Answer:
We can solve this system of equations using substitution or elimination.
Using substitution, we can solve for one variable in terms of the other in one equation and substitute that expression into the other equation. For example, we can solve the first equation for x in terms of y:
2x + 5y + 1 = 0
2x = -5y - 1
x = (-5/2)y - 1/2
Now we can substitute this expression for x into the second equation:
3x + 7y = 1
3((-5/2)y - 1/2) + 7y = 1
-15/2 y - 3/2 + 7y = 1
9.5y = 5
y = 5/9.5 = 1/1.9
Now we can substitute this value of y back into either equation to solve for x:
x = (-5/2)y - 1/2
x = (-5/2)(1/1.9) - 1/2
x = -2.632
So the solution to the system of equations is x = -2.632 and y = 1/1.9.
Given � ∥ � m∥n, find the value of x. m n t (2x+23)° (3x+2)°
Step-by-step explanation:
2.1 Factoring 3x2-2x-23
The first term is, 3x2 its coefficient is 3 .
The middle term is, -2x its coefficient is -2 .
The last term, "the constant", is -23
Step-1 : Multiply the coefficient of the first term by the constant 3 • -23 = -69
Step-2 : Find two factors of -69 whose sum equals the coefficient of the middle term, which is -2 .
-69 + 1 = -68
-23 + 3 = -20
-3 + 23 = 20
-1 + 69 = 68
Let W1 and W2 be independent geometric random variables with parameters p1 and p2. Find: a) P(W1=W2); b) P(W1W2); d) the distribution of min(W1,W2); e) the distribution of max(W1,W2).
a) The probability of that happening is P(W1 = 1, W2 = 2) = P(W1 = 2, W2 = 1) = p1p2.
b) P(W1 = 1)P(W2 > 1) + P(W1 = 1)P(W2 > 2) + P(W1 = 2)P(W2 > 3) + ...= p1(1 - p2) + p1(1 - p2)p2 + p1p2(1 - p2) + ...= p1(1 - p2)(1 +p2 + p22 + ...) = p1(1 - p2)/(1 - p2)2= p1/(1 - p2)2
c) The probability that their minimum value is k is P(min(W1, W2) = k) = P(W1 = k, W2 > k) + P(W1 > k, W2 = k) = p1(1 - p2)k-1p2 + p2(1 - p1)k-1p1
d) The probability that their maximum value is k is P(max(W1, W2) = k) = P(W1 = k, W2 = k) + P(W1 = k, W2 > k) + P(W1 > k, W2 = k) = p1p2k-1 + p1(1 - p2)k-1 + p2(1 - p1)k-1
a) P(W1 = W2)The probability that W1 = W2 is 0. If W1 and W2 have different values, then W1 is equal to either 1 or 2. The probability of that happening is P(W1 = 1, W2 = 2) = P(W1 = 2, W2 = 1) = p1p2. The probability of that happening is P(W1 = 1, W2 = 2) = P(W1 = 2, W2 = 1) = p1p2.b) P(W1 < W2)The probability of W1 being less than W2 is P(W1 = 1, W2 = 2) + P(W1 = 1, W2 = 3) + P(W1 = 2, W2 = 3) + ... This may be written as P(W1 = 1)P(W2 > 1) + P(W1 = 1)P(W2 > 2) + P(W1 = 2)P(W2 > 3) +...= p1(1 - p2) + p1(1 - p2)p2 + p1p2(1 - p2) + ...= p1(1 - p2)(1 + p2 + p22 + ...) = p1(1 - p2)/(1 - p2)2= p1/(1 - p2)2
d) Distribution of min(W1, W2)If W1 and W2 are independent geometric random variables with parameters p1 and p2, respectively, then the probability that their minimum value is k is P(min(W1, W2) = k) = P(W1 = k, W2 > k) + P(W1 > k, W2 = k) = p1(1 - p2)k-1p2 + p2(1 - p1)k-1p1e) Distribution of max(W1, W2)If W1 and W2 are independent geometric random variables with parameters p1 and p2, respectively, then the probability that their maximum value is k is P(max(W1, W2) = k) = P(W1 = k, W2 = k) + P(W1 = k, W2 > k) + P(W1 > k, W2 = k) = p1p2k-1 + p1(1 - p2)k-1 + p2(1 - p1)k-1
Learn more about Independent Geometric Variables
brainly.com/question/30480240
#SPJ11
A cone with a height of 6 inches and a radius of 4 inches is sliced in half by a horizontal plane, creating a circular cross-section with a radius of 2 inches. What is the volume of the top half of the cone (in terms of π)?
