "m="in your answer. priority nursing care for a client in addisonian crisis should include which intervention? select all that apply This has been a bad year for Park Avenue Furniture. The firm increasedsales revenues to $1,400,000, but total expenses ballooned to $1,750,000.Although management realized that some of the firm's expenses were out ofcontrol, including cost of goods sold ($700,000), salaries ($450,000), andadvertising costs ($140,000), it could not contain expenses. As a result, thefurniture retailer lost $350,000. To make matters worse, the retailer appliedfor a $350,000 loan at Fidelity International Bank and was turned down. Thebank officer, Mike Nettles, said the firm had a net loss for the last 12 monthsand that the firm already had too much debt. At that time, liabilities totaled$420,000 and owners' equity was $600,000.1.Analyze the financial condition of Park Avenue Furniture.2.Discuss why you think the bank officer turned down Park Avenue's loanrequest.3.Prepare a detailed plan of action to improve the financial health ofPark Avenue Furniture over the next 12 months.I dont need 1 or 2, just 3. What is one way to correct a spanning tree failure?Replace the cables on failed STP links.Manually remove redundant links in the switched network.Insert redundant links to replace the failed STP links.Replace all instances of STP with RSTP. a married male convicted of assault will receive a sentence that is about ................. years shorter than an unmarried male assault convict (use only integer number) what is the chosen medium of the sculptor dan flavin all of the following are known benefits to valuing diversity except: group of answer choices workgroup performance increased ability to adapt customer and supplier relationships increased shareholder value ability to attract and retain good workers crud matrices are created by creating a matrix that lists the classes across the topand down the side. True or False a magnifying glass uses a converging lens with a refractive power of 20 diopters. what is the angular magnification if the image is to be viewed by a relaxed eye with a near point of 25 cm NACIO3 NaCl + O3: How many total atoms are onthe reactants side of theequation?7 Steam Workshop Downloader