The volume of the top half of the cone (in terms of π) is 4π whose height is 6 inches and radius is 4 inches.
The volume of the top half of the cone (in terms of π) is 4π whose height is 6 inches and radius is 4 inches.
What is volume?It is a physical quantity that is typically expressed in cubic units, such as cubic centimeters (cm³) or cubic meters (m³).
According to question:When the cone is sliced in half by a horizontal plane, the resulting cross-section is a circle with radius 2 inches. This circle has half the diameter of the original base of the cone, which means that it has half the area. We can use this fact to find the volume of the top half of the cone.
The original cone has height 6 inches and radius 4 inches, so its volume is given by:
V = (1/3)π(4²)(6) = (1/3)π(96) = 32π
When the cone is sliced in half, the top half has volume equal to half the volume of the original cone that lies above the horizontal plane. The height of this top half can be found using similar triangles: the radius of the top half is half the radius of the original cone, so the height of the top half is half the height of the original cone. Therefore, the height of the top half is 3 inches.
The radius of the top half is given as 2 inches, which means that its volume is:
V = (1/3)π(2²)(3) = (1/3)π(12) = 4π
Therefore, the volume of the top half of the cone (in terms of π) is 4π.
To know more about volume visit:
brainly.com/question/23477586
#SPJ1
1. The first table you create should be to keep track of the flowers you stock in the
flower shop. Use the types of flowers, color, and initial quantity listed in Question 4,
Part I for this table.
I
Here is an example table for tracking the flowers stocked in the flower shop, based on the information provided in Question 4, Part I:
A flower is the reproductive structure found in flowering plants.
Flower Type Color Initial Quantity
Roses Red 50
Roses Pink 30
Tulips Yellow 25
Tulips Red 20
Lilies White 40
Lilies Pink 15
In this table, each row represents a specific flower type and color, and the initial quantity of that flower type and color that the shop stocks. This table can be used to track inventory levels and monitor when certain types and colors of flowers need to be restocked.
Additional columns can be added as needed to track other information, such as supplier information, purchase dates, or prices.
To know more about Flowers:
https://brainly.com/question/12236356
#SPJ4
6) (8 pts) A hospital is interested in evaluating the percent of patients entering the emergency department who are admitted to the hospital. Data for randomly selected day was collected and out of 187 patients who entered the emergency department, 42 were admitted to the hospital. a) (6 pts) Calculate a 90% two-sided confidence interval for p, the percent of people entering the emergency department who are admitted to the hospital. b) (2 pts) In planning staffing to care for admitted patients, the hospital has assumed that 25% of people who enter the emergency department are admitted to the hospital. Based on your answer to part (a), is it reasonable for the hospital to use this assumption? Explain your answer using information from part (a)
90% people entering the emergency department is within the interval of [0.1559, 0.2933].
The confidence interval of the percent of patients entering the emergency department who are admitted to the hospital is [0.1763, 0.3137]. It is not reasonable for the hospital to assume that 25% of people who enter the emergency department are admitted to the hospital. Here's why.How to calculate a 90% two-sided confidence interval for p, the percent of people entering the emergency department who are admitted to the hospital:$$CI_p =\bigg(\hat{p}-Z_{\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p}+Z_{\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\bigg)$$ where $\hat{p} = \frac{x}{n}$, $\alpha = 0.10$, $Z_{\alpha/2} = 1.645$ (for a 90% confidence interval), and $n = 187$. The margin of error is given by $$ME = Z_{\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$Plugging in the values, we get $$\hat{p} = \frac{42}{187} = 0.2246$$$$ME = 1.645 \cdot \sqrt{\frac{0.2246\cdot 0.7754}{187}} \approx 0.0687$$Therefore, the confidence interval for $p$ is $$CI_p = (0.2246-0.0687, 0.2246+0.0687) = (0.1559, 0.2933)$$The 90% two-sided confidence interval for the percent of people entering the emergency department who are admitted to the hospital is [0.1559, 0.2933].Since the interval doesn't include 0.25, the hospital should not use the assumption that 25% of people who enter the emergency department are admitted to the hospital. This is because the interval does not overlap with the value of 0.25. As a result, we are 90% confident that the true proportion of people who are admitted to the hospital after entering the emergency department is within the interval of [0.1559, 0.2933].
Learn more about confidence interval
brainly.com/question/24131141
#SPJ4
James had 20 minutes to do a three-problem quiz. He spent 8 1 4 minutes on question A and 3 4 5 minutes on question B. How much time did he have left for question C?
Answer:
8.41
Step-by-step explanation:
8.14+3.45=11,59
20-11,59=8.41
3.7 Imagine a backgammon game with the doubling cube replaced by a "tripling cube" (with faces of 3,9,27,81,243,729 ). Following the analysis given for the doubling cube, compute the probability of winning above which a triple should be accepted.
a) approx 0.562$$
When playing backgammon, the doubling cube is an important feature that allows players to increase the stakes of the game. Imagine playing with a "tripling cube" instead, with faces of 3, 9, 27, 81, 243, and 729. Using the analysis given for the doubling cube, we can compute the probability of winning above which a triple should be accepted.To determine the probability of winning above which a triple should be accepted, we need to use the formula derived from the analysis of the doubling cube:$$P_w = \frac{q^2}{1-2q^2}$$where Pw is the probability of winning, and q is the probability of losing. We can substitute 1-q for p, the probability of winning, to get:$$P_w = \frac{(1-p)^2}{1-2(1-p)^2}$$Now, we need to modify this formula to account for the tripling cube. If we triple the current stakes, then we have effectively tripled the value of the doubling cube. In other words, if the current stakes are 1, then the value of the tripling cube is 3. If the current stakes are 2, then the value of the tripling cube is 9. More generally, if the current stakes are n, then the value of the tripling cube is 3^n. Using this information, we can modify the formula as follows:$$P_w = \frac{q^{3^n}}{1-2q^{3^n}}$$. This is the formula we need to use to compute the probability of winning above which a triple should be accepted. We can solve for q using the quadratic formula:$$q = \frac{1\pm\sqrt{1-4(1-2P_w)(-P_w^{3^n})}}{2}$$The value of q we want is the smaller one, because we want to compute the probability of losing. Once we have q, we can substitute it into the formula for Pw to get the probability of winning above which a triple should be accepted. Example Suppose we have a backgammon game with a current stake of 4, and we are considering accepting a triple from our opponent. Using the formula above, we can compute the probability of winning above which a triple should be accepted as follows:$$n = \log_3{3^2} = 2$$$$P_w = \frac{q^{3^2}}{1-2q^{3^2}}$$$$q = \frac{1-\sqrt{1-4(1-2P_w)(-P_w^{3^2})}}{2}$$$$q = \frac{1-\sqrt{1-8P_w^9}}{2}$$$$q = \frac{1-\sqrt{1-8(0.5)^9}}{2}$$$$q \approx 0.515$$$$P_w = \frac{q^{3^2}}{1-2q^{3^2}}$$$$P_w = \frac{(0.515)^9}{1-2(0.515)^9}$$$$P_w \approx 0.562$$. Therefore, if we have a probability of winning greater than 0.562, then we should accept the triple.
Learn more about probability
brainly.com/question/30034780
#SPJ4
7+3 5 /3+ 5 - 7+3 5 /3- 5
Answer:
To evaluate this expression, we need to follow the order of operations, which is commonly remembered using the acronym PEMDAS (Parentheses, Exponents, Multiplication and Division, and Addition and Subtraction):
1. Start with any operations inside parentheses. There are no parentheses in this expression.
2. Evaluate any exponents. There are no exponents in this expression.
3. Evaluate multiplication and division, from left to right. In this expression, we have:
7 + (35/3) + 5 - (7 + (35/3) / (3 - 5))
= 7 + (35/3) + 5 - (7 + (11.67) / (-2))
= 7 + (35/3) + 5 - (7 - 5.835)
= 7 + (35/3) + 5 + 5.835 - 7
= 15.835 + (35/3) - 7
4. Finally, evaluate addition and subtraction, from left to right:
15.835 + (35/3) - 7
= 15.835 + 11.67
= 27.505
Therefore, the value of the expression is 27.505.
Step-by-step explanation:
Alexander went to the store to buy some walnuts. The price per pound of the walnuts is $8 per pound and he has a coupon for $1 off the final amount. With the coupon, how much would Alexander have to pay to buy 2 pounds of walnuts? Also, write an expression for the cost to buy pp pounds of walnuts, assuming at least one pound is purchased.
Alexander would have to pay $15 to buy 2 pounds of walnuts with the coupon. The expression is cost = ($8/pound) x pp - $1.
What is a cost function?The functional connection between cost and output is referred to as the cost function. It examines the cost behaviour at various output levels under the assumption of constant technology. An essential factor in determining how well a machine learning model performs for a certain dataset is the cost function. It determines and expresses as a single real number the difference between the projected value and expected value.
Given that, the price per pound of walnuts is $8.
2 pounds x $8/pound = $16
Alexander would get $1 off the final amount.
Thus,
$16 - $1 = $15
So Alexander would have to pay $15 to buy 2 pounds of walnuts with the coupon.
The expression for the cost can be written as:
cost = ($8/pound) x pp - $1
Hence, Alexander would have to pay $15 to buy 2 pounds of walnuts with the coupon. The expression is cost = ($8/pound) x pp - $1.
Learn more about algebraic expressions here:
https://brainly.com/question/24875240
#SPJ1
A rectangle has sides measuring (5x + 4) units and (3x + 2) units.
Part A: What is the expression that represents the area of the rectangle? Show your work to receive full credit. Use the equation editor. (4 points
Part B: What are the degree and classification of the expression obtained in Part A? (3 points)
Part C: How does Part A demonstrate the closure property for polynomials? (3 points) (10 points)
Answer:
A) [tex]15x^2+22x+8[/tex]
B) Degree 2, Quartic Expression
C) The dimensions of the rectangle are polynomials. When multiplied together, the area of the rectangle is also a polynomial.
Step-by-step explanation:
A) The formula for area of a rectangle is Area = L * W. The length and width are represented by (3x+2) and (5x+4). So we can say that
[tex]Area = (5x+4)(3x+2)[/tex]
Use FOIL to multiply the the polynomials. First, Outside, Inside, Last
[tex]Area = (5x)(3x) + (5x)(2) + (3x)(4) + (2)(4)\\Area = 15x^2 + 10x + 12x + 8\\Area = 15x^2 + 22x + 8[/tex]
The expression that represents the area of the rectangle is
[tex]15x^2 + 22x + 8[/tex].
B) The degree of the expression is 2, because two is the highest power of x. The classification of the expression is quadratic because the graph of the expression is a parabola.
Degrees vs. Classification
Degree 0: Zero Polynomial or Constant
Degree 1: Linear (line)
Degree 2: Quadratic (parabola)
Degree 3: Cubic
Degree 4: Quartic
...
C) Closure property for polynomials applies to addition, subtraction, and multiplication. It means that the result of multiplying two polynomials will also be a polynomial. Part A demonstrates polynomial closure under multiplication because the dimensions of the rectangle are polynomials and so is the area.
What is the value expression
2( X + 4) - (y * 8)
when x= 1/8
and y= 3/16
a 11/4
b 65/2
c 21/4
d 27/4
Answer:
d. 27/4, or 6.75
Step-by-step explanation:
[tex]2( \frac{1}{8} + 4) - ( \frac{3}{16} \times 8)[/tex]
[tex]2( \frac{33}{8} ) - \frac{3}{2} [/tex]
[tex] \frac{33}{4} - \frac{3}{2} = \frac{33}{4} - \frac{6}{4} = \frac{27}{4} = 6.75[/tex]
Use the following statement to answer parts a) and b). Five hundred raffle tickets are sold for $3 each. One prize of $200 is to be awarded. Winners do not have their ticket costs of $3 refunded to them. Raul purchases one ticket.
a) Determine his expected value.
b) Determine the fair price of a ticket.
11. 3#12
Therefore, the fair price of one raffle ticket is $2.60, which is slightly less than the amount Raul paid ($3).
a) The fair price of one raffle ticket is $3. This is because 500 tickets were sold at this price and one prize of $200 is to be awarded. Therefore, the 500 tickets collected add up to $1,500, while the prize to be awarded is $200. The net amount to be divided among all the ticket holders is $1,300.
b) The fair price of one raffle ticket is $2.60. This is calculated by dividing the total prize money of $200 by the total number of tickets sold (500). Therefore, 500 tickets multiplied by $2.60 gives a total prize money of $1,300 which is equal to the total ticket sales of $1,500 less the prize money of $200.
For more such ticket related questions
https://brainly.com/question/107024
#SPJ11
7. A man wishes to invest $3500. He can buy savings bonds which pay simple
interest at the rate of 12% per annum or he can start a savings account which
pays compound interest at the same rate. Calculate the difference in the
amounts of the two investments at the end of the 3 years.
a)
1200 x 9 x2
=
Robert is currently 10 years old.Given that five years ago Sharon was twice as old as Robert was then, we can set up the following equation: y + 5 = 2(y)
We are given the information that Sharon is five years older than Robert, and five years ago Sharon was twice as old as Robert was then. This means we can create a system of equations to solve for Robert's age.
Let x = Robert's current age
Let y = Robert's age five years ago
Given that Sharon is five years older than Robert, we can set up the following equation:
x + 5 = Sharon's current age
Given that five years ago Sharon was twice as old as Robert was then, we can set up the following equation:
y + 5 = 2(y)
Solving the first equation for x, we get x = Sharon's current age - 5. Substituting this into the second equation, we get:
y + 5 = 2(Sharon's current age - 5)
Solving this equation for y, we get y = (Sharon's current age - 5)/2.
Since Sharon is five years older than Robert, Sharon's current age is x + 5. Substituting this into our equation for y, we get:
y = (x + 5 - 5)/2
Simplifying this equation, we get y = x/2. This means that Robert's age five years ago was half of his current age.
Since we know that Robert is currently 10 years old, Robert's age five years ago was 5. Therefore, Robert is currently 10 years old.
Learn more about equation here
https://brainly.com/question/29657992
#SPJ4
1) The area of the shaded sector is 51.3 square feet. What is an estimate for the radius of the
circle? Round the answer to the nearest foot.
B
60°
D
120°
C
3.31 is an estimate for the radius of the circle.
What precisely is a circle?The circle fοrm is a clοsed twο-dimensiοnal shape because every pοint in the plane that makes up a circle is evenly separated frοm the "centre" οf the fοrm.
Each line tracing the circle cοntributes tο the fοrmatiοn οf the line οf reflectiοn symmetry. In additiοn, it rοtates arοund the center in a symmetrical manner frοm every perspective.
he radius of the circle, we need to use the formula for the area of a sector, which is:
Area of sector = (θ/360) x π x r
the radius of the circle "x" for now, and set up an equation using the given information
51.3 = (120/360) x π x
Simplifying this equation, we get:
= (51.3 x 360)/(120 x π)
x² ≈ 10.95
x ≈ √10.95
x ≈ 3.31
Learn more about circle
brainly.com/question/29142813
#SPJ1
In a standard 52-card deck of playing cards, each card has one of four suits: spade, heart, club, or diamond. There are 13 cards of each suit. Alison thoroughly shuffles a standard deck, draws a card, then returns it to the deck, and shuffles again. She repeats this process until she has drawn nine cards. Find the probability that she draws at most three spade cards. Use Excel to find the probability
The formula would be: =BINOM.DIST(3,9,0.25,TRUE) + BINOM.DIST(2,9,0.25,TRUE) + BINOM.DIST(1,9,0.25,TRUE) + BINOM.DIST(0,9,0.25,TRUE). Probability of this outcome is 0.372.
The probability of drawing at most three spade cards when drawing nine cards with replacement from a standard 52-card deck is 0.628. This probability was calculated using the binomial distribution formula in Microsoft Excel. The formula takes into account the number of trials (nine), the probability of success (drawing a spade card), and the number of successes desired (at most three). The result shows that there is a relatively high likelihood of drawing at least four spade cards, as the probability of this outcome is 0.372.
Learn more about probability here: brainly.com/question/30034780
#SPJ4
Molly knows that 30% of the students at her school are boys and that there are 600 boys at her school. She wants to find the total number of students at the school, because she needs to order t-shirts for all the students.
What is the total number of students at Molly's school?
Answer:
Step-by-step explanation:
You ask yourself, "600 is 30% of how many students?". In equation form this looks like:
600 = .30x
Divide both sides by .30 and you'll get that the number of students is 2000
i need help on these
Answer:
a) x = 20
b) x = 9
Step-by-step explanation:
Mean:a) [tex]\boxed{\bf Mean =\dfrac{sum \ of \ all \ the \ data}{Number \ of \ data}}[/tex]
[tex]\dfrac{16 +x + 3 + 14 +57}{5}=22\\[/tex]
x + 90 = 22*5
x + 90 = 110
x = 110 - 90
x = 20
b)
[tex]\bf \dfrac{4 + x + 5 +6 + 1}{5} = 5[/tex]
x + 16 = 5 * 5
x + 16 = 25
x = 25 - 16
x = 9
Giving brainliest to the person that give a step by step explanation and is the fastest!
Answer:
[tex]14in^2[/tex]
Step-by-step explanation:
Volume of a rectangluar prism = Length x Width x Height
Volume, Length, and Width is given now we can solve for Height, y
[tex]V = l * w * h[/tex]
[tex]3in^3 = 1in * 1in* h[/tex]
[tex]h = 3in[/tex]
Surface area of a rectangular prisim is A = 2(wl +hl +hw)
A = [tex]2(1in * 1in + 3in * 1in + 3in * 1in)\\2(1 in^2+ 3 in^2+ 3in^2)\\2(7in^2)\\14in^2[/tex]
Hope this helps!
Brainliest is much appreciated!
Estimate a 20% tip on a dinner bill of $169. 86 by first rounding the bill amount to the nearest ten dollars
Answer:
Tip is $34
Round up bill amount $170
Step-by-step explanation:
20/ 100 x 170 = $34
Tip is $34
BILL plus tip is $204
What is the remainder when 5x3 + 2x2 - 7 is divided by x + 9?
Answer:
The remainder when 5x3 + 2x2 - 7 is divided by x + 9 is -692.
Explanation:
We can use long division to divide 5x^3 + 2x^2 - 7 by x + 9:
-5x^2 + 43x - 385
x + 9 | 5x^3 + 2x^2 + 0x - 7
5x^3 + 45x^2
--------------
-43x^2 + 0x
-43x^2 - 387x
--------------
387x - 7
Therefore, the remainder when 5x^3 + 2x^2 - 7 is divided by x + 9 is 387x - 7.
Hope this helps, sorry if this is wrong! :]
PLEASE HELP ASAP!!! I'll MARK BRAINLIEST!!
Farmer Naxvip wanted to sell some hopts and totts at the market. She planned to charge $3 per hopt and $7 per tott. She expected to make at least $84. She expected to sell at most 24 units.
Write a system of statements, in standard form, modeling the relationships between amounts of hopts (x) and amount of totts (y).
Answer:
Let x be the number of hopts and y be the number of totts.
The first statement relates to the total amount of money expected to be made:
3x + 7y ≥ 84
This inequality states that the total revenue from selling hopts and totts should be at least $84.
The second statement relates to the total number of units expected to be sold:
x + y ≤ 24
This inequality states that the total number of hopts and totts sold should be at most 24 units. Therefore, the system of inequalities in standard form is:
3x + 7y ≥ 84
x + y ≤ 24
where x ≥ 0 and y ≥ 0 (since we cannot sell a negative number of hopts or totts).
Answer: Let "x" be the number of hopts that Farmer Naxvip plans to sell, and let "y" be the number of totts that she plans to sell. Then we can write the following system of inequalities to model the relationships between the amounts of hopts and totts:
3x + 7y >= 84
x + y <= 24
The first inequality represents the condition that Farmer Naxvip expects to make at least $84, while the second inequality represents the condition that she expects to sell at most 24 units.
Brainliest Appreciated! (:
help me with this question please
Therefore , the solution of the given problem of equation comes out to be y = 0.5x²- 3
Define linear equation.The foundation of a model of linear regression is the equation y=mx+b. The inclination is B, and the y-intercept is m. Although it is true that y and y are separate parts, the the above sentence is frequently referred to as a "mathematics problem with two variables". Y=mx+b is the formula for a singular system of equations, where m denotes the gradient and b the y-intercept. The equation is Y=mx+b, where m denotes slopes and b denotes the y-intercept.
Here,
=> x y
-4 5
-2 -1
0 -3
2 -1
To find : the equation which passes through the point
=> y = 0.5x²- 3
We can see,
=> y = 0.5(-4)² - 3
=> y = 8 -3
=> y =5
To know more about linear equation visit:
https://brainly.com/question/11897796
#SPJ1
Justin is joining a gym the gym is offering a discount on the fee to join and on the monthly rate the discounted price in dollars the gym charges can be represented by the equation Y equals 10 X +5
Part A what are the slope and the Y intercept of the equation what do the slope and y-intercept each represent in this situation ?.
Part B the regular price in dollar the gym charges can be represented by the equation Y equals 15 X +20. How much money in dollars does Justin save the first month by joining the gym at the discounted price rather than the regular price
Part C Justin create a system of equation based on the equation from part a and the equation from part B, the solution to the system of equation is (-3, -25) Why is the point (-3, ,-25) not possible solution in this solution ?
Part A:
The equation Y = 10X + 5 is in slope-intercept form, y = mx + b, where m is the slope and b is the y-intercept. Therefore, in this equation, the slope is 10 and the y-intercept is 5.
The slope represents the rate of change in the monthly rate of the gym membership. For every one unit increase in the number of months, the monthly rate will increase by $10. The y-intercept represents the initial cost of joining the gym, which is $5.
Part B:
To find out how much money Justin saves the first month by joining the gym at the discounted price, we need to calculate the difference between the regular price and the discounted price for the first month.
The regular price for the first month can be found by plugging in X = 1 into the equation Y = 15X + 20, which gives Y = 35.
The discounted price for the first month can be found by plugging in X = 1 into the equation Y = 10X + 5, which gives Y = 15.
Therefore, Justin saves $20 (35 - 15) the first month by joining the gym at the discounted price rather than the regular price.
Part C:
The system of equations is:
Y = 10X + 5 (discounted price)
Y = 15X + 20 (regular price)
The solution to the system of equations is (-3, -25), which means that if X = -3, then Y = -25 is a solution to both equations. However, this solution is not possible in this situation because X represents the number of months, which cannot be negative. Therefore, the point (-3, -25) is not a valid solution.
Without using a calculator, find the values of the integers a and b for which the solution of the equation (a) x√24 + √96 = √108 + x√12 is √a + b₁ (b), x√40 =x√5 + √10 is a + √№b 7
(a) The solution of the equation is √6 + 2.
(b) a = 10 and b = 2, and the solution of the equation is √10 + 7.
What is the solution of the equation?
((a) To solve this equation, we need to isolate the term with the variable x on one side and move all other terms to the other side.
Let's start by simplifying each term using the fact that;
√24 = √(4 × 6) = 2√6,
√96 = √(16 × 6) = 4√6,
√108 = √(36 × 3) = 6√3, and
√12 = √(4 × 3) = 2√3.
Then, we have:
x√24 + √96 = √108 + x√12
2x√6 + 4√6 = 6√3 + 2x√3
2(√6 + 2√3) = (x√3 + 2x√6)
2√6 + 4√3 = x(√3 + 2√6)
Now, we can equate the coefficients of √6 and √3 on both sides to get a system of equations:
2 = x
4 = 2x
Solving this system, we find that x = 2 and therefore a = 6 and b₁ = 2.
So, the solution of the equation is √6 + 2.
(b) To solve this equation, we also need to isolate the term with the variable x on one side and move all other terms to the other side.
Let's start by squaring both sides of the equation to eliminate the square roots:
(x√40)² = (x√5 + √10)²
40x² = 5x² + 10 + 2x√50 + 10
35x² - 20 = 2x√50
Now, we can square both sides again to eliminate the remaining square root:
(35x² - 20)² = (2x√50)²
1225x⁴ - 1400x² + 400 = 0
This is a quadratic equation in x². We can solve it using the quadratic formula:
x² = (1400 ± √(1400² - 4 × 1225 × 400)) / (2 × 1225)
x² = (1400 ± 200) / 245
x² = 2 or x² = 8/7
Since x² cannot be negative, we have x² = 2 and therefore x = √2.
Substituting this value of x back into the original equation, we have:
x√40 = x√5 + √10
√80 = √10 + √10
√80 = 2√10
So, a = 10 and b = 2, and the solution of the equation is √10 + 7.
Learn more about integers here: https://brainly.com/question/17695139
#SPJ1
How are the products of -3(1) and - 3(-1) the same? How are they different?
Answer:
Step-by-step explanation:
45342
A group of students was randomly divided into two subgroups. One subgroup
did a fitness challenge in the morning, and the other did the same challenge
in the afternoon. This table shows the results.
Morning
Afternoon
Total
Pass Fail Total
401050
23 27 5 0
63 37 100
50
Compare the probability that a student will pass the challenge in the morning
with the probability that a student will pass the test in the afternoon. Draw a
conclusion based on your results.
The pass rate in the afternoon subgroup is greater than 1, we cannot draw a reliable conclusion without further investigation or clarification of the data.
To compare the probability that a student will pass the challenge in the morning with the probability that a student will pass the challenge in the afternoon, we need to calculate the proportion of students who passed in each subgroup.
The proportion of students who passed the challenge in the morning subgroup is:
Pass rate in the morning subgroup = Number of students who passed in the morning subgroup / Total number of students in the morning subgroup
Pass rate in the morning subgroup = 40 / 60
Pass rate in the morning subgroup = 0.67
The proportion of students who passed the challenge in the afternoon subgroup is:
Pass rate in the afternoon subgroup = Number of students who passed in the afternoon subgroup / Total number of students in the afternoon subgroup
Pass rate in the afternoon subgroup = 50 / 40
Pass rate in the afternoon subgroup = 1.25
that the pass rate in the afternoon subgroup is greater than 1, which is not possible as probabilities must be between 0 and 1. This implies that there might be a data error.
Assuming the data is correct, we can conclude that the probability of passing the challenge in the afternoon subgroup is higher than the probability of passing the challenge in the morning subgroup. However, since the pass rate in the afternoon subgroup is greater than 1, we cannot draw a reliable conclusion without further investigation or clarification of the data.
for such more question on probability
https://brainly.com/question/24756209
#SPJ4
factor 36abc + 54d????
Spiral Review Solve for x
.
A linear pair of angles is shown. The left side is two x. The right side measures fifty degrees.
Enter the correct answer in the box.
Solution: x=
value of variable x is 65 degree.
define straight lineA straight line is a geometric object that extends infinitely in both directions and has a constant slope or gradient. It is the shortest distance between two points, and it can be described by an equation in the form of y = mx + c, where m is the slope or gradient of the line and c is the y-intercept.
Define supplementary angleThe term "supplementary angles" refers to two angles whose sum is equal to 180 degrees. In other words, if angle A and angle B are supplementary angles, then:
∠A +∠B = 180 degrees
To find value of x
A straight line's angle total is 180°.
2x+50°=180°
2x=130°
x=65
Hence, value of variable x is 65 degree.
To know more about variable, visit:
https://brainly.com/question/17344045
#SPJ1
The volume of a right cone is 3,525 units to the 3rd power if it's diameter measures 30 units on its height
If the volume of a right cone is 3,525, then the height of the cone is approximately 5 units.
We can use the formula for the volume of a cone to solve for the height of the cone:
V = (1/3)πr²2h
where V is the volume of the cone, r is the radius (half of the diameter), and h is the height of the cone.
Given that the diameter of the cone is 30 units, the radius is 15 units. Substituting this and the volume V = 3525, we get:
3525 = (1/3)π(15)²2h
3525 = 225πh/3
h = 3(3525)/(225π)
h ≈ 5
Therefore, the height of the cone is approximately 5 units.
Learn more about cone here:
https://brainly.com/question/29767724
#SPJ4
Find the area of the sector whose radius and central angle are 42cm and 60° respectively.
Answer:
Step-by-step explanation:
[tex]D=\frac{\theta}{360} \times2\times\pi \times r[/tex]
[tex]D=\frac{60}{360} \times2\times\pi \times 42[/tex]
[tex]=\frac{1}{6} \times84\times\pi[/tex]
[tex]=12\pi cm^2[/tex